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Abstract In this paper, we introduce a new iterative scheme for finding a common element
of the set of solutions for a generalized equilibrium problems and the set of fixed points for
nonexpansive mappings in Hilbert space. Under suitable conditions, some strong convergence
theorems are proved. Our results extend and improve some recent results.
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1. Introduction

Throughout this paper we assume that H is a real Hilbert space and C' is a nonempty closed
convex subset of H. Let F' be an equilibrium bifunction from C' x C' into Rand let A: C — H
be a nonlinear mapping. Then, we consider the following generalized equilibrium problem: find
z € C such that

F(z,y)+ (Az,y —z) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP, i.e.,
EP={zeC:F(z,y)+ (Az,y —2z) >0, Yy € C}.
In the case of A =0, EP is denoted by EP(F). In the case of F = 0, EP is denoted by VI(C, A).
A mapping S : C — H is said to be nonexpansive, if

ISz =Syl < llz —yll, Vz,yeC.

In the sequel, we denote the set of fixed points of S by F(S). Recently Tada and Takahashi
[2], and Takahashi and Takahashi [3] considered iterative methods for finding an element of
EP(F)N F(S). On the other hand, Takahashi and Toyoda [4] introduced an iterative method
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for finding an element of VI(C, A) N F(S), where A : C' — H is an inverse-strongly monotone
mapping. Very recently, Takahashi and Takahashi [1] introduced an iterative method for finding
an element of EP N F(S), where A: C — H is an inverse-strongly monotone mapping and then
proved a strong convergence theorem.

In this paper, motivated by Takahashi and Takahashi [1], we introduce a new iterative method
for finding an element of EP N F(S), where A: C — H is a continuous monotone mapping and
then prove a strong convergence theorem. Moreover, the method of proof adopted in the paper
is different from that of [1].

2. Preliminaries

In the sequel, we use z, — x and z,, — x to denote the weak convergence and strong
convergence of the sequence {x,} in H, respectively.
Let H be a Hilbert space, C' be a nonempty closed convex subset of H. For any x € H, there

exists a unique nearest point in C, denoted by Pc(z), such that
|z — Pex|| < |z —yll, VyeC.
Such a mapping Pc from H onto C is called the metric projection.

Remark 1 It is well-known that the metric projection Pz has the following properties:
i) Po: H — C is nonexpansive;

il) Pe is firmly nonexpansive, i.e.,
|Pox — Poy|? < (Pex — Pey,x —y), @,y € H;
iii) For each x € H,
z=Perx e (r—2z,2—y) >0, YyelC.

It is also known that H satisfies Opial’s condition [5], that is, for any sequence{x,} with
r, — x, the inequality

liminf ||z, — 2| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # z.
We know that if S : C'— C is a nonexpansive mapping, then the set F(S) of fixed points of
S is closed and convex. Further, if C' is bounded, closed and convex, then F'(S) is nonempty.

The following is Suzuki’s lemma [6] which was proved in a Banach space.

Lemma 2.1 ([6]) Let {x,} and {y,} be bounded sequences in a Banach E and let {3,} be
a sequence in [0,1] with 0 < liminf, . B, < limsup,,_,., 3. < 1. Suppose that x,i1 =
(1 = Bn)yn + Bnxy, for all integers n > 1 and limsup,, , o (|yn+1 — Ynll = |Znt1 — 2n|]) < 0. Then
limy,— o0 ||Yyn — zn|| = 0.

For solving the equilibrium problem for bifunction F' : C' x C' — R, let us assume that F

satisfies the following conditions:
(A1) F(z,z) =0 for all z € C;
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(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(As) For each z,y,z € C,

gif})lF(tZ + (1 -t)z,y) < F(z,y);

(A4) Foreach z € C, y+— F(z,y) is a convex and lower semicontinuous.

If an equilibrium bifunction F : C' x C' — R satisfies conditions (A1)—(A4), then we have the

following two important results.

