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Abstract In this paper, we consider the strong dissipative KDV type equation on an unbounded

domain R1
. By applying the theory of decomposing operator and the method of constructing

some compact operator in weighted space, the existence of exponential attractor in phase space

H
2(R1) is obtained.

Keywords unbounded domain; KDV type equation; exponential attractor.

Document code A

MR(2000) Subject Classification 35Q53; 35B41

Chinese Library Classification O175.2

1. Introduction

The KDV type of equations have been an important class of nonlinear evolution equations

with numerous applications in physical sciences and engineering fields [7, 8]. In recent years,

there has been a considerable interest in the attractor of a class of KDV equations [9–11]. Our

aim in this work is to study the existence of the exponential attractor of the following type of

strong dissipative KDV equation [1] in the phase space H2(R1).

ut + αuux + uxxx + γuxxxx − uxx + βu = f, (1)

u(x, 0) = u0(x), (2)

where α > 0, β > 0, γ > 0 are constants. The existence of the compact global attractor of

(1)–(2) in the phase space H2(R1) has been proved in [1].

For the existence of exponential attractors, there are many classical results in a bounded

domain such as [6, 9, 12]. But as far as the case of unbounded domains is concerned [2, 3, 13],

it is difficult to do research on this respect. First, the Laplace operator in the corresponding

equation is neither continuous nor compact, and its spectrum is not discrete. Secondly, since

Hs(R1) →֒ Hs1(R1) (s > s1) is not compact, it is difficult to prove the compactness of absorbing

sets and the squeezing property. In this paper, we borrow the ideas from Babin in [2,3] and use
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the theory of decomposing operator and the method of constructing some compact operator in

weighted space to prove the existence of exponential attractor of (1)–(2) in H2(R1).

2. Preliminaries

For convenience, we introduce some notations. We rewrite (1)–(2) as

ut + αu∇u + ∇∆u + γ∆2u − ∆u + βu = f, (3)

u(x, 0) = u0(x), (4)

where −∆ = − ∂2

∂x2 , ∇ = ∂
∂x

. Denote by (·, ·) and ‖·‖ the inner product and the norm of the space

L2(R1), respectively, and ‖·‖s as the norm of the space Hs(R1). In particular, we denote K as all

the real constants, C as all the positive constants, R as all the real constants depending on time t.

From [1], we get the bounded absorbing set B of (1)–(2). Namely, B={u ∈ H2(R1), ‖u‖2 ≤ ρ1}.
Let M = {u ∈ H3(R1), ‖u‖3 ≤ ρ2}. Then M ⊂ B, and S(t)M ⊂ M.

Lemma 2.1 ([2]) Let X be a closed invariant set in a Hilbert space. If

1) There exists a covering of X by a finite number of balls of radius 1;

2) The operator of semigroup S(t) has a global attractor on X ;

3) For a fixed t > 0, S(t) has a strong squeezing property and is uniformly Lipschitzian on

X ,

then S(t) has an exponential attractor on X .

Lemma2.2 ([3, 4]) Let s, s1 be integers and s > s1. Then Hs(Rn)
⋂

Hs1(Rn; (1 + x2)dx) →֒
Hs1(Rn) is compact.

From [1], we find

Lemma 2.3 ([1]) Let u(t) be a solution of (3)–(4). Then

‖u‖∞, ‖∇u‖∞, ‖∆u‖∞, ‖∇△u‖∞ ≤ C,

where C > 0 is a general constant.

Lemma 2.4 ([5]) (Gagliardo-Nirenberg inequality)

‖Dju‖p ≤ C‖u‖1−λ
q ‖Dmu‖λ

r , u ∈ Lq ∩ Hm,r(Rn),

where 1

p
= j

n
+ λ(1

r
− m

n
) + (1 − λ)1

q
, 1 ≤ q, r ≤ ∞, j is integer, 0 ≤ j ≤ m, j

m
≤ λ ≤ 1. If

m − j − n
r

is non-negative, when j
m

≤ λ < 1, the conclusion is satisfied.

