Journal of Mathematical Research & Exposition Jan., 2011, Vol. 31, No. 1, pp. 45–58 DOI:10.3770/j.issn:1000-341X.2011.01.005 Http://jmre.dlut.edu.cn

Vertex-Distinguishing E-Total Coloring of the Graphs mC_3 and mC_4

Xiang En CHEN*, Yue ZU

College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, P. R. China

Abstract Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let $C_f(u)$ or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If $C(u) \neq C(v)$ for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by $\chi_{vt}^e(G)$, and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC_3 and mC_4 .

Keywords coloring; E-total coloring; vertex-distinguishing E-total coloring; vertex-distinguishing E-total chromatic number; the vertex-disjoint union of m cycles with length n.

Document code A MR(2010) Subject Classification 05C15 Chinese Library Classification 0157.5

1. Introduction

The vertex-distinguishing proper edge colorings and vertex-distinguishing general edge colorings had been widely considered in [1–5, 8, 9] and [7, 10–14], respectively. The appropriate chromatic numbers are called the vertex-distinguishing proper edge chromatic number (or strong chromatic number, or observability) and point-distinguishing chromatic index, respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_f(v)$, or simply C(v), if no confusion arises, the set of colors used to color the vertex v as well as the edges incident to v. We call C(v) the color set of vertex v. Let $\overline{C}(v)$ be the complementary set of C(v) in the set of all colors we used. Obviously, $|C(v)| \leq d_G(v) + 1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$, i.e., $\overline{C}(u) \neq \overline{C}(v)$ for any two different vertices uand v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum number of colors required for a vertex-distinguishing (proper) total coloring is denoted by $\chi_{vt}(G)$.

Received January 1, 2009; Accepted January 28, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10771091) and the Scientific Research Project of Northwest Normal University (Grant No. NWNU-KJCXGC-03-61).

* Corresponding author

E-mail address: chenxe@nwnu.edu.cn (X. E. CHEN)

This concept had been considered in [6, 15]. The following conjecture had been given in [15].

Conjecture 1 ([15]) Suppose G is a simple graph and n_d is the number of vertices of degree $d, \delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_d$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{vt}(G) = k$ or k+1.

From [15], we know that the above conjecture is valid for complete graph, complete bipartite graph, path and cycle, etc.

When we define a proper total coloring of a graph G, we need three conditions for a total coloring which are listed as follows:

Condition (v). no two adjacent vertices receive the same color;

Condition (e). no two adjacent edges receive the same color;

Condition (i). no edge receives the same color as one of its endpoints.

If we just consider the total coloring of graph G such that the Conditions (v) and (i) are satisfied, then such a coloring is called E-total coloring of graph G.

Note that E-total coloring is total coloring, but total coloring is not necessarily E-total coloring. The proper total coloring is E-total coloring and E-total coloring is not necessarily proper total coloring.

If f is an E-total coloring of graph G with colors we use being 1, 2, ..., k and $\forall u, v \in V(G)$, $u \neq v$, we have $C(u) \neq C(v)$, then f is called k-vertex-distinguishing E-total coloring, or k-VDET coloring.

The vertex-distinguishing E-total chromatic number of graph G, denoted by $\chi_{vt}^e(G)$, is the minimum k for which G has a vertex-distinguishing E-total coloring using k colors.

The following proposition is obviously true.

Proposition 1 For each graph G, we have $\chi_{vt}^e(G) \leq \chi_{vt}(G)$.

For graph G, let n_i denote the number of the vertices of degree $i, \delta \leq i \leq \Delta$. Suppose

$$\eta(G) = \min\left\{l \begin{vmatrix} l \\ 2 \end{vmatrix} + \binom{l}{3} + \dots + \binom{l}{i+1} \ge n_{\delta} + n_{\delta+1} + \dots + n_i, 1 \le \delta \le i \le \Delta\right\}.$$

Lemma 1 For each graph G, we have $\chi_{vt}^e(G) \ge \eta(G)$.

