Exponential Attractor of Strong Dissipative KDV Type Equation

Ling Juan HAN, Qiao Zhen MA*
College of Mathematics and Information Science, Northwest Normal University,
Gansu 730070, P. R. China

Abstract

In this paper, we consider the strong dissipative KDV type equation on an unbounded domain R^{1}. By applying the theory of decomposing operator and the method of constructing some compact operator in weighted space, the existence of exponential attractor in phase space $H^{2}\left(\mathrm{R}^{1}\right)$ is obtained.

Keywords unbounded domain; KDV type equation; exponential attractor.
Document code A
MR(2000) Subject Classification 35Q53; 35B41
Chinese Library Classification O175.2

1. Introduction

The KDV type of equations have been an important class of nonlinear evolution equations with numerous applications in physical sciences and engineering fields [7,8]. In recent years, there has been a considerable interest in the attractor of a class of KDV equations [9-11]. Our aim in this work is to study the existence of the exponential attractor of the following type of strong dissipative KDV equation [1] in the phase space $H^{2}\left(\mathrm{R}^{1}\right)$.

$$
\begin{gather*}
u_{t}+\alpha u u_{x}+u_{x x x}+\gamma u_{x x x x}-u_{x x}+\beta u=f \tag{1}\\
u(x, 0)=u_{0}(x) \tag{2}
\end{gather*}
$$

where $\alpha>0, \beta>0, \gamma>0$ are constants. The existence of the compact global attractor of (1)-(2) in the phase space $H^{2}\left(\mathrm{R}^{1}\right)$ has been proved in [1].

For the existence of exponential attractors, there are many classical results in a bounded domain such as $[6,9,12]$. But as far as the case of unbounded domains is concerned $[2,3,13]$, it is difficult to do research on this respect. First, the Laplace operator in the corresponding equation is neither continuous nor compact, and its spectrum is not discrete. Secondly, since $H^{s}\left(\mathrm{R}^{1}\right) \hookrightarrow H^{s_{1}}\left(\mathrm{R}^{1}\right)\left(s>s_{1}\right)$ is not compact, it is difficult to prove the compactness of absorbing sets and the squeezing property. In this paper, we borrow the ideas from Babin in $[2,3]$ and use

[^0]the theory of decomposing operator and the method of constructing some compact operator in weighted space to prove the existence of exponential attractor of $(1)-(2)$ in $H^{2}\left(\mathrm{R}^{1}\right)$.

2. Preliminaries

For convenience, we introduce some notations. We rewrite (1)-(2) as

$$
\begin{gather*}
u_{t}+\alpha u \nabla u+\nabla \Delta u+\gamma \Delta^{2} u-\Delta u+\beta u=f \tag{3}\\
u(x, 0)=u_{0}(x) \tag{4}
\end{gather*}
$$

where $-\Delta=-\frac{\partial^{2}}{\partial x^{2}}, \nabla=\frac{\partial}{\partial x}$. Denote by (\cdot, \cdot) and $\|\cdot\|$ the inner product and the norm of the space $L^{2}\left(\mathrm{R}^{1}\right)$, respectively, and $\|\cdot\|_{s}$ as the norm of the space $H^{s}\left(\mathrm{R}^{1}\right)$. In particular, we denote K as all the real constants, C as all the positive constants, R as all the real constants depending on time t. From [1], we get the bounded absorbing set B of (1)-(2). Namely, $B=\left\{u \in H^{2}\left(R^{1}\right),\|u\|_{2} \leq \rho_{1}\right\}$. Let $M=\left\{u \in H^{3}\left(\mathrm{R}^{1}\right),\|u\|_{3} \leq \rho_{2}\right\}$. Then $M \subset B$, and $S(t) M \subset M$.

Lemma 2.1 ([2]) Let X be a closed invariant set in a Hilbert space. If

1) There exists a covering of X by a finite number of balls of radius 1 ;
2) The operator of semigroup $S(t)$ has a global attractor on X;
3) For a fixed $t>0, S(t)$ has a strong squeezing property and is uniformly Lipschitzian on X,
then $S(t)$ has an exponential attractor on X.
Lemma2.2 ([3,4]) Let s, s_{1} be integers and $s>s_{1}$. Then $H^{s}\left(\mathrm{R}^{n}\right) \bigcap H^{s_{1}}\left(\mathrm{R}^{n} ;\left(1+x^{2}\right) \mathrm{d} x\right) \hookrightarrow$ $H^{s_{1}}\left(\mathrm{R}^{n}\right)$ is compact.