Lemma 2.2 ([7,8]) Let C be a nonempty closed convex subset of H and let F' be an equilibrium
bifunction F : C x C' — R satisfying conditions (A1)—(A4). Let r > 0 and « € C. Then there
exists z € C' such that

1
F(z,y)+;<y—z,z—x>20, vy € C.

Lemma 2.3 ([8]) Let F' be the same as given in Lemma 2.2. For given r > 0 and x € C define
a mapping T, : H — C' as follows:

1
TT(:C)z{zec:F(z,y)—i—;(y—z,z—:v)20, Yy € C}.

Then the following conclusions hold:
(1) T, is single-valued;

(2) T, is firmly nonexpansive, i.e., for any x,y € H,
|| Trx —Try H2§ <Tr$ - Ty, x — y>§

(3) F(T,) = EP(F);
(4) EP(F) is a closed and convex set.

We can also obtain the following lemma.
Lemma 2.4 ([1)) Let C, H, F and T,.(x) be as in Lemma 2.3. Then the following holds:
| Tsx — Tyx [|2< ST_t<TSx — Ty, Tsx — x)
forall s,t >0 and x € H.
Lemma 2.5 ([9]) Assume {a,}, is a sequence of nonnegative real numbers such that
ant1 < (1 —n)an + 6,, ¥Yn > ng,

where 7, is a sequence in (0,1) and §,, is a sequence such that
(l) Z?zozl Tn = OO;
(2) limsup,,_, . % <0or )2 |6n] =00,

then, lim,, .. a, = 0.

3. The main results

In this section, we prove a strong convergence theorem which is the main result in the paper.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H and A
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be a continuous monotone mapping from C into H. Let F be a bifunction from C x C' to
R which satisfies (A1)—(A4) and let S be a nonexpansive mappings of C' into itself such that
F(SYNEP # 0, f be a contraction on C with a coefficient h (0 < h < 1). Let z1 € C, {z,} C C
and {x,} C C be the sequence generated by
1
F(Zn7y> + <A2n,y— Zn> + —<y—zn,zn _In> >0,VyedC,

Tyl = Pny + (1 - 671)‘9%17
Yn = anf(xn) + (1 - an)zm
where {ay,}, {Bn} C [0,1] and {r,} C (0,00). If the following conditions are satisfied

(C1) lim,— oo ayy = 0;
(C2) opiiom =00
(Cs) lim,— oo (rpt1 — rn) = 0; liminf, o r, > 0,
(Cy) 0 <liminf, o B, <limsup,, . On <1,
then {x,} converges strongly to p, where p = Pp(s)nppf(p).

VneN, (3.1)

Proof We define a bifunction G : C' x C' — R by
G(z,y) = F(z,y) + (Az,y — 2), Vz,yeC.

Next, we prove that the bifunction G satisfies conditions (A;)—(Ay):

(A1) G(z,z)=0forall z € C.

Since G(z,z) = F(z,z) + (Az,0) = F(z,z) =0, for all z € C.

(A2) G is monotone, i.e., G(z,y) + G(y,z) <0 for all y, z € C.

Since A is monotone, from the definition of G we have

G(zy) + Gy, 2) = Fz,y) + (Az,y — 2) + Fy,2) + (Ay, 2 — y)

=F(z,y) + F(y,z) + (Az,y — 2) — (Ay,y — 2)
<04 (Az— Ay,y—2) = —(Ay — Az,y — z) < 0.

(A3) For each z,y,z € C,

lgfg Gtz + (1 —t)z,y) < G(z,y).
Since A is continuous, we have
lt%l Gtz+ (1 —t)z,y)
= lti%lF(tz +(1-t)z,y)+ 13f51<A(tz + (1 -t)z),y—(tz+ (1 -t)z))
< F(z,y) + (Az,y — z) = G(z,y).

(A4) For each z € C, y — G(z,y) is a convex and lower semicontinuous.
For each « € C, Vt € (0,1) and Yy, z € C, since F satisfies (A4), we have

Gz,ty+ (1 —t)z) = F(a,ty + (1 — t)z) + (Az,ty + (1 — t)z — )
<t[F(z,y) + (Az,y —x)] + (1 — )[F(z, 2) + (Az, z — x)]
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— 1G(,y) + (1 — )G(x, 2).

