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Abstract In this paper the asymptotical stability in p-moment of neutral stochastic differential

equations with discrete and distributed time-varying delays is discussed. The authors apply

the fixed-point theory rather than the Lyapunov functions. We give a sufficient condition for

asymptotical stability in p-moment when the coefficient functions of equations are not required

to be fixed values. Since more general form of system is considered, this paper improves Luo

Jiaowan’s results.
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1. Introduction

In the recent years, a great number of people have studied the stability of stochastic differen-

tial equations using Lyapunov functions and obtained good results, for examples, Liao [1], Mao

[2], Yang [3] and so on. Lots of difficulties, unfortunately, were encountered by these researchers.

Luckily, Burton and co-authors used the fixed point theory to investigate the stability for deter-

ministic systems, where some of these problems existing in the Lyapunov functions were resolved

by direct method [5–7]. Lately, Luo [8–10] successfully applied such method in the stability of

stochastic systems. The Lyapunov function method, which has been studied and perfected in

the last over one hundred years, is a mature theory for the stability discussion of differential

equations. On the contrary, the fixed point theory is just on the early stage. Thus, we believe

that it is possible for investigators to obtain better results using the latter method, which is fresh

and full of potential, than the former one.

In [9], Luo studied the mean square asymptotic stability of a linear neutral stochastic differ-
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ential equation. He studied the system of the form

d[x(t) − q(t)x(t − τ(t))] =[a(t)x(t) + b(t)x(t − τ(t))]dt+

[c(t)x(t) + e(t)x(t − δ(t))]dW (t), t ≥ 0

where a(t), b(t), c(t), e(t), q(t) ∈ C(R+, R)), τ(t), δ(t) ∈ C(R+, R+), satisfy t − τ(t) → ∞,

t− δ(t) → ∞ as t → ∞. The system considers the discrete time-varying delays only. If we take

the distributed time-varying delays into account, the above system becomes

d[x(t) − q(t)x(t − τ(t))] =[a(t)x(t) + b(t)x(t− τ(t)) +

∫ t

−∞

K(t− u)f(x(u))du]dt+

[c(t)x(t) + e(t)x(t− δ(t))]dW (t), t ≥ 0

where the kernel function K(s) is a real-valued nonnegative piecewise continuous function defined

on [0,∞) and satisfies
∫ ∞

0
K(s)ds = 1. In this paper, we will discuss more general system.

Moreover, only the mean square asymptotic stability was considered in [9]. We will consider the

asymptotical stability in p-moment (p ≥ 2).

The rest of this paper is organized as follows. In Section 2, we introduce the basic notations,

equation which is studied in this paper, and the definitions. In Section 3, we give our main

results. In Sections 4 and 5, we give the remarks and example, respectively.

2. Preliminaries

Let {Ω,F ,P} be a complete probability space equipped with some filtration {Ft}t≥0 satisfying

the usual conditions, i.e., the filtration is right continuous and F0-contains all P-null sets. Let

W(t) be a standard 1-dimensional Brownian motion defined on the probability space. LetC(A,B)

denote the family of functions from A to B that are right continuous and have limit on the left.

Operator norm is denoted by ‖ A ‖= sup(|Ax| : x = 1). Let p > 0, t ≥ 0. Denote by Lp
Ft

the family of all Ft-measurable, C(A,B)-valued random variables ξ = ξ(θ), θ ∈ A satisfying

sup E|ξ(θ)|p <∞. Let H , K be two real separable Hilbert spaces and we denote by 〈·, ·〉H , 〈·, ·〉K
their inner products and by ‖ · ‖H , ‖ · ‖K their vector norms, respectively. We denote by L(K,H)

the set of all linear bounded operators from K into H .

The mappings a(t), b(t), c(t), e(t), q(t) ∈ C(R+, R+)), τ(t) ∈ C(R+, R+), δ(t) ∈ C(R+, R+)

satisfy t− τ(t) → ∞, t− δ(t) → ∞ as t→ ∞.