From [1], we find
Lemma 2.3 ([1]) Let $u(t)$ be a solution of (3)-(4). Then

$$
\|u\|_{\infty},\|\nabla u\|_{\infty},\|\Delta u\|_{\infty},\|\nabla \triangle u\|_{\infty} \leq C
$$

where $C>0$ is a general constant.
Lemma 2.4 ([5]) (Gagliardo-Nirenberg inequality)

$$
\left\|D^{j} u\right\|_{p} \leq C\|u\|_{q}^{1-\lambda}\left\|D^{m} u\right\|_{r}^{\lambda}, \quad u \in L^{q} \cap H^{m, r}\left(\mathrm{R}^{n}\right)
$$

where $\frac{1}{p}=\frac{j}{n}+\lambda\left(\frac{1}{r}-\frac{m}{n}\right)+(1-\lambda) \frac{1}{q}, 1 \leq q, r \leq \infty, j$ is integer, $0 \leq j \leq m, \frac{j}{m} \leq \lambda \leq 1$. If $m-j-\frac{n}{r}$ is non-negative, when $\frac{j}{m} \leq \lambda<1$, the conclusion is satisfied.

3. Main results

Theorem 3.1 Assume $f \in H^{2}\left(\mathrm{R}^{1}\right), S(t)$ is the operator of semigroup derived by (3), then $S(t)$ has an exponential attractor in $M \subset H^{2}\left(\mathrm{R}^{1}\right)$.

The proof is based on the Lemma 2.1 and we shall prove the following Propositions.
Proposition 3.1 The operators $S(t)$ are Lipschitzian on $M \subset B$.

Proof Let $u(t), v(t)$ be solutions of (3)-(4) with initial value u_{0}, v_{0}, respectively, and let $u(t)-v(t)=w(t), u_{0}-v_{0}=w_{0}$. Then we obtain the equation

$$
\begin{gather*}
w_{t}+\alpha w \nabla u+\alpha v \nabla w+\nabla \Delta w+\gamma \Delta^{2} w-\Delta w+\beta w=0 \tag{5}\\
w(x, 0)=w_{0}(x) \tag{6}
\end{gather*}
$$

Multipling (5) by $\left(-\triangle^{3} w+w\right)$, and integrating on R^{1}, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|\nabla \triangle w\|^{2}+\|w\|^{2}\right)+\gamma\left(\left\|\nabla \triangle^{2} w\right\|^{2}+\|\triangle w\|^{2}\right)+\left\|\triangle^{2} w\right\|^{2}+\|\nabla w\|^{2}+\beta\left(\|\nabla \triangle w\|^{2}+\right. \\
& \left.\quad\|w\|^{2}\right)=-\alpha\left(w \nabla u,-\triangle^{3} w\right)-\alpha(w \nabla u, w)-\alpha\left(v \nabla w,-\triangle^{3} w\right)-\alpha(v \nabla w, w)
\end{aligned}
$$

Controlling the right-hand side as

$$
\begin{aligned}
\left|\alpha\left(w \nabla u,-\triangle^{3} w\right)\right| & \leq\left|\alpha\left(\nabla w \nabla u, \nabla \triangle^{2} w\right)\right|+\left|\alpha\left(w \triangle u, \nabla \triangle^{2} w\right)\right| \\
& \leq \alpha\|\nabla u\|_{\infty}\|\nabla w\|\left\|\nabla \triangle^{2} w\right\|+\alpha\|\triangle u\|_{\infty}\|w\|\left\|\nabla \triangle^{2} w\right\| \\
& \leq \alpha\|\nabla u\|_{\infty}\|w\|^{\frac{4}{5}}\left\|\nabla \triangle^{2} w\right\|^{\frac{6}{5}}+\alpha\|\triangle u\|_{\infty}\|w\|\left\|\nabla \triangle^{2} w\right\| \\
& \leq C\|w\|^{2}+\frac{\gamma}{4}\left\|\nabla \triangle^{2} w\right\|^{2}+C\|w\|^{2}+\frac{\gamma}{4}\left\|\nabla \triangle^{2} w\right\|^{2} \\
& \leq C\|w\|^{2}+\frac{\gamma}{2}\left\|\nabla \triangle^{2} w\right\|^{2} \\
|\alpha(w \nabla u, w)| & \leq \alpha\|\nabla u\|_{\infty}\|w\|\|w\| \leq C\|w\|^{2} \\
\left|\alpha\left(v \nabla w,-\triangle^{3} w\right)\right| & \leq\left|\alpha\left(\nabla v \nabla w, \nabla \triangle^{2} w\right)\right|+\left|\alpha\left(v \triangle w, \nabla \triangle^{2} w\right)\right| \\
& \leq C\|w\|^{2}+\frac{\gamma}{2}\left\|\nabla \triangle^{2} w\right\|^{2} \\
|\alpha(v \nabla w, w)| & \leq \alpha\|v\|_{\infty}\|\nabla w\|\|w\| \leq C\|w\|^{2}+\gamma\|\triangle w\|^{2}
\end{aligned}
$$