Proof In order to color G by the method of vertex-distinguishing E-total coloring, the number of colors we used is at least l, where l is a positive integer and $\binom{l}{2} + \binom{l}{3} + \cdots + \binom{l}{i+1} \ge n_{\delta} + n_{\delta+1} + \cdots + n_i$ for each $1 \le \delta \le i \le \Delta$, because the vertices of degree $n_{\delta}, n_{\delta+1}, \ldots, n_i$ should be distinguished by their color sets and each of their color sets contains 2, or 3, or 4, ..., or i + 1 colors.

Thus $\chi_{vt}^e(G)$ is not less than the minimum value of such *l*'s.

From Lemma 1, we have

Lemma 2 If G is an r-regular graph, then $\eta(G) = \{l \mid \binom{l}{2} + \binom{l}{3} + \cdots + \binom{l}{r+1} \ge |V(G)|\}.$

Suppose mC_n denotes the vertex-disjoint union of m cycles of lengths n. In this paper we will determine the VDET chromatic numbers of mC_3 and mC_4 .

2. Vertex distinguishing E-total chromatic numbers of mC_3

In order to give the vertex-distinguishing E-total coloring of mC_3 and mC_4 conveniently, we define a matrix A_n firstly.

For $n \ge 6$, we construct a matrix A_n such that A_n has n-1 rows and n-1 columns and the entries of A_n are empty sets or the subsets of $\{1, 2, ..., n\}$ which contain n and have 2 or 3 elements. Each subset of $\{1, 2, ..., n\}$ which contains n and has 2 or 3 elements is an element of A_n . The elements of A_n is given as follows.

The first row of A_n is $(\{n, 1\}, \{n, 2\}, \{n, 3\}, \dots, \{n, n - 1\})$; The second row of A_n is $(\{n, 1, 2\}, \{n, 2, 3\}, \{n, 3, 4\}, \dots, \{n, n - 2, n - 1\}, \emptyset)$; The third row of A_n is $(\{n, 1, 3\}, \{n, 2, 4\}, \{n, 3, 5\}, \dots, \{n, n - 3, n - 1\}, \emptyset, \emptyset)$; The fourth row of A_n is $(\{n, 1, 4\}, \{n, 2, 5\}, \{n, 3, 6\}, \dots, \{n, n - 4, n - 1\}, \emptyset, \emptyset, \emptyset)$; ... The (n - 2)-th row of A_n is $(\{n, 1, n - 2\}, \{n, 2, n - 1\}, \emptyset, \emptyset, \dots, \emptyset)$; The (n - 1)-th row of A_n is $(\{n, 1, n - 1\}, \emptyset, \emptyset, \dots, \emptyset)$;

For example

$$A_{6} = \begin{pmatrix} \{6,1\} & \{6,2\} & \{6,3\} & \{6,4\} & \{6,5\} \\ \{6,1,2\} & \{6,2,3\} & \{6,3,4\} & \{6,4,5\} & \varnothing \\ \{6,1,3\} & \{6,2,4\} & \{6,3,5\} & \varnothing & \varnothing \\ \{6,1,4\} & \{6,2,5\} & \varnothing & \varnothing & \varnothing \\ \{6,1,5\} & \varnothing & \varnothing & \varnothing & \varnothing \end{pmatrix}$$

Suppose $1 \le i_1 < i_2 < \cdots < i_r \le n-1$, $1 \le j_1 < j_2 < \cdots < j_s \le n-1$. The submatrix $A_n[i_1, i_2, \ldots, i_r|j_1, j_2, \ldots, j_s]$ is the $r \times s$ matrix obtained from A_n by removing the rows with indices not in $\{i_1, i_2, \ldots, i_r\}$ and columns with indices not in $\{j_1, j_2, \ldots, j_s\}$. A 3×2 sub-matrix B of A_n is called good if there exists an E-total coloring method of the vertex-disjoint union of two C_3 's such that the color sets of all the vertices of $2C_3$ are just all the entries of B.