Consider the following neutral stochastic differential equations with variable delays of the

form

d[x(t) − q(t)x(t − τ(t))] =[a(t)x(t) + b(t)x(t− τ(t)) +

∫ t

−∞

K(t− u)f(x(u))du]dt+

[c(t)x(t) + e(t)x(t− δ(t))]dW (t), t ≥ 0 (2.1)

with the initial condition

x0 = φ(t) ∈ C([m(0), 0], R),
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where x(t) is the state variable,

m(0) = min{inf(s− τ(s), s ≥ 0), inf(s− δ(s), s ≥ 0)}

and we always assume that f(0) = 0 and there exists a positive constant L such that

‖ f(x) − f(y) ‖H≤ L ‖ x− y ‖H . (2.2)

The kernel function K(s) is a real-valued nonnegative piecewise continuous function defined on

[0,∞) and satisfies
∫ ∞

0
K(s)ds = 1.

Definition 2.1 Let p ≥ 2 be an integer. Equation (2.1) is said to be stable in p-moment, if for

arbitrarily given ε > 0, there exists a δ > 0 such that ‖ ξ ‖D< δ guarantees

E{sup
t≥0

‖ x(t) ‖p
H} ≤ ε > 0.

In particular, when p = 2, we say it is mean square stable.

Definition 2.2 Let p ≥ 2 be an integer. Equation (2.1) is said to be asymptotically stable in

p-moment, if it is stable in p-moment and for any ξ ∈ Db
F0

([m(0), 0], H),

lim
T→∞

E{sup
t≥T

‖ x(t) ‖p
H} = 0.

In particular, when p = 2, we say it is mean square asymptotically stable.

Lemma 2.1 (B-D-G inequality, from [12, p.194]) For any r ≥ 1 and for arbitrary L0
2-valued

predictable process Φ(·),

sup
s∈[0,t]

E‖

∫ s

0

Φ(u)dW (u)‖2r
H ≤ (r(2r − 1))r(

∫ t

0

(E ‖ Φ(s) ‖2r
L0

2
)

1
r ds)r, t ∈ [0, T ]

Lemma 2.2 (Cp inequality, from [13, p.657]) For any stochastic variable ξ, η,

E(|ξ + η|p) ≤ Cp(E|ξ|
p + E|η|p)

where

Cp =

{

2p−1, if p ≥ 1

1, if 0 < p ≤ 1

and it is generalizable. For any stochastic variable ξk,

E(|

n
∑

k=1

ξk|
p) ≤ Cp

n
∑

k=1

E(|ξk|
p)

where

Cp =

{

np−1, if p ≥ 1

1, if 0 < p ≤ 1
.
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3. Main results

Theorem 3.1 Let τ(t) be derivable, p ≥ 2 be an integer and L be the same in (2.2). Assume

that there exist a constant α ∈ (0, 1) and a continuous function h(t) : [0,∞) → R such that for

t ≥ 0

(i)

∫ t

0

h(u)du→ ∞ as t→ ∞, lim inft→∞

∫ t

0 h(u)du > −∞.

(ii) |q(t)|p +

∫ t

t−τ(t)

|a(s) + h(s)|pds+

∫ t

0

e−p
∫

t

s
h(u)du|(a(s− τ(s)) + h(s− τ(s)))(1 − τ ′(s)) + b(s) − q(s)h(s)|pds+

∫ t

0

e−p
∫

t

s
h(u)du|h(s)|p(

∫ s

s−τ(s)

|a(u) + h(u)|pdu)ds+

Lp

∫ t

0

e−p
∫

t

s
h(u)du(

∫ ∞

0

|K(u)|pdu)ds+

1

2
(2p(p− 1))p/2(

∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|p + |e(s)|p)2/pds)p/2

≤ α < 1.

Then the zero solution of (2.1) is asymptotically stable in p-moment.

Proof Denote by S the Banach space of all F -adapted process ψ(t, ω) : [m(0),∞) × Ω → R,

which is almost surely continuous in t for fixed ω ∈ Ω. Moreover, ψ(s, ω) = φ(s) for s ∈ [m(0), 0]

and E ‖ ψ(t, ω) ‖P
H→ 0 as t→ ∞.