Thus, it leads to the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\|\nabla \triangle w\|^{2}+\|w\|^{2}\right) \leq K\left(\|w\|^{2}+\|\nabla \triangle w\|^{2}\right)
$$

By the Gronwall Lemma, we find

$$
\|\nabla \triangle w\|^{2}+\|w\|^{2} \leq\left(\|\nabla \triangle w(0)\|^{2}+\|w(0)\|^{2}\right) e^{K t}, \quad t \in[0, T]
$$

The proposition is proved.
Proposition 3.2 Let $M \subset B$, and $S(t)$ be the operators of semigroup acting on this set. Then for any $\delta \in\left(0, \frac{1}{4}\right)$, there exists $t>0$ such that $S(t)$ has squeezing property on M.

The proof of this proposition is based on the next three technical Lemmas. Before proving these Lemmas, we need some assumptions as follows.

Decomposing the operators of solution $S(t)$ corresponding to (5)-(6) as $S(t)=S_{1}(t)+S_{2}(t)$. Let

$$
\lambda_{L}(x)= \begin{cases}1, & |x| \leq L \\ 0, & |x|>1+L\end{cases}
$$

Then $\forall \eta \in(0,1), \exists L(\eta)>0$, such that

$$
\left\|u-u_{\eta}\right\| \leq \eta, u_{\eta}=u \cdot \lambda_{L}(x) ;\left\|v-v_{\eta}\right\| \leq \eta, v_{\eta}=v \cdot \lambda_{L}(x)
$$

Let $w_{1}(t)$ be a solution of the following equation

$$
\begin{align*}
w_{1 t}+\nabla \Delta w_{1}+\gamma \Delta^{2} w_{1}-\Delta w_{1}+\beta w_{1} & =-\alpha w_{1} \nabla\left(u-u_{\eta}\right)-\alpha\left(v-v_{\eta}\right) \nabla w_{1} \tag{7}\\
w_{1}(x, 0) & =w(0) \tag{8}
\end{align*}
$$

Let $w_{2}(t)$ be a solution of the following equation

$$
\begin{gather*}
w_{2 t}+\nabla \Delta w_{2}+\gamma \Delta^{2} w_{2}-\Delta w_{2}+\beta w_{2}=-\alpha w_{2} \nabla u-\alpha w_{1} \nabla u_{\eta}-\alpha v \nabla w_{2}-\alpha v_{\eta} \nabla w_{1} \tag{9}\\
w_{2}(x, 0)=0 \tag{10}
\end{gather*}
$$

Lemma 3.2 Let $w_{1}(t)$ be a solution of (7)-(8). Then

$$
\left\|w_{1}\right\|,\left\|\nabla w_{1}\right\|,\left\|\Delta w_{1}\right\|,\left\|\nabla \Delta w_{1}\right\| \leq C e^{-c t}, t>0
$$

Proof Multiplying (7) by $\left(-\triangle w_{1}+w_{1}\right)$, and integrating on R^{1}, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\left\|\nabla w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2}\right)+\gamma\left(\left\|\nabla \Delta w_{1}\right\|^{2}+\left\|\Delta w_{1}\right\|^{2}\right)+\left\|\Delta w_{1}\right\|^{2}+\left\|\nabla w_{1}\right\|^{2}+\beta\left(\left\|\nabla w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2}\right) \\
& \quad=-\alpha\left(w_{1} \nabla\left(u-u_{\eta}\right),-\triangle w_{1}\right)-\alpha\left(w_{1} \nabla\left(u-u_{\eta}\right), w_{1}\right)-\alpha\left(\left(v-v_{\eta}\right) \nabla w_{1},-\triangle w_{1}\right)- \\
& \quad \alpha\left(\left(v-v_{\eta}\right) \nabla w_{1}, w_{1}\right)
\end{aligned}
$$