For example, $A_6[2,3,4|1,2]$ is good, since all the entries of $A_6[2,3,4|1,2]$ are the color sets of all the vertices of $2C_3$ in the following vertex-distinguishing E-total coloring:

Figure 1 VDTC coloring of $2C_3$

In this section, we will use the following three types of VDET coloring of C_3 .

Figure 2 Coloring f(a, b; c, d) Figure 3 Coloring g(a; b, c; d, e) Figure 4 Coloring h(a; b, c, d)

The first type coloring is denoted by f(a, b; c, d). Under f(a, b; c, d), the color sets of three vertices are $\{a, b, c\}, \{a, b, d\}$ and $\{a, b\}$.

The second type coloring is denoted by g(a; b, c; d, e). Under g(a; b, c; d, e), the color sets of three vertices are $\{a, b, c\}, \{a, d, e\}$ and $\{a, b, d\}$.

The third type coloring is denoted by h(a; b, c, d). Under h(a; b, c, d), the color sets of three vertices are $\{a, b\}, \{a, c\}$ and $\{a, d\}$.

Lemma 3 $A_n[i, i+1, i+2 \mid j, j+1]$ is a good 3×2 submatrix when $i \equiv 2 \pmod{3}$, $j \equiv 1 \pmod{2}$ and no entry of $A_n[i, i+1, i+2 \mid j, j+1]$ is \emptyset .

Proof If i = 2, then

$$A_n[i, i+1, i+2 \mid j, j+1] = \begin{pmatrix} \{n, j, j+1\} & \{n, j+1, j+2\} \\ \{n, j, j+2\} & \{n, j+1, j+3\} \\ \{n, j, j+3\} & \{n, j+1, j+4\} \end{pmatrix}$$

Obviously, $\{n, j, j+2\}$, $\{n, j+1, j+3\}$, $\{n, j+1, j+2\}$ are the color sets of all vertices of C_3 under some vertex distinguishing E-total coloring. So are $\{n, j, j+3\}$, $\{n, j+1, j+4\}$, $\{n, j, j+1\}$.

If $i \geq 5$, then

$$A_n[i, i+1, i+2 \mid j, j+1] = \begin{pmatrix} \{n, j, j+i-1\} & \{n, j+1, j+i\} \\ \{n, j, j+i\} & \{n, j+1, j+i+1\} \\ \{n, j, j+i+1\} & \{n, j+1, j+i+2\} \end{pmatrix}.$$

Obviously, $\{n, j, j+i-1\}$, $\{n, j+1, j+i\}$, $\{n, j, j+i\}$ are the color sets of all vertices of C_3 under some vertex distinguishing E-total coloring. So are $\{n, j+1, j+i+1\}$, $\{n, j, j+i+1\}$, $\{n, j, j+i+1\}$, $\{n, j+1, j+i+2\}$

The proof is completed. \Box

Lemma 4 If $n \equiv 1, 3, 4, 0 \pmod{6}$ $(n \geq 7)$, then we can decompose all the entries of A_n (except for \emptyset) into $\frac{1}{3} \binom{n}{2}$ groups such that each group contains exactly 3 subsets and three subsets in each group are exactly the color sets of all vertices of C_3 under some vertex-distinguishing E-total coloring.

Proof By Lemma 3, we only consider the entries of A_n which are not empty set and are not in any good 3×2 submatrices of A_n described in Lemma 3. Such entries are called left subsets in this proof.

Case 1 $n \equiv 1 \pmod{6}$.

For $i \equiv 1 \pmod{6}$, $1 \leq i \leq n-1$, we consider such entries (left subsets) which are in the *i*-th, (i+1)-th columns and are not in the first row: $\{n, i, n-1\}, \{n, i, n-2\}, \{n, i+1, n-1\}$. Obviously, they may become a desired group.