3. Main results

Theorem 3.1 Assume f ∈ H2(R1), S(t) is the operator of semigroup derived by (3), then S(t)

has an exponential attractor in M ⊂ H2(R1).

The proof is based on the Lemma 2.1 and we shall prove the following Propositions.

Proposition 3.1 The operators S(t) are Lipschitzian on M ⊂ B.
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Proof Let u(t), v(t) be solutions of (3)–(4) with initial value u0, v0, respectively, and let

u(t) − v(t) = w(t), u0 − v0 = w0. Then we obtain the equation

wt + αw∇u + αv∇w + ∇∆w + γ∆2w − ∆w + βw = 0, (5)

w(x, 0) = w0(x). (6)

Multipling (5) by (−△3w + w), and integrating on R1, we obtain

1

2

d

dt
(‖∇△w‖2 + ‖w‖2) + γ(‖∇△2w‖2 + ‖△w‖2) + ‖△2w‖2 + ‖∇w‖2 + β(‖∇△w‖2+

‖w‖2) = −α(w∇u,−△3w) − α(w∇u, w) − α(v∇w,−△3w) − α(v∇w, w).

Controlling the right-hand side as

|α(w∇u,−△3w)| ≤ |α(∇w∇u,∇△2w)| + |α(w△u,∇△2w)|
≤ α‖∇u‖∞‖∇w‖‖∇△2w‖ + α‖△u‖∞‖w‖‖∇△2w‖
≤ α‖∇u‖∞‖ w‖ 4

5 ‖∇△2w‖ 6

5 + α‖△u‖∞‖w‖‖∇△2w‖
≤ C‖w‖2 +

γ

4
‖∇△2w‖2 + C‖w‖2 +

γ

4
‖∇△2w‖2

≤ C‖w‖2 +
γ

2
‖∇△2w‖2,

|α(w∇u, w)| ≤ α‖∇u‖∞‖w‖‖w‖ ≤ C‖w‖2,

|α(v∇w,−△3w)| ≤ |α(∇v∇w,∇△2w)| + |α(v△ w,∇△2w)|
≤ C‖w‖2 +

γ

2
‖∇△2w‖2,

|α(v∇w, w)| ≤ α‖v‖∞‖∇w‖‖ w‖ ≤ C‖w‖2 + γ‖△w‖2.

Thus, it leads to the differential inequality

d

dt
(‖∇△w‖2 + ‖w‖2) ≤ K(‖w‖2 + ‖∇△w‖2).

By the Gronwall Lemma, we find

‖∇△w‖2 + ‖w‖2 ≤ (‖∇△w(0)‖2 + ‖w(0)‖2)eKt, t ∈ [0, T ].

The proposition is proved. 2

Proposition 3.2 Let M ⊂ B, and S(t) be the operators of semigroup acting on this set. Then

for any δ ∈ (0, 1

4
), there exists t > 0 such that S(t) has squeezing property on M .

The proof of this proposition is based on the next three technical Lemmas. Before proving

these Lemmas, we need some assumptions as follows.

Decomposing the operators of solution S(t) corresponding to (5)–(6) as S(t) = S1(t)+S2(t).

Let

λL(x) =

{

1, |x| ≤ L,

0, |x| > 1 + L.

Then ∀η ∈ (0, 1), ∃L(η) > 0, such that

‖u − uη‖ ≤ η, uη = u · λL(x); ‖v − vη‖ ≤ η, vη = v · λL(x).
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Let w1(t) be a solution of the following equation

w1t + ∇∆w1 + γ∆2w1 − ∆w1 + βw1 = −αw1∇(u − uη) − α(v − vη)∇w1, (7)

w1(x, 0) = w(0). (8)

Let w2(t) be a solution of the following equation

w2t + ∇∆w2 + γ∆2w2 − ∆w2 + βw2 = −αw2∇u − αw1∇uη − αv∇w2 − αvη∇w1, (9)

w2(x, 0) = 0. (10)

Lemma 3.2 Let w1(t) be a solution of (7)–(8). Then

‖w1‖, ‖∇w1‖, ‖△w1‖, ‖∇△w1‖ ≤ Ce−ct, t > 0.