Control the right-hand side as

$$
\begin{aligned}
\left|\alpha\left(w_{1} \nabla\left(u-u_{\eta}\right),-\triangle w_{1}\right)\right| & \leq \alpha\left\|\nabla\left(u-u_{\eta}\right)\right\|_{\infty}\left\|w_{1}\right\|\left\|\Delta w_{1}\right\| \leq \frac{\alpha^{2} \eta^{2}}{2 \gamma}\left\|w_{1}\right\|^{2}+\frac{\gamma}{2}\left\|\Delta w_{1}\right\|^{2}, \\
\left|\alpha\left(w_{1} \nabla\left(u-u_{\eta}\right), w_{1}\right)\right| & \leq \alpha\left\|\nabla\left(u-u_{\eta}\right)\right\|_{\infty}\left\|w_{1}\right\|^{2} \leq \alpha \eta\left\|w_{1}\right\|^{2} \\
\left|\alpha\left(\left(v-v_{\eta}\right) \nabla w_{1},-\triangle w_{1}\right)\right| & \leq \alpha\left\|v-v_{\eta}\right\|_{\infty}\left\|\nabla w_{1}\right\|\left\|\Delta w_{1}\right\| \leq \frac{\alpha^{2} \eta^{2}}{2 \gamma}\left\|\nabla w_{1}\right\|^{2}+\frac{\gamma}{2}\left\|\Delta w_{1}\right\|^{2}, \\
\left|\alpha\left(\left(v-v_{\eta}\right) \nabla w_{1}, w_{1}\right)\right| & \leq \alpha\left\|v-v_{\eta}\right\|_{\infty}\left\|\nabla w_{1}\right\|\left\|w_{1}\right\| \leq \frac{\alpha^{2} \eta^{2}}{2 \beta}\left\|\nabla w_{1}\right\|^{2}+\frac{\beta}{2}\left\|w_{1}\right\|^{2}
\end{aligned}
$$

Note that $\forall \eta \in(0,1)$, choose η such that

$$
\max \left\{\frac{\alpha^{2} \eta^{2}}{2 \gamma}, \alpha \eta, \frac{\alpha^{2} \eta^{2}}{2 \beta}\right\} \leq \frac{\beta}{8}
$$

We come to the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2}\right) \leq-c\left(\left\|\nabla w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2}\right)
$$

where $c>0$ depends on β. By the Gronwall Lemma, we find

$$
\left\|\nabla w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2} \leq C e^{-c t}, \quad t>0
$$

In addition, multiplying $\left(\triangle^{2} w_{1}+w_{1}\right)$ and $\left(-\triangle^{3} w_{1}+w_{1}\right)$ with (7), respectively, and integrating on R^{1}, like the above proof, we come to the similar conclusion. That is $\left\|\Delta w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2} \leq C e^{-c t}$, $t>0 ;\left\|\nabla \Delta w_{1}\right\|^{2}+\left\|w_{1}\right\|^{2} \leq C e^{-c t}, t>0$.

Lemma 3.3 Let $w_{2}(t)$ be a solution of (9)-(10). Then

$$
\left\|w_{2}\right\|,\left\|\nabla w_{2}\right\|,\left\|\Delta w_{2}\right\|,\left\|\nabla \triangle w_{2}\right\| \leq R, \quad t>0
$$

Proof Multiplying (9) by $\left(-\triangle w_{2}+w_{2}\right)$, and integrating on R^{1}, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\left\|\nabla w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2}\right)+\gamma\left(\left\|\nabla \Delta w_{2}\right\|^{2}+\left\|\Delta w_{2}\right\|^{2}\right)+\left\|\Delta w_{2}\right\|^{2}+\left\|\nabla w_{2}\right\|^{2}+\beta\left(\left\|\nabla w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2}\right) \\
& \quad=-\alpha\left(w_{2} \nabla u,-\triangle w_{2}\right)-\alpha\left(w_{2} \nabla u, w_{2}\right)-\alpha\left(w_{1} \nabla u_{\eta},-\triangle w_{2}\right)-\alpha\left(w_{1} \nabla u_{\eta}, w_{2}\right)- \\
& \quad \alpha\left(v \nabla w_{2},-\triangle w_{2}\right)-\alpha\left(v \nabla w_{2}, w_{2}\right)-\alpha\left(v_{\eta} \nabla w_{1},-\triangle w_{2}\right)-\alpha\left(v_{\eta} \nabla w_{1}, w_{2}\right)
\end{aligned}
$$