For the entries which are in the (i+2)-th, (i+3)-th, (i+4)-th, (i+5)-th columns and are not in the first row, $\{n, i+2, n-2\}, \{n, i+3, n-1\}, \{n, i+3, n-2\}$ may become a desired group, and $\{n, i+2, n-1\}, \{n, i+2, n-3\}, \{n, i+4, n-1\}$ may become another desired group.

Of course $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}\}$ is a desired group, i = 1, 4, 7, ..., n-3.

Case 2 $n \equiv 3 \pmod{6}$.

For $i \equiv 3 \pmod{6}$, $3 \leq i \leq n-12$, the left subsets which are in the *i*-th, (i + 1)-th, ..., (i + 5)-th columns and not in the first row can become 3 groups (obviously):

 $\{\{n, i, n-2\}, \{n, i, n-1\}, \{n, i+1, n-1\}\}, \{\{n, i+2, n-3\}, \{n, i+2, n-1\}, \{n, i+4, n-1\}\}, \{\{n, i+3, n-2\}, \{n, i+3, n-1\}, \{n, i+2, n-2\}\}.$

For the left subsets which are in the first, second, (n-6)-th, (n-5)-th, (n-4)-th, (n-3)-th, (n-2)-th columns and are not in the first row as well as the subsets $\{n, n-1\}$, $\{n, n-2\}$, they can become four desired groups: $\{\{n, 1, n-1\}, \{n, n-1, n-6\}, \{n, n-1\}\}, \{\{n, n-4, n-2\}, \{n, n-2, n-6\}, \{n, n-2\}\}, \{\{n, n-5, n-1\}, \{n, n-3, n-2\}, \{n, n-3, n-1\}\}, \{\{n, n-4, n-1\}, \{n, n-4, n-3\}, \{n, n-1, n-2\}\}.$

We can easily partition the subsets in the first row (except for $\{n, n-1\}$, $\{n, n-2\}$) into $\frac{n-3}{3}$ desired groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}\}, n = 1, 4, 7, \dots, n-5$.

Case 3 $n \equiv 4 \pmod{6}$.

Assume that $i \equiv 1 \pmod{6}$, $1 \le i \le n - 15$ (if $n \ge 16$). The left subsets which are in the *i*-th, (i + 1)-th, ..., (i + 5)-th columns and not in the first row can become 3 groups (obviously):

 $\{\{n,i,n-2\},\{n,i,n-1\},\{n,i+1,n-1\}\},\{\{n,i+2,n-2\},\{n,i+3,n-1\},\{n,i+3,n-2\}\}, \{\{n,i+4,n-1\},\{n,i+2,n-1\},\{n,i+2,n-3\}\}.$

The left subsets which are in the (n-9)-th, (n-8)-th, ..., (n-3)-th, (n-2)-th columns and are not in the first row can become four groups: $\{\{n, n-9, n-2\}, \{n, n-1, n-8\}, \{n, n-9, n-1\}\}, \{\{n, n-7, n-3\}, \{n, n-2, n-1\}, \{n, n-7, n-2\}\}, \{\{n, n-7, n-1\}, \{n, n-3, n-2\}, \{n, n-3, n-1\}\}, \{\{n, n-6, n-1\}, \{n, n-1, n-5\}, \{n, n-6, n-2\}\}.$

Of course $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}\}$ are desired groups, i = 1, 4, 7, ..., n-3.

Case 4 $n \equiv 0 \pmod{6}$.