So, y — G(z,y) is convex.
Similarly, we can prove that y — G(x,y) is lower semi-continuous.
Therefore, the generalized equilibrium problem (1.1) is equivalent to the following equilibrium
problem: find z € C such that
G(z,y) >0, VyeC,

and (3.1) can be written as:

1
G(Znay)+_<y_znuzn_xn> >0, Vyeca
T

n

Tn+1 = ﬁnxn + (1 - ﬁn)syna VneN (32)
Yn = Oénf(xn) + (1 - an)zn-
Let Q = Pp(s)nep(c)- Note that f is a contraction with coefficient 2 € (0,1) . Then, we have

1Qf(z) = QfWI < £ (=) = f()ll < hllz -yl

for all z, y € C. Therefore, Q(f) is a contraction of C' into itself, which implies that there exists
a unique element p € C' such that p = Qf(p) = Pr(s)ner)f(®)-
Since the bifunction G satisfies conditions (A1)—(A4), from Lemma 2.3, for given r > 0 and
x € C, we can define a mapping W, : H — C' as follows:
1
Wy(z)={2€C:G(zy)+ ;(y—z,z—@ >0, Yy € C}.

Moreover, W, satisfies the conclusions in Lemma 2.3.
We divide the proof of Theorem 3.1 into six steps:
Step 1. First prove the sequences {z,}, {yn}, {zn}, {f(zn)} and {W, z,} are bounded.
(a) Pick p € F(S)N EP(G). Since z, = W, x, and p = W, p, we have
lzn = pll = Wy, 20 = We,pll < [[2n — pl|. (3.3)
(b) From (3.2) and (3.3), we have

[yn = pll = llan f(zn) + (1 = an)zn — pl|
= llom (f(@n) = p) + (1 — an)(zn — p)
< anl[f(zn) = F(p) + f(p) =Pl + (1 = an)l[zn —pll
< anhllzn —pll + an [ f(p) — Pl + (1 — an)llzn — pl|
= (1 —an(l = h))[zn —pll + anllf(p) - pll. (3-4)

Form (3.2), (3.3) and (3.4) we have

[Zn+1 = pll = 18n(2n — p) + (1 = B)(Syn — p)|
< Ballzn — pll + (1 = Bp)llyn — pll
< Ballzn —pll + (1 = Bp){(1 — an(l = h))[zn — pll + anll f(p) — plI}
=1 = an(l = h))zn = pll + an(l = Bl f(p) — Pl
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< (I = an(1=h))[lzn —pll + anllf(p) —

< max{llen —pl, = 1/) ~ o1}

1
< max{[lz1 pl. - 1£(2) - I}
This implies that {z,} is a bounded sequence in H. Therefore {y,}, {zn}, {f(xn)} and {W, z,}

are all bounded.

Step 2. Next we prove that
|Tns1 — x| — 0, n — co. (3.5)
Since z, = W, =, we have

Ynt1 = Yn = Onp1 f(@ng1) + (1 = 0ng1)zna1 = [an fzn) + (1 — an)zn]
= an41f(@nt1) — o f(@n) + (1 = ang1)zng1 — (1= oan)2n
= 1 (f(@ng1) = f(2n)) + f@n)(0mer — om)+
(1 =) We o @1 = Wo @ + W 2 — Wo 2 + Wi 2] — (1 — a) W, 2.

So, we have

[Yn+1 = Ynll Scnirhl|znir — all + lomgr — anl - [ f(zn) || + (1 = i) |2n41 — znll+
(1 = ans)[IWrp 10 = Wizl + a1 — an| - [[Wr, 24|
Then
15Yn+1 = Synll < lyn+1 = ynll
< (I —ant1(I = h)[znt1 — 2all + longr — ol - || f(zn) 1+
lang1 = an| - [[Wr,zn|| + (1 = ang2) [We, 20 = Wo, 2.

Let s =ry41, t =7, and z = x,,. From Lemma 2.4, we have

[1SYn+1 = Syl

< znt1 = ol + langr — anl - [[f(@n)ll + lant1 — anl - [[We, 20|+

|Tn+1 - Tn| 1
(1= o) {=— W@ = Wr 2, Wi 12— 20)[}2.
Tn+1
From o, — 0, ||Zp+1 — x| — 0 and conditions (Cs), (Cs) it follows
lim sup([|Synt1 = Syall = |2n41 = 2al) <0.