It is then routine to check that S is a Banach space when it is equipped with a norm defined

by

‖ φ ‖S := sup
t≥0

E ‖ φ(y) ‖p
H

for each φ ∈ S. Define an operator θ : S → S by θ(x)(t) = φ(t) for t ∈ [m(0), 0] and for t ≥ 0

θ(x)(t) =[φ(0) − q(0)φ(−τ(0)) −

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds]e−
∫

t

0
h(u)du+

[q(t)x(t − τ(t)) +

∫ t

t−τ(t)

((a(s) + h(s))x(s)ds)]+

∫ t

0

e−
∫

t

s
h(u)du[(a(s− τ(s)) + h(s− τ(s)))(1 − τ ′(s)) + b(s) − q(s)h(s)]×

x(s− τ(s))ds −

∫ t

0

e−
∫

t

s
h(u)duh(s)(

∫ s

s−τ(s)

(a(u) + h(u))x(u)du))ds+

∫ t

0

e−
∫

t

s
h(u)du[

∫ s

−∞

K(s− u)f(x(u))du]ds+

∫ t

0

e−
∫

t

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s)

=

6
∑

i=1

Ii(t). (3.1)



38 X. ZHOU and S. M. ZHONG

We first verify the continuity in p-moment of θ on [0,∞). Let x ∈ S, t1 ≥ 0, and |r| be

sufficiently small. By using Lemma 2.2, we get

E ‖ θ(x)(t1 + r) − θ(x)(t1) ‖
p
H≤ 6p−1

6
∑

i=1

E ‖ Ii(t1 + r) − Ii(t1) ‖
p
H . (3.2)

Considering the terms on the right-hand side of (3.2), we have

E ‖ I1(t1 + r) − I1(t1) ‖
p
H=E‖[φ(0) − q(0)φ(−τ(0)) −

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds]

(e−
∫

t1+r

0
h(u)du − e−

∫

t1
0

h(u)du)‖p
H

=E‖φ(0) − q(0)φ(−τ(0)) −

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds‖p
H

|e−
∫

t1+r

0
h(u)du − e−

∫

t1
0

h(u)du|p

→0, as r → 0.

In the same way, it is easy to know that E ‖ Ii(t1 + r) − Ii(t1) ‖p
H→ 0, i = 2, 3, 4, as r → 0.

When i = 5,

E ‖ I5(t1 + r) − I5(t1) ‖
p
H

= E‖

∫ t1+r

0

e−
∫

t1+r

s
h(u)du[

∫ s

−∞

K(s− u)f(x(u))du]ds−

∫ t1

0

e−
∫

t1
s

h(u)du[

∫ s

−∞

K(s− u)f(x(u))du]ds‖p
H

= E‖

∫ t1

0

(e−
∫

t1+r

s
h(u)du − e−

∫

t1
s

h(u)du)[

∫ s

−∞

K(s− u)f(x(u))du]ds+

∫ t1+r

t1

e−
∫

t1+r

s
h(u)du[

∫ s

−∞

K(s− u)f(x(u))du]ds‖p
H

→ 0, as r → 0

and Lemmas 2.1 and 2.2 yield

E ‖ I6(t1 + r) − I6(t1) ‖
p
H

= E‖

∫ t1+r

0

e−
∫

t1+r

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s)−

∫ t1

0

e−
∫

t1
s

h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s)‖p
H

= E‖

∫ t1

0

(e−
∫

t1+r

s
h(u)du − e−

∫

t1
s

h(u)du)[c(s)x(s) + e(s)x(s− δ(s))]dw(s)+

∫ t1+r

t1

e−
∫

t1+r

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s)‖p

H

≤ 2p−1{E ‖

∫ t1

0

(e−
∫

t1+r

s
h(u)du − e−

∫

t1
s

h(u)du)[c(s)x(s) + e(s)x(s− δ(s))]dw(s) ‖p
H +

E ‖

∫ t1+r

t1

e−
∫

t1+r

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s) ‖p

H}



Fixed point and asymptotical stability of neutral stochastic differential equations 39

≤ 2p−1(p(p− 1)/2)p/2{(

∫ t1

0

(E ‖ (e−
∫

t1+r

s
h(u)du − e−

∫

t1
s

h(u)du)[c(s)x(s)+

e(s)x(s− δ(s))] ‖p
H)2/pds)p/2+

(

∫ t1+r

t1

(E ‖ e−
∫

t1+r

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))] ‖p

H)2/pds)p/2}

→ 0 as r → 0.

Thus, θ is indeed continuous in p-moment on [0,∞).

Next, we show that θ(S) ⊂ S. It follows from (3.1) that

E ‖ θ(x)(t) ‖p
H≤ 6p−1

6
∑

i=1

E ‖ Ii(t) ‖
p
H . (3.3)

Now we estimate the terms on the right side of (3.3). Firstly, by the condition (i) we obtain

6p−1
E ‖ I1(t) ‖

p
H = 6p−1‖[φ(0) − q(0)φ(−τ(0)) −

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds]e−
∫

t

0
h(u)du‖p

H

= 6p−1
E‖φ(0) − q(0)φ(−τ(0)) −

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds‖p
He

−p
∫

t

0
h(u)du

→ 0 as t→ ∞.