Suppose $i \equiv 5 \pmod{6}$, $5 \le i \le n - 13$ (if $n \ge 18$). We can decompose the left subsets which are in the *i*-th, (i + 1)-th, ..., (i + 5)-th columns and not in the first row into 3 groups:

 $\{\{n, i, n-2\}, \{n, i+1, n-1\}, \{n, i+1, n-2\}\}, \{\{n, i+2, n-1\}, \{n, i, n-1\}, \{n, i, n-3\}\}, \{\{n, i+4, n-1\}, \{n, i+4, n-2\}, \{n, i+5, n-1\}\}.$

For the left subsets which are in the first, second, third, fourth, (n - 7)-th, (n - 6)-th, $\dots, (n - 2)$ -th, (n - 1)-th columns and are not in first row as well as $\{n, n - 1\}, \{n, n - 2\}$, we can decompose them into five groups: $\{\{n, 1, n - 1\}, \{n, n - 3, n - 7\}, \{n, n - 3, n - 1\}, \{\{n, 4, n - 1\}, \{n, 3, n - 1\}, \{n, 3, n - 2\}\}, \{\{n, n - 7, n - 2\}, \{n, n - 6, n - 2\}, \{n, n - 6, n - 1\}\}, \{\{n, n - 7, n - 1\}, \{n, n - 1\}, \{n, n - 5, n - 1\}\}, \{\{n, n - 2, n - 1\}, \{n, n - 2\}, \{n, n - 3, n - 2\}\}.$

We can decompose the subsets which are in the first row of A_n except for $\{n, n-1\}, \{n, n-2\}$ into $\frac{n-3}{3}$ groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}\}, i = 1, 4, 7, \dots, n-5$.

The proof is completed. \Box

Lemma 5 If $n \equiv 2, 5 \pmod{6}$, $n \geq 11$, then we can decompose all the entries of A_n (except for \emptyset and $\{n, 2\}$) into $\frac{1}{3} [\binom{n}{2} - 1]$ groups such that each group contains exactly 3 subsets and three subsets in each group are the color sets of all vertices of C_3 under some vertex-distinguishing

E-total coloring.

Proof by Lemma 3, we only consider the entries of A_n which are not empty sets and are not in any good 3×2 submatrices of A_n described in Lemma 3. Such entries are called left subsets in this proof.

Case 1 $n \equiv 2 \pmod{6}$.

For $i \equiv 1 \pmod{6}$, $1 \leq i \leq n-13$ (if $n \geq 14$), the left entries which are in the *i*-th,..., (i+5)-th columns and not in the first row can be decomposed into 3 desired groups: $\{\{n, i, n-3\}, \{n, i, n-1\}, \{n, i+2, n-1\}\}, \{\{n, i, n-2\}, \{n, i+1, n-2\}, \{n, i+1, n-1\}\}, \{\{n, i+4, n-2\}, \{n, i+4, n-1\}, \{n, i+5, n-1\}\}.$

The left subsets which are in the (n-7)-th , ..., (n-2)-th columns and are not in the first row may become 3 desired groups: $\{\{n, n-7, n-3\}, \{n, n-7, n-1\}, \{n, n-2, n-1\}\}, \{\{n, n-6, n-2\}, \{n, n-6, n-1\}, \{n, n-7, n-2\}\}, \{\{n, n-5, n-1\}, \{n, n-3, n-1\}, \{n, n-3, n-2\}\}$.

We may partiton the entries which are in the first row (except $\{n, 2\}$) into $\frac{n-2}{3}$ desired groups: $\{\{n, 1\}, \{n, 3\}, \{n, 4\}\}, \{\{n, i\}, \{n, i+1\}, \{n, i+2\}\}, i = 5, 8, ..., n-3.$

Case 2 $n \equiv 5 \pmod{6}$.