Proof Multiplying (7) by (−△w1 + w1), and integrating on R1, we obtain

1

2

d

dt
(‖∇w1‖2 + ‖w1‖2) + γ(‖∇△w1‖2 + ‖△w1‖2) + ‖△w1‖2 + ‖∇w1‖2 + β(‖∇w1‖2 + ‖w1‖2)

= −α(w1∇(u − uη),−△w1) − α(w1∇(u − uη), w1) − α((v − vη)∇w1,−△w1)−
α((v − vη)∇w1, w1).

Control the right-hand side as

|α(w1∇(u − uη),−△w1)| ≤ α‖∇(u − uη)‖∞‖w1‖‖△w1‖ ≤ α2η2

2γ
‖w1‖2 +

γ

2
‖△w1‖2,

|α(w1∇(u − uη), w1)| ≤ α‖∇(u − uη)‖∞‖w1‖2 ≤ αη‖w1‖2,

|α((v − vη)∇w1,−△w1)| ≤ α‖v − vη‖∞‖∇w1‖‖△w1‖ ≤ α2η2

2γ
‖∇w1‖2 +

γ

2
‖△w1‖2,

|α((v − vη)∇w1, w1)| ≤ α‖v − vη‖∞‖∇w1‖‖w1‖ ≤ α2η2

2β
‖∇w1‖2 +

β

2
‖w1‖2.

Note that ∀η ∈ (0, 1), choose η such that

max{α2η2

2γ
, αη,

α2η2

2β
} ≤ β

8
.

We come to the differential inequality

d

dt
(‖∇w1‖2 + ‖w1‖2) ≤ −c(‖∇w1‖2 + ‖w1‖2),

where c > 0 depends on β. By the Gronwall Lemma, we find

‖∇w1‖2 + ‖w1‖2 ≤ Ce−ct, t > 0.

In addition, multiplying (△2w1+w1) and (−△3w1+w1) with (7), respectively, and integrating

on R1, like the above proof, we come to the similar conclusion . That is ‖∆w1‖2+‖w1‖2 ≤ Ce−ct,

t > 0; ‖∇∆w1‖2 + ‖w1‖2 ≤ Ce−ct, t > 0.

Lemma 3.3 Let w2(t) be a solution of (9)–(10). Then

‖w2‖, ‖∇w2‖, ‖△w2‖, ‖∇△w2‖ ≤ R, t > 0.
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Proof Multiplying (9) by (−△w2 + w2), and integrating on R1, we have

1

2

d

dt
(‖∇w2‖2 + ‖w2‖2) + γ(‖∇△w2‖2 + ‖△w2‖2) + ‖△w2‖2 + ‖∇w2‖2 + β(‖∇w2‖2 + ‖w2‖2)

= −α(w2∇u,−△w2) − α(w2∇u, w2) − α(w1∇uη,−△w2) − α(w1∇uη, w2)−
α(v∇w2,−△w2) − α(v∇w2, w2) − α(vη∇w1,−△w2) − α(vη∇w1, w2).