Secondly, Holder’s inequality and Cp inequality yield,

6p−1
E ‖ I2(t) ‖

p
H

= 6p−1
E ‖ q(t)x(t − τ(t)) +

∫ t

t−τ(t)

((a(s) + h(s))x(s)ds) ‖p
H

≤ 6p−12p−1{E ‖ q(t)x(t− τ(t)) ‖p
H +E ‖

∫ t

t−τ(t)

((a(s) + h(s))x(s)ds) ‖p
H}

≤ 6p−12p−1|q(t)|pE ‖ x(t− τ(t)) ‖p
H +6p−12p−1

∫ t

t−τ(t)

|(a(s) + h(s))|pE ‖ x(s) ‖p
H ds.

For any x(t) ∈ S, E ‖ x(t) ‖p
H→ 0, as t→ ∞ and t−τ(t) → ∞, as t→ ∞, so E ‖ x(t−τ(t)) ‖p

H→

0, as t→ ∞, and then by condition (ii), we obtain 6p−1
E ‖ I2(t) ‖

p
H→ 0 as t→ ∞.

Thirdly, as i = 3

6p−1
E ‖ I3(t) ‖

p
H=6p−1

E ‖

∫ t

0

e−
∫

t

s
h(u)du[(a(s− τ(s)) + h(s− τ(s)))

(1 − τ ′(s)) + b(s) − q(s)h(s)]x(s − τ(s))ds ‖p
H

≤6p−1

∫ t

0

e−p
∫

t

s
h(u)du|(a(s− τ(s)) + h(s− τ(s)))

(1 − τ ′(s)) + b(s) − q(s)h(s)|pE ‖ x(s− τ(s)) ‖p
H ds.

For any x(t) ∈ S, E ‖ x(t) ‖p
H→ 0, as t → ∞ and t−τ(t) → ∞, as t→ ∞, so E ‖ x(t−τ(t)) ‖p

H→

0, as t→ ∞, and then by condition (ii), we obtain 6p−1
E ‖ I3(t) ‖

p
H→ 0 as t→ ∞.

It is easy to know that 6p−1
E ‖ I4(t) ‖

p
H→ 0 as t→ ∞ using the same methods.
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When i = 5

6p−1 ‖ I5(t) ‖
p
H = 6p−1

E ‖

∫ t

0

e−
∫

t

s
h(u)du[

∫ s

−∞

K(s− u)f(x(u))du]ds ‖p
H

≤ 6p−1Lp
E ‖

∫ t

0

e−
∫

t

s
h(u)du[

∫ s

−∞

K(s− u) ‖ x(u) ‖ du]ds ‖p
H

≤ 6p−1Lp

∫ t

0

e−p
∫

t

s
h(u)du[

∫ s

−∞

|K(s− u)|pE ‖ x(u) ‖p
H du]ds.

For any x(t) ∈ S, E ‖ x(t) ‖p
H→ 0 as t → ∞, and

∫ s

−∞
K(s − u)du =

∫ ∞

0
K(v)dv, then by the

conditions (i) and (ii), we obtain 6p−1
E ‖ I5(t) ‖

p
H→ 0 as t→ ∞.

Last when i = 6, using Holder’s inequality and Lemma 2.1, we can get

6p−1
E ‖ I6(t) ‖

p
H

= 6p−1
E ‖

∫ t

0

e−
∫

t

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))]dw(s) ‖p

H

≤ 6p−1(p(p− 1)/2)p/2{

∫ t

0

(E ‖ e−
∫

t

s
h(u)du[c(s)x(s) + e(s)x(s− δ(s))] ‖p

H)2/pds}p/2

= 6p−1(p(p− 1)/2)p/2{

∫ t

0

e−2
∫

t

s
h(u)du(E ‖ c(s)x(s) + e(s)x(s− δ(s)) ‖p

H)2/pds}p/2

≤ 6p−1(p(p− 1)/2)p/2{

∫ t

0

e−2
∫

t

s
h(u)du[2p−1(E ‖ c(s)x(s) ‖p

H +

E ‖ e(s)x(s − δ(s)) ‖p
H)]2/pds}p/2

= 6p−1(p(p− 1)/2)p/22p−1{

∫ t

0

e−2
∫

t

s
h(u)du[(|c(s)|pE ‖ x(s) ‖p

H +

|e(s)|pE ‖ x(s− δ(s)) ‖p
H)]2/pds}p/2.