Suppose $i \equiv 1 \pmod{6}$, $1 \leq i \leq n - 10$. The left subsets which are in the *i*-th,..., (i + 5)-th columns and are not in the first row can become three groups: $\{\{n, i, n - 2\}, \{n, i + 1, n - 2\}, \{n, i + 1, n - 1\}, \{\{n, i, n - 1\}, \{n, i, n - 3\}, \{n, i + 2, n - 1\}\}, \{\{n, i + 4, n - 2\}, \{n, i + 4, n - 1\}, \{n, i + 5, n - 1\}\}.$

For the left subsets which are in the (n-4)-th , (n-3)-th , (n-2)-th columns and are not in the first row, they can become two desired groups: $\{\{n, n-4, n-2\}, \{n, n-4, n-3\}, \{n, n-3, n-1\}\}, \{\{n, n-4, n-1\}, \{n, n-3, n-2\}, \{n, n-2, n-1\}\}.$

At last, we consider the entries which are in the first row and which are not in any group constructed. We only give $\frac{n-2}{3}$ groups, and $\{\{n,1\},\{n,3\},\{n,4\}\},\{\{n,i\},\{n,i+1\},\{n,i+2\}\}$ is a desired group, $i = 5, 8, \ldots, n-3$.

The proof is completed. \Box

It is easy to see that $\chi_{vt}^e(C_3) = 4$.

Theorem 1 If $\binom{k-1}{2} + \binom{k-1}{3} < 3m \le \binom{k}{2} + \binom{k}{3}$, $m \ge 2$, $k \ge 4$, $m \ne 3$, then $\chi^e_{vt}(mC_3) = k$; $\chi^e_{vt}(3C_3) = 5$.

Proof Obviously, we have $\chi_{vt}^e(mC_3) \ge \eta(mC_3) = k$. So we need only to give k-VDET coloring of mC_3 in the following.

If m = 2, then two C_3 's can be colored by f(1, 2; 3, 4) and f(3, 4; 1, 2). So $\chi_{vt}^e(2C_3) = 4$.

When m = 3, $\chi_{vt}^e(3C_3) \ge \eta(3C_3) = 4$. Suppose $3C_3$ has a 4-VDET coloring. Consider a 4-VDET coloring g of a $3C_3$.

When the colors of 3 edges of C_3 are the same, then the color set of each vertex of C_3 is 2-set (i.e., it has 2 elements or 2 colors). When the number of the different colors of 3 edges of C_3 is 2, then the color set of one vertex of C_3 is 2-set, and the color sets of other two vertices are 3-sets.

When the colors of 3 edges of C_3 are different, then the color set of each vertex of C_3 is 3-set.

 $\{1, 2, 3, 4\}$ has six 2-subsets and four 3-subsets. And the color set of each vertex of $3C_3$ under g is 2-subsets or 3-subsets of $\{1, 2, 3, 4\}$. Note that in $3C_3$, there are at least 3 color sets which have 3 colors. We consider two cases as follows:

Case 1 If there exists one C_3 , say the first C_3 , such that the sets of all vertices of the C_3 are all 3-set, then the color sets of all vertices of other two C_3 's must be 2-subsets of $\{1, 2, 3, 4\}$. So the colors of edges of the second C_3 are the same, say 1; The colors of edges of the third C_3 are the same, say 2. This illustrates that there are three 2-subsets which contain 1 and other three 2-subsets contain 2 among six 2-subsets of $\{1, 2, 3, 4\}$. This is a contradiction.

Case 2 The cardinals of the color sets of the three vertices of the first and the second C_3 under g are 2, 3, 3; The cardinals, for the third C_3 , are 2, 2, 2.