Control the right-hand side as

$$
\begin{aligned}
\left|\alpha\left(w_{2} \nabla u,-\triangle w_{2}\right)\right| & \leq \alpha\|\nabla u\|_{\infty}\left\|w_{2}\right\|\left\|\Delta w_{2}\right\| \leq C\left\|w_{2}\right\|^{2}+\frac{\gamma}{4}\left\|\Delta w_{2}\right\|^{2}, \\
\left|\alpha\left(w_{2} \nabla u, w_{2}\right)\right| & \leq \alpha\|\nabla u\|_{\infty}\left\|w_{2}\right\|^{2} \leq C\left\|w_{2}\right\|^{2} \\
\left|\alpha\left(w_{1} \nabla u_{\eta},-\triangle w_{2}\right)\right| & \leq \alpha\left\|\nabla u_{\eta}\right\|\left\|w_{1}\right\|_{\infty}\left\|\triangle w_{2}\right\| \leq C+\frac{\gamma}{4}\left\|\triangle w_{2}\right\|^{2} \\
\left|\alpha\left(w_{1} \nabla u_{\eta} w_{2}\right)\right| & \leq \alpha\left\|w_{1}\right\|_{\infty}\left\|\nabla u_{\eta}\right\|\left\|w_{2}\right\| \leq C+C\left\|w_{2}\right\|^{2} \\
\left|\alpha\left(v \nabla w_{2},-\triangle w_{2}\right)\right| & \leq \alpha\|v\|_{\infty}\left\|\nabla w_{2}\right\|\left\|\Delta w_{2}\right\| \leq C\left\|\nabla w_{2}\right\|^{2}+\frac{\gamma}{4}\left\|\Delta w_{2}\right\|^{2}, \\
\left|\alpha\left(v \nabla w_{2}, w_{2}\right)\right| & \leq \alpha\|v\|_{\infty}\left\|\nabla w_{2}\right\|\left\|w_{2}\right\| \leq C\left\|\nabla w_{2}\right\|^{2}+C\left\|w_{2}\right\|^{2} \\
\left|\alpha\left(v_{\eta} \nabla w_{1},-\triangle w_{2}\right)\right| & \leq \alpha\left\|\nabla w_{1}\right\|_{\infty}\left\|v_{\eta}\right\|\left\|\Delta w_{2}\right\| \leq C+\frac{\gamma}{4}\left\|\Delta w_{2}\right\|^{2} \\
\left|\alpha\left(v_{\eta} \nabla w_{1}, w_{2}\right)\right| & \leq \alpha\left\|\nabla w_{1}\right\|_{\infty}\left\|v_{\eta}\right\|\left\|w_{2}\right\| \leq C+C\left\|w_{2}\right\|^{2} .
\end{aligned}
$$

Thus, from the above estimates we come to the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\nabla w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2}\right) \leq K\left(\left\|\nabla w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2}\right)
$$

By the Gronwall lemma, we conclude

$$
\left\|\nabla w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2} \leq C e^{-K t}=: R, \quad t \in[0, T]
$$

In addition, multiplying $\left(\triangle^{2} w_{2}+w_{2}\right)$ and $\left(-\triangle^{3} w_{2}+w_{2}\right)$ with (9), respectively, and integrating on R^{1}, as the above proof, we achieve the similar conclusion. That is $\left\|\Delta w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2} \leq R$, $t \in[0, T] ;\left\|\nabla \Delta w_{2}\right\|^{2}+\left\|w_{2}\right\|^{2} \leq R, t \in[0, T]$.