From Lemma 2.1, we get

Syn — xn — 0. (3.6)
Consequently,
1 [fasr — 2ol = lim (1= 3,)][Syn — ] = 0.
Step 3. Next we prove that
lim ||, — z,] = 0. (3.7)

n—oo
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For each p € F(S) N EP(G), since z, = W, x,, we have
120 = plI* = [Wr, 0 = W, pl|* < (20 —p, 20 — 1)
= %{llwn = pl* + llzn = plI*} = |25 — 2l
So, we get
20 = plI* < llzn = plI* = 2[|20 — 2nl|*. (3.8)
Then, from (3.2) and (3.8), it follows
zns1 = plI* = 1Ba (20 — p) + (1 = Ba)(Syn — )|

< Ballzn = plI* + (1 = Ba)llyn — pII?

< Ballzn = plI” + (1 = Ba)lan(f(@n) = p) + (1 = an)(z0 — p)|I?

< Ballzn =l + (1 = Bu){enll f(zn) = plI* + (1 = an)lzn — pl?}

< Bullzn =l + anll f(zn) = plI* + (1 = Bu)llzn — pl?

< Ballzn = pl* + anll f(zn) = plI* + (1 = Ba){llzn — plI* = 2llzn — 2]}

= llzn = plI? + anll f(zn) = plI* = 201 = Bu)ll2n — 2all®
and hence

2(1 = Ba)l|zn = 2all* < (lzn = pll = l2ns1 = pI) - (J2n = pll + 2041 = pl) + anll f(z0) — p||?
< llznt1 = @nll - (2 = pll + lznr1 = pl) + anll f(@n) = plI*.
Since a,, — 0, ||pt1 — @n|| — 0 and condition (C4) we have
|z — 2zl — 0.
Step 4. Next we prove that

Jim |y, = zall = 0, lim_[ly, —zp[| =0 and  lim_ [|Sy, = ynll = 0.
Since yn, = an f(2n) + (1 — an)2zn, we have y, — 25, = @ (f(2,) — 2,,). Hence

[yn = 2ull = cnllf(2n) = 2]l = 0, and so [jyn — zn[| — 0. (3.9)
Since

1Syn = ynll < [15yn — znll + 120 = 2l + 120 — ynll,
from (3.6), (3.7) and (3.9) we have
1SYn = yull — 0. (3.10)
Step 5. Next we prove that

limsup(f(p) — p,yn — p) < 0, where p = Pp(s)nepc)f(p)- (3.11)
For the purpose, we choose a subsequence {y,,} of {y,} such that

limsup(f(p) =p,yn —p) = lim (f(p) = P, yn, = p)- (3.12)

n—oo
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Since {yn,} is bounded, there exists a subsequence of {y,,}, without loss of generality, we still
denote it by {y,,} such that y,, — w.
Now we show that w € F(S) N EP(QG).
(a) First we prove that w € EP(G).
From (3.9), we have z,, — w. Since z, = W, z,, we have
G(zn,y) + %(y — Zny2n — Tp) >0, VyeC.

n

By condition (As)
Zn — Tn
<y — Zn; T> > _G(Znu y) > G(ya Zn)

n

Hence we have
Zn, — T
<y — Zn;» u> Z G(ya an)

Uz

Zn

Since 22— 0, 2, — w, by condition (A4), we have G(y,w) < 0 for all y € C. For any

t with 0 < ¢t <landyeCC,lety =ty+ (1 —t)w. Since y € C, we see G(y;,w) < 0. From
conditions (A1) and (Ay4), we have

0= G(ye,y) <tG(Ysy) + (1 = )G (ys, w) <G (ye, y)-

This implies that G(y;,y) > 0. Hence from condition (Asz), we have G(w,y) > 0 for all y € C,
and hence w € EP(G).

(b) Now we prove that w € F(S).

If not, we have w # Sw. From Opial’s Lemma [6] and (3.10), we have

liminf [[yn, — w|| < liminf |ly,, — Sw(| = liminf |lyn, — Syn, + Syn, — Sw||
< liminf [y, — w.