For any x(t) ∈ S, E ‖ x(t) ‖p
H→ 0, as t→ ∞ and t−δ(t) → ∞, as t→ ∞, so E ‖ x(t−τ(t)) ‖p

H→

0, as t→ ∞, and then by condition (ii), we obtain 6p−1
E ‖ I6(t) ‖

p
H→ 0 as t→ ∞.

We conclude that θ(S) ⊂ S.

At the end of this proof, we will show that θ is contractive.

For x, y ∈ S, from the condition (ii), (2.2), Lemmas 2.1 and 2.2, we can obtain

sup
s∈[0,t]

E ‖ θ(x)(s) − θ(y)(s) ‖P
H

= sup
s∈[0,t]

E ‖ q(s)(x(s − τ(s)) − y(s− τ(s))) +

∫ s

s−τ(s)

((a(v) + h(v))(x(v) − y(v)dv)+

∫ s

0

e−
∫

s

v
h(u)du[(a(v − τ(v)) + h(v − τ(v)))(1 − τ ′(v)) + b(v) − q(v)h(v)]

(x(v − τ(v)) − y(v − τ(v))dv−
∫ s

0

e−
∫

s

v
h(u)duh(v)(

∫ v

v−τ(v)

(a(u) + h(u))(x(u) − y(u))du)dv+

∫ s

0

e−
∫

s

v
h(u)duh(v)(

∫ v

−∞

K(v − u)(f(x(u)) − f(y(u)))du)dv+
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∫ s

0

e−
∫

s

v
h(u)du[c(v)(x(v) − y(v)) + e(v)(x(v − δ(v)) − y(v − δ(v)))]dw(v) ‖P

H

≤ 5p−1 sup
s∈[0,t]

{|q(s)|pE ‖ x(s − τ(s)) − y(s− τ(s)) ‖P
H +

∫ s

s−τ(s)

|(a(v) + h(v)|pE ‖ x(v) − y(v) ‖P
H dv)+

∫ s

0

e−p
∫

s

v
h(u)du|(a(v − τ(v)) + h(v − τ(v)))(1 − τ ′(v)) + b(v) − q(v)h(v)|p

E ‖ x(v − τ(v)) − y(v − τ(v)) ‖P
H)dv+

∫ s

0

e−p
∫

s

v
h(u)du|h(v)|p(

∫ v

v−τ(v)

|a(u) + h(u)|pE ‖ x(u) − y(u) ‖P
H du)dv+

Lp

∫ s

0

e−p
∫

s

v
h(u)du(

∫ v

−∞

|K(v − u)|pE ‖ x(u) − y(u)du ‖P
H dv}+

5p−1 sup
s∈[0,t]

E ‖

∫ s

0

e−
∫

s

v
h(u)du[c(v)(x(v) − y(v))+

e(v)(x(v − δ(v)) − y(v − δ(v)))]dw(v) ‖P
H

≤ 5p−1 sup
s∈[0,t]

{|q(s)|pE ‖ x(s − τ(s)) − y(s− τ(s)) ‖P
H +

∫ s

s−τ(s)

|(a(v) + h(v)|pE ‖ x(v) − y(v) ‖P
H dv+

∫ s

0

e−p
∫

s

v
h(u)du|(a(v − τ(v)) + h(v − τ(v)))(1 − τ

′

(v)) + b(v) − q(v)h(v)|p

E ‖ x(v − τ(v)) − y(v − τ(v)) ‖P
H)dv+

∫ s

0

e−p
∫

s

v
h(u)du|h(v)|p(

∫ v

v−τ(v)

|a(u) + h(u)|pE ‖ x(u) − y(u) ‖P
H du)dv+

Lp

∫ s

0

e−p
∫

s

v
h(u)du(

∫ v

−∞

|K(v − u)|pE ‖ x(u) − y(u)du ‖P
H dv}+

5p−1 sup
s∈[0,t]

(p(p− 1)/2)p/2{

∫ s

0

e−2
∫

s

v
h(u)du(E ‖ c(v)(x(v) − y(v))+

e(v)(x(v − δ(v)) − y(v − δ(v))) ‖P
H)2/pdv}p/2

≤ 5p−1 sup
s∈[0,t]