Denote the *i*-th C_3 by C_3^i , then $V(C_3^i) = \{v_1^i, v_2^i, v_3^i\}, 1 \le i \le m$. We may suppose that $C(v_2^1) = \{1, 2, 3\}, C(v_3^1) = \{1, 2, 4\}, C(v_2^2) = \{1, 3, 4\}, C(v_3^2) = \{2, 3, 4\}$. Without loss of generality we assume $g(v_2^1v_3^1) = 1, g(v_2^2v_3^2) = 3$. The number of the different colors of 3 edges of C_3^i is 2 and $g(v_1^iv_2^i) \ne g(v_2^iv_3^i) \ne g(v_1^iv_3^i), i = 1, 2, \text{ so } g(v_1^1v_2^1) = g(v_1^1v_3^1) = 2, g(v_1^2v_2^2) = g(v_1^2v_3^2) = 4$. By the characteristic of E-total coloring we know that $g(v_1^1) = 1, g(v_1^2) = 3$. So $C(v_1^1) = \{1, 2\}, C(v_1^2) = \{3, 4\}$. Thus $\{C(v_1^3), C(v_2^3), C(v_3^3)\} \subseteq \{\{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\}$. This is a contradiction for the 3 edges of the third C_3 accept the same color. So $3C_3$ has no 4-VDET coloring. But we can color $3C_3$'s by f(1, 2; 3, 4), f(3, 4; 1, 2) and h(1; 3, 4, 5), respectively. Thus $\chi_{vt}^e(3C_3) = 5$.

If $4 \le m \le 6$, $\chi_{vt}^e(mC_3) \ge 5$. $6C_3$ can be colored by f(1,2;3,4), f(3,4;1,2), h(1;3,4,5), h(2;3,4,5), g(5;3,1;2,4) and g(5;1,2;4,3). Of course for $4C_3$ and $5C_3$ we can easily obtain their 5-VDET coloring. So $\chi_{vt}^e(mC_3) = 5$, if $4 \le m \le 6$. Note that $\{5,3\}$, $\{5,4\}$ are not color sets of any vertex under the above 5-VEDT coloring of $6C_3$.

If $7 \le m \le 11$, then $\chi_{vt}^e(mC_3) \ge 6$. we give the 6-VDET coloring of $11C_3$ as follows:

Based on the 5-VDET coloring of $6C_3$ given in the preceding paragraph, we color the 7,8,9,10,11-th C_3 by f(6,5;1,3), g(6;1,4;2,5), g(6;3,1;2,4), f(6,4;3,5), h(6;1,2,3). The resulting coloring is a 6-VDET coloring of $11C_3$.

The restriction of 6-VDET coloring of $11C_3$ on mC_3 ($7 \le m \le 10$) is a 6-VDET coloring of mC_3 . So $\chi_{vt}^e(mC_3) = 6$, if $7 \le m \le 11$.

If $12 \leq m \leq 18$, then $\chi_{vt}^e(mC_3) \geq 7$. Based on the 6-VDET coloring of $11C_3$, we only need color 12-th,..., 18-th C_3 by the method mentioned in Lemma 4 (the case n = 7). We can obtain 7-VDET coloring of $18C_3$ and then the restriction of 7-VDET coloring of $18C_3$ on mC_3 ($12 \leq m \leq 17$) is a 7-VDET coloring of mC_3 . The coloring of $18C_3$ has used up all 2-subsets and 3-subsets of $\{1, 2, 3, 4, 5, 6, 7\}$ except $\{5, 3\}$, $\{5, 4\}$. So we have $\chi_{vt}^e(mC_3) = 7$.

If $19 \le m \le 28$, then $\chi_{vt}^e(mC_3) \ge 8$. Now in order to prove $\chi_{vt}^e(mC_3) = 8$, if $19 \le m \le 28$, we give the 8-VDET coloring of $28C_3$. The first $18C_3$ are colored by the 7-VDET coloring of $18C_3$. And the last $10C_3$'s are colored by h(5;3,4,8), f(8,1;5,7), h(8;2,3,4), g(8;6,1;2,7), f(8,7;3,5), f(8,6;5,7), g(8;2,4;3,1), g(8;1,4;2,5), g(8;4,6;5,3), g(8;3,6;4,7). It is easy to see

that the above coloring is a 8-VDET coloring of $28C_3$. So far the 8-VDET coloring of $28C_3$ has used up all 2-combinations and 3-combinations of $\{1, 2, \ldots, 8\}$.

Suppose $m \ge 29$ and the result is valid for the vertex-disjoint union of