Lemma 3.4 Let $w_{2}(t)$ be a solution of (9)-(10). Then

$$
\left\|x w_{2}\right\|, \quad\left\|x \nabla w_{2}\right\|,\left\|x \triangle w_{2}\right\| \leq R, \quad t \in[0, T]
$$

Proof Multiplying (9) by $x^{2} w_{2}$, and integrating on R^{1}, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|x w_{2}\right\|^{2}+\gamma\left\|x \triangle w_{2}\right\|^{2}+\beta\left\|x w_{2}\right\|^{2} \\
& \quad=3\left(w_{2}, x \triangle w_{2}\right)-4 \gamma\left(\triangle w_{2}, x \nabla w_{2}\right)+2 \gamma\left\|\nabla w_{2}\right\|^{2}+\left(\triangle w_{2}, x^{2} w_{2}\right)-\alpha\left(w_{2} \nabla u, x^{2} w_{2}\right)- \\
& \quad \alpha\left(w_{1} \nabla u_{\eta}, x^{2} w_{2}\right)-\alpha\left(v \nabla w_{2}, x^{2} w_{2}\right)-\alpha\left(v_{\eta} \nabla w_{1}, x^{2} w_{2}\right)
\end{aligned}
$$

Control the right-hand side as

$$
\begin{aligned}
\left|3\left(w_{2}, x \triangle w_{2}\right)\right| & \leq 3\left\|w_{2}\right\|\left\|x \triangle w_{2}\right\| \leq R+\frac{\gamma}{3}\left\|x \triangle w_{2}\right\|^{2} \\
\left|4 \gamma\left(\triangle w_{2}, x \nabla w_{2}\right)\right| & \leq 4 \gamma\left\|x \triangle w_{2}\right\|\left\|\nabla w_{2}\right\| \leq \frac{\gamma}{3}\left\|x \Delta w_{2}\right\|^{2}+R \\
2 \gamma\left\|w_{2}\right\|^{2} & \leq R
\end{aligned}
$$

$$
\begin{aligned}
\left|\left(\triangle w_{2}, x^{2} w_{2}\right)\right| & \leq\left\|x w_{2}\right\|\left\|x \Delta w_{2}\right\| \leq C\left\|x w_{2}\right\|^{2}+\frac{\gamma}{3}\left\|x \Delta w_{2}\right\|^{2} \\
\left|\alpha\left(w_{2} \nabla u, x^{2} w_{2}\right)\right| & \leq \alpha\|\nabla u\|_{\infty}\left\|x w_{2}\right\|^{2} \leq C\left\|x w_{2}\right\|^{2} \\
\left|\alpha\left(w_{1} \nabla u_{\eta}, x^{2} w_{2}\right)\right| & \leq \alpha\left\|w_{1}\right\|_{\infty}\left\|x \nabla u_{\eta}\right\|\left\|x w_{2}\right\| \leq C+\left\|x w_{2}\right\|^{2} \\
\left|\alpha\left(v \nabla w_{2}, x^{2} w_{2}\right)\right| & \leq \frac{1}{2}\|\nabla v\|_{\infty}\left\|x w_{2}\right\|^{2}+\left\|w_{2}\right\|\|v\|_{\infty}\left\|x w_{2}\right\| \leq C\left\|x w_{2}\right\|^{2}+R \\
\left|\alpha\left(v_{\eta} \nabla w_{1}, x^{2} w_{2}\right)\right| & \leq \alpha\left\|\nabla w_{1}\right\|_{\infty}\left\|x v_{\eta}\right\|\left\|x w_{2}\right\| \leq C+\left\|x w_{2}\right\|^{2}
\end{aligned}
$$

Thus, from the above estimates it leads to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|x w_{2}\right\|^{2} \leq R\left\|x w_{2}\right\|^{2}+R
$$

By the Gronwall lemma, we get

$$
\left\|x w_{2}\right\|^{2} \leq R
$$

Furthermore, using the operator ∇ acting on (9) and multiplying (9) by $x^{2} \nabla w_{2}$, and integrating on R^{1}, we have $\left\|x \nabla w_{2}\right\|^{2} \leq R$; using the operator \triangle acting on (9) and multiplying (9) by $x^{2} \triangle w_{2}$, and integrating on R^{1}, it follows that $\left\|x \triangle w_{2}\right\|^{2} \leq R$.

Proof of Proposition 3.2 Let t be large enough. $\forall \delta \in\left(0, \frac{1}{4}\right)$, due to Lemma 3.2, we obtain

$$
\left\|\Delta w_{1}(t)\right\| \leq \frac{\delta}{8}\|w(0)\|
$$

According to Lemmas 3.3 and 3.4, we conclude

$$
\begin{equation*}
\left\|\nabla \triangle w_{2}\right\|^{2}+\left\|x \triangle w_{2}\right\|^{2} \leq R \tag{11}
\end{equation*}
$$

The left-hand side of (11) can be written in the form $\left(L w_{2}, w_{2}\right)$, where

$$
L w_{2}=-\triangle^{3} w_{2}+x^{2} \triangle^{2} w_{2}-2 \triangle w_{2}
$$

According to Lemma 2.2, the set B_{0} defined by (11) is compactly embeded into $H^{2}\left(\mathrm{R}^{1}\right)$. Hence L^{-1} is compact. Let $\left\{e_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in $H^{2}\left(\mathrm{R}^{1}\right)$, where the corresponding eigenvalue is λ_{j}, and

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{j} \leq \cdots, \lambda_{j} \rightarrow+\infty, j \rightarrow+\infty
$$

Let

$$
B_{0}=\left\{w_{2}(t) \mid \sum_{j=1}^{\infty} \lambda_{j}\left(w_{2}(t), e_{j}\right)^{2} \leq R^{2}\right\}
$$

Take N large enough such that

$$
\begin{equation*}
\lambda_{N} \geq \frac{16 R^{2}}{\delta^{2}\|w(0)\|^{2}} \tag{12}
\end{equation*}
$$

Let $E_{N}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}, P_{N}$ be the orthoprojector onto E_{N}. Obviously, if $w_{2}(t) \in B_{0}$, then

$$
\left\|\left(I-P_{N}\right) w_{2}(t)\right\|_{2}^{2}=\sum_{j=N+1}^{\infty}\left(w_{2}, e_{j}\right)^{2} \leq \frac{R^{2}}{\lambda_{N}} \leq \frac{\delta^{2}}{16}\|w(0)\|^{2}
$$

that is,

$$
\begin{equation*}
\left\|\left(I-P_{N}\right) w_{2}(t)\right\|_{2} \leq \frac{\delta}{4}\|w(0)\| \tag{13}
\end{equation*}
$$

Let

$$
B_{1}=\left\{u \in B_{0} \left\lvert\,\left\|P_{N} u\right\|_{2} \geq \frac{3 \delta}{4}\|u(0)\|\right.\right\}, \quad B_{2}=B_{0} \backslash B_{1}
$$

Let $w_{2}(t) \in B_{1}$. Then

$$
\begin{align*}
\left\|\left(I-P_{N}\right) w(t)\right\|_{2} & \leq\left\|\left(I-P_{N}\right) w_{1}\right\|_{2}+\left\|\left(I-P_{N}\right) w_{2}\right\|_{2} \leq\left\|w_{1}\right\|_{2}+\left\|\left(I-P_{N}\right) w_{2}\right\|_{2} \\
& \leq \frac{\delta}{8}\|w(0)\|+\frac{\delta}{4}\|w(0)\| \leq \frac{\delta}{2}\|w(0)\| \tag{14}\\
\left\|P_{N} w\right\|_{2} & =\left\|P_{N} w_{1}+P_{N} w_{2}\right\|_{2} \geq\left\|P_{N} w_{2}\right\|_{2}-\left\|P_{N} w_{1}\right\|_{2} \\
& \geq \frac{3 \delta}{4}\|w(0)\|-\frac{\delta}{8}\|w(0)\| \geq \frac{\delta}{2}\|w(0)\| \tag{15}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left\|P_{N} w\right\|_{2}>\left\|\left(I-P_{N}\right) w\right\|_{2} . \tag{16}
\end{equation*}
$$

Now let $w_{2}(t) \in B_{2}$. We have

$$
\begin{equation*}
\left\|w_{2}\right\|_{2}^{2} \leq\left\|P_{N} w_{2}\right\|_{2}^{2}+\left\|\left(I-P_{N}\right) w_{2}\right\|_{2}^{2} \leq \frac{10 \delta^{2}}{16}\|w(0)\|^{2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|w\|_{2} \leq\left\|w_{1}\right\|_{2}+\left\|w_{2}\right\|_{2} \leq \frac{\delta}{8}\|w(0)\|+\frac{\sqrt{10} \delta}{4}\|w(0)\| \leq \delta\|w(0)\| \tag{18}
\end{equation*}
$$

Take into account that $u_{0}-v_{0}=w_{0}, u(t)-v(t)=w(t)=S(t) u_{0}-S(t) v_{0}$, we deduce from (16) and (18) that either

$$
\left\|\left(I-P_{N}\right)\left(S(t) u_{0}-S(t) v_{0}\right)\right\| \leq\left\|P_{N}\left(S(t) u_{0}-S(t) v_{0}\right)\right\|
$$

or

$$
\left\|S(t) u_{0}-S(t) v_{0}\right\| \leq \delta\left\|u_{0}-v_{0}\right\|
$$

and the Proposition 3.2 is proved.
Proposition 3.3 There exists an invariant set $M \subset B$, which can be covered by a finite number of balls of radius ε.

Proof It is proved in Proposition 3.2 that, $\forall u \in M, u \in H^{3}\left(\mathrm{R}^{n}\right) \bigcap H^{2}\left(\mathrm{R}^{1} ;\left(1+x^{2}\right) \mathrm{d} x\right)$, we have $M \hookrightarrow H^{2}\left(\mathrm{R}^{1}\right)$ is compact. Since M is bounded, M is compact set in $H^{2}\left(\mathrm{R}^{1}\right)$. Hence, M can be covered by an infinite number of unit balls, and there exists a finite number of balls of radius ε covering M.

Proof of Theorem 3.1 According to Propositions 3.1, 3.2 and 3.3, all assumptions of Lemma 2.1 are fulfilled. Therefore, $S(t)$ possesses an exponential attractor on $M \subset H^{2}\left(\mathrm{R}^{1}\right)$.

References

[1] ZHANG Wenbing. Attractor of cauchy problem in dissipative kdv type equation [J]. Int. J. Nonlinear Sci., 2006, 1(3): 155-163.
[2] BABIN A V, NICOLAEMKO B. Exponential attractor of reaction-diffusion systems in an unbounded domain [J]. J. Dynam. Differential Equations, 1995, 7(4): 567-590.
[3] BABIN A V, VISHIK M I. Attractors of partial differential evolution equation in an unbounded domain [J]. Proc. Roy. Soc. Edinburgh Sect. A, 1990, 116(3-4): 221-243.
[4] GUO Boling, LI Yongsheng. Attractor for dissipative Klein-Gordon-Schrödinger equations in R^{3} [J]. J. Differential Equations, 1997, 136(2): 356-377.
[5] FRIEDMAN A. Partial Differential Equations [M]. Pure Appl. Math., New York, 1969.
[6] EDEN A, MILANI A J. Exponential attractors for extensible beam equations [J]. Nonlinearity, 1993, 6(3): 457-479.
[7] OSBORNE A R. The inverse scattering transform: tools for the nonlinear Fourier analysis and filtering of ocean surface waves [J]. Chaos Solitons Fractals, 1995, 5(12): 2623-2637.
[8] OSTROVSKY L, STEPANYANTS YU A. Do interal solutions exist in the ocean [J]. Rev Geophys., 1989, 27: 23-37.
[9] DAI Zhengde, ZHU Zhiwei. The inertial fractal set of weakly damped forced Korteweg-de Vries equation [J]. Appl. Math. Mech. (English Ed.), 1995, 16(1): 37-45.
[10] LAURENGOT PH. Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line [J]. Czechoslovak Math. J., 1998, 48(1): 85-94.
[11] GOUBET O R, RICARDO M S. Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line [J]. J. Differential Equations, 2002, 185(1): 25-53.
[12] GUO Boling, WANG Bixiang. Exponential attractors for the generalized Ginzburg-Landau equation [J]. Acta Math. Sin. (Engl. Ser.), 2000, 16(3): 515-526.
[13] DAI Zhengde, JIANG Murong. Exponential attractors of the Ginzburg-Landau-BBM equations in an unbounded domain [J]. Acta Math. Appl. Sinica (English Ser.), 2001, 17(4): 484-493.

[^0]: Received October 21, 2008; Accepted May 16, 2009
 Supported by the Natural Sciences Foundation of Gansu Province (Grant No. 3ZS061-A25-016) and the Education Department Foundation of Gansu Province (Grant No. 0801-02) and NWNU-KJCXGC-03-40.

 * Corresponding author

 E-mail address: maqzh@nwnu.edu.cn (Q. Z. MA)