Control the right-hand side as

|α(w2∇u,−△w2)| ≤ α‖∇u‖∞‖w2‖‖△w2‖ ≤ C‖w2‖2 +
γ

4
‖△w2‖2,

|α(w2∇u, w2)| ≤ α‖∇u‖∞‖w2‖2 ≤ C‖w2‖2,

|α(w1∇uη,−△w2)| ≤ α‖∇uη‖‖w1‖∞‖△w2‖ ≤ C +
γ

4
‖△w2‖2,

|α(w1∇uηw2)| ≤ α‖w1‖∞‖∇uη‖‖w2‖ ≤ C + C‖w2‖2,

|α(v∇w2,−△w2)| ≤ α‖v‖∞‖∇w2‖‖△w2‖ ≤ C‖∇w2‖2 +
γ

4
‖△w2‖2,

|α(v∇w2, w2)| ≤ α‖v‖∞‖∇w2‖‖w2‖ ≤ C‖∇w2‖2 + C‖w2‖2,

|α(vη∇w1,−△w2)| ≤ α‖∇w1‖∞‖vη‖‖△w2‖ ≤ C +
γ

4
‖△w2‖2,

|α(vη∇w1, w2)| ≤ α‖∇w1‖∞‖vη‖‖w2‖ ≤ C + C‖w2‖2.

Thus, from the above estimates we come to the differential inequality

d

dt
(‖∇w2‖2 + ‖w2‖2) ≤ K(‖∇w2‖2 + ‖w2‖2).

By the Gronwall lemma, we conclude

‖∇w2‖2 + ‖w2‖2 ≤ Ce−Kt =: R, t ∈ [0, T ].

In addition, multiplying (△2w2+w2) and (−△3w2+w2) with (9), respectively, and integrating

on R1, as the above proof, we achieve the similar conclusion. That is ‖∆w2‖2 + ‖w2‖2 ≤ R,

t ∈ [0, T ]; ‖∇∆w2‖2 + ‖w2‖2 ≤ R, t ∈ [0, T ].

Lemma 3.4 Let w2(t) be a solution of (9)–(10). Then

‖xw2‖, ‖x∇w2‖, ‖x△w2‖ ≤ R, t ∈ [0, T ].

Proof Multiplying (9) by x2w2, and integrating on R1, we obtain

1

2

d

dt
‖xw2‖2 + γ‖x△w2‖2 + β‖xw2‖2

= 3(w2, x△w2) − 4γ(△w2, x∇w2) + 2γ‖∇w2‖2 + (△w2, x
2w2) − α(w2∇u, x2w2)−

α(w1∇uη, x2w2) − α(v∇w2, x
2w2) − α(vη∇w1, x

2w2).

Control the right-hand side as

|3(w2, x△w2)| ≤ 3‖w2‖‖x△w2‖ ≤ R +
γ

3
‖x△w2‖2,

|4γ(△w2, x∇w2)| ≤ 4γ‖x△w2‖‖∇w2‖ ≤ γ

3
‖x△w2‖2 + R,

2γ‖w2‖2 ≤ R,
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|(△w2, x
2w2)| ≤ ‖xw2‖‖x△w2‖ ≤ C‖xw2‖2 +

γ

3
‖x△w2‖2,

|α(w2∇u, x2w2)| ≤ α‖∇u‖∞‖xw2‖2 ≤ C‖xw2‖2,

|α(w1∇uη, x2w2)| ≤ α‖w1‖∞‖x∇uη‖‖xw2‖ ≤ C + ‖xw2‖2,

|α(v∇w2, x
2w2)| ≤

1

2
‖∇v‖∞‖xw2‖2 + ‖w2‖‖v‖∞‖xw2‖ ≤ C‖xw2‖2 + R,

|α(vη∇w1, x
2w2)| ≤ α‖∇w1‖∞‖xvη‖‖xw2‖ ≤ C + ‖xw2‖2.

Thus, from the above estimates it leads to

d

dt
‖xw2‖2 ≤ R‖xw2‖2 + R.

By the Gronwall lemma, we get

‖xw2‖2 ≤ R.

Furthermore, using the operator ∇ acting on (9) and multiplying (9) by x2∇w2, and inte-

grating on R1, we have ‖x∇w2‖2 ≤ R; using the operator △ acting on (9) and multiplying (9)

by x2△w2, and integrating on R1, it follows that ‖x△w2‖2 ≤ R.