This is a contradiction. So, we have w € F(S). Since w € F(S) N EP(G), from (3.12) and the

property of metric projection, we have

limsup(f(p) =p,yn —p) = lim (f(p) = p,yn, —p) = (f(p) =p,w —p) < 0.

n—oo

It follows from (3.9) and (3.11) that

limsup(f(p) — p,zn — p) < limsup(f(p) — p, T — Yn) + limsup(f(p) — p,yn —p) < 0. (3.13)

n—oo n—oo n—o0

Step 6. Finally, we prove that
T — p = Ppsyner@) f(p)- (3.14)
Indeed, from (3.2), (3.3) and (3.4), we have
2741 _pH2 < Ballzn —p||2 + (1= Bn)|1Syn —p||2
< Bullzn = plI* + 1 = Bu)llyn — plI®
< Ballzn = pl* + (1 = B){(1 — an)?ll2n — plI* + 200 (f (20) — P,y — D)}
< Ballzn — pH2 + (1= Bn)(1 — 20, + O‘i)”fzn —p||2 +2an(1 = Bp){(f(%n) = P, Yn — Tn)+
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2an(1 - 6n)<f(xn) — D, Tn _p>
= (1 =2an(1 = Bu))len = plI* + (1 = Bu)an{anllzn = pl* +2(f (2n) = P, yn — a)}+
2an(1 - ﬁn)<f(xn) — Dy Tn _p>' (315)

Since
(f(@n) =D, 20 —p) = (f(2n) = F() + f(p) = D20 = p) < hl|2y = pl* + (£ (p) — p, 20— 1), (3.16)
substituting (3.16) into (3.15), after simplifying, we have
[ont1 = plI* < (1 = 200(1 = Ba) (1 = W) |Jwn = plI* + 60 ¥n >0,

where 6, = an (1= Bp){n M +2(f (2n) =D, Yn —n) +2(f (p) —p, n —p) } with M = sup,,5¢ ||z, —
pl|*. Let v, = 2a,,(1 — 3,)(1 — h) € (0,1). By the assumptions, we have Y > v, = co. Since

an — 0 and ||y, — 2, || — 0, from (3.13), it follows

limsup 22 = lim sup {0 M 4 20f(20) — o — 2} + 20/ () — prtm — 1)}

1
<0.

By Lemma 2.5, it yields ||z, — p| — 0. i.e., z, — p.
This completes the proof of Theorem 3.1. O

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F' be a
bifunction from C x C to R which satisfies (A1)—(A4) and let S be a nonexpansive mapping of C
into itself such that F(S)(EP(F) # 0, f be a contraction on C' with a coeflicient h (0 < h < 1).
Let x1 € C, {z,} C C and {x,} C C be the sequence generated by
1
F(Znuy)+ _<y_2nuzn _J;n> >0,Vyed,
r

n

Tpt1 = Bn@n + (1 = Bn)SYn, VnéeN, (3.17)

Yn = anf(zn) + (1 —an)zn,
where {a}, {Bn} C [0,1] and {r,} C (0,00). If the following conditions are satisfied
(C1) lim,— oo ayy = 0;
(C2) 3o0iian = 00;
(C3) limy—oo(rpt1 — rn) = 0; liminf,, o ry > 0;
(Cy) 0 <liminf, o B <limsup,,_, ., On <1,
then {x,} converges strongly to p, where p = Pp(s)nepr)f(p)-

Proof Taking A =0 in Theorem 3.1 gives F' = G. Hence the conclusion of Theorem 3.2 can be

obtained form Theorem 3.1 immediately.

Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be
a continuous monotone mapping from C' into H and let S be a nonexpansive mapping of C' into
itself such that F(S)(\VI(C,A) # 0, f be a contraction on C' with a coefficient h (0 < h < 1).
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Let 1 € C, {z,} C C and {z,} C C be the sequence generated by

1
<A2n7y_zn>+_<y_znazn_xn> 207 Vyeca
T

n

Tnt1 = Bnn + (1 — 5,)Syn, VneN, (3.18)
Yn = anf(xn) + (1 — an)zn,

where {ay}, {Bn} C [0,1] and {r,} C (0,00). If the following conditions are satisfied

(C1) lim,— oo ay = 0;

(Co) 32, an = oo

(Cs) limy— oo (rnt1 — rn) = 0; liminf, o ry > 0;
(C4) 0 <liminf, o Bn < limsup,,_,., On <1,

then {x,} converges strongly to p, where p = Pp(s)nvi(c,a)f(p).

Proof Taking F' =0 in Theorem 3.1 gives

1
<A2n,y—2n>+r—<y—2n,2’n—l‘n> >0, VZJGC, Vn € N.

n

Hence the conclusion of Theorem 3.3 can be obtained form Theorem 3.1 immediately. O
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