{|q(s)|pE ‖ x(s − τ(s)) − y(s− τ(s)) ‖P
H +

∫ s

s−τ(s)

|(a(v) + h(v)|pE ‖ x(v) − y(v) ‖P
H dv+

∫ s

0

e−p
∫

s

v
h(u)du|(a(v − τ(v)) + h(v − τ(v)))(1 − τ ′(v)) + b(v) − q(v)h(v)|p+

E ‖ x(v − τ(v)) − y(v − τ(v)) ‖P
H)dv+

∫ s

0

e−p
∫

s

v
h(u)du|h(v)|p(

∫ v

v−τ(v)

|a(u) + h(u)|pE ‖ x(u) − y(u) ‖P
H du)dv}+

Lp

∫ s

0

e−
∫

s

v
h(u)du

∫ v

−∞

|Kp(v − u)|E ‖ x(u) − y(u)du ‖P
H dv}+
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5p−1 sup
s∈[0,t]

(p(p− 1)/2)p/22p−1{

∫ s

0

e−2
∫

s

v
h(u)du(|c(v)|pE ‖ (x(v) − y(v)) ‖P

H +

|e(v)|pE ‖ x(v − δ(v)) − y(v − δ(v)) ‖P
H)2/pdv}p/2

≤ 5p−1 sup
s∈[0,t]

E ‖ x(s) − y(s) ‖p
H {|q(s)|p +

∫ s

s−τ(s)

|a(v) + h(v)|pdv+

∫ s

0

e−p
∫

s

v
h(u)du|(a(v − τ(v)) + h(v − τ(v)))(1 − τ ′(v)) + b(v) − q(s)h(v)|pdv+

∫ s

0

e−p
∫

s

v
h(u)du|h(v)|p(

∫ v

v−τ(v)

|a(u) + h(u)|pdu)dv+

Lp

∫ s

0

e−p
∫

s

v
h(u)du(

∫ ∞

0

|Kp(u)|du)dv+

(2p(p− 1))p/2/2(

∫ s

0

e−2
∫

s

v
h(u)du(|c(v)|p + |e(v)|p)2/pdv)p/2}

≤ α sup
s∈[0,t]

E ‖ x(s) − y(s) ‖p
H .

Thus we know that θ is a contraction mapping.

Hence by the Contraction Mapping Principle, θ has a unique fixed point x(t) in S, which is

a solution of (2.1). With x(s) = φ(s) on [m(0), 0] and E ‖ x(t) ‖P
H→ 0 as t → ∞. The proof is

completed. 2

4. Remarks

Remark 4.1 The system studied in [9] is linear system, while the system we study here is

nonlinear. If f ≡ 0 in (2.1), the system becomes the linear system which was studied in [9].

Therefore, we considered the more general system than in [9].

Remark 4.2 Only the mean square asymptotic stability was considered in [9], but we considered

the asymptotical stability in p-moment (p ≥ 2).

5. Example

Consider the following neutral stochastic delay differential equation,

d[x(t) −
sin t

12
x(t − t/2)]

= [−4x(t) + l

∫ t

−∞

e−(t−u)x(u)du]dt+ [c1x(t) + c2x(t−
t

3
)]dw(t), t ≥ 0, (5.1)

where c1, c2, l are constants. If we choose h(t) = 4 in Theorem 3.1, then by Theorem 3.1, the

zero solution of (5.1) is asymptotically stable in p-moment, provided that

(
1

12
)p +

1

4p
(
1

3
)p +

lp

4p2
+

(p(p− 1))p/2

2
(|c1|

p + |c2|
p) < 1.

The conclusion can be verified by the numerical simulation (see Figures 1 and 2).
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Figure 3 l = 1, c1 = 4, c2 = 6 and p = 4

And when we consider the case without distributed time-varying delays, and the equation is

described by

d[x(t) −
sin t

12
x(t− t/2)] = [−4x(t)]dt+ [c1x(t) + c2x(t−

t

3
)]dw(t), t ≥ 0, (5.2)

where the parameters are the same as the ones in (5.1), the zero solution of (5.2) is asymptotically

stable in p-moment, provided that

(
1

12
)p +

1

4p
(
1

3
)p +

(p(p− 1))p/2

2
(|c1|

p + |c2|
p) < 1.

The conclusion can be verified by the numerical simulation (see Figure 3).
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