Proof of Proposition 3.2 Let t be large enough. ∀δ ∈ (0, 1

4
), due to Lemma 3.2, we obtain

‖△w1(t)‖ ≤ δ

8
‖w(0)‖.

According to Lemmas 3.3 and 3.4, we conclude

‖∇△w2‖2 + ‖x△w2‖2 ≤ R. (11)

The left-hand side of (11) can be written in the form (Lw2, w2), where

Lw2 = −△3w2 + x2△2w2 − 2△w2.

According to Lemma 2.2, the set B0 defined by (11) is compactly embeded into H2(R1). Hence

L−1 is compact. Let {ej}∞j=1 be an orthonormal basis in H2(R1), where the corresponding

eigenvalue is λj , and

λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → +∞, j → +∞.

Let

B0 =
{

w2(t)|
∞
∑

j=1

λj(w2(t), ej)
2 ≤ R2

}

.

Take N large enough such that

λN ≥ 16R2

δ2‖w(0)‖2
. (12)

Let EN = span{e1, e2, . . . , eN}, PN be the orthoprojector onto EN . Obviously, if w2(t) ∈ B0,

then

‖(I − PN )w2(t)‖2
2 =

∞
∑

j=N+1

(w2, ej)
2 ≤ R2

λN

≤ δ2

16
‖w(0)‖2,

that is,

‖(I − PN )w2(t)‖2 ≤ δ

4
‖w(0)‖. (13)
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Let

B1 = {u ∈ B0|‖PNu‖2 ≥ 3δ

4
‖u(0)‖}, B2 = B0 \ B1.

Let w2(t) ∈ B1. Then

‖(I − PN )w(t)‖2 ≤ ‖(I − PN )w1‖2 + ‖(I − PN )w2‖2 ≤ ‖w1‖2 + ‖(I − PN )w2‖2

≤ δ

8
‖w(0)‖ +

δ

4
‖w(0)‖ ≤ δ

2
‖w(0)‖, (14)

‖PNw‖2 = ‖PNw1 + PNw2‖2 ≥ ‖PNw2‖2 − ‖PNw1‖2

≥ 3δ

4
‖w(0)‖ − δ

8
‖w(0)‖ ≥ δ

2
‖w(0)‖. (15)

Hence

‖PNw‖2 > ‖(I − PN )w‖2. (16)

Now let w2(t) ∈ B2. We have

‖w2‖2
2 ≤ ‖PNw2‖2

2 + ‖(I − PN )w2‖2
2 ≤ 10δ2

16
‖w(0)‖2, (17)

and

‖w‖2 ≤ ‖w1‖2 + ‖w2‖2 ≤ δ

8
‖w(0)‖ +

√
10δ

4
‖w(0)‖ ≤ δ‖w(0)‖. (18)

Take into account that u0 − v0 = w0, u(t)− v(t) = w(t) = S(t)u0 − S(t)v0, we deduce from (16)

and (18) that either

‖(I − PN )(S(t)u0 − S(t)v0)‖ ≤ ‖PN (S(t)u0 − S(t)v0)‖

or

‖S(t)u0 − S(t)v0‖ ≤ δ‖u0 − v0‖

and the Proposition 3.2 is proved.

Proposition 3.3 There exists an invariant set M ⊂ B, which can be covered by a finite number

of balls of radius ε.

Proof It is proved in Proposition 3.2 that, ∀u ∈ M , u ∈ H3(Rn)
⋂

H2(R1; (1+x2)dx), we have

M →֒ H2(R1) is compact. Since M is bounded, M is compact set in H2(R1). Hence, M can be

covered by an infinite number of unit balls, and there exists a finite number of balls of radius ε

covering M .

Proof of Theorem 3.1 According to Propositions 3.1, 3.2 and 3.3, all assumptions of Lemma

2.1 are fulfilled. Therefore, S(t) possesses an exponential attractor on M ⊂ H2(R1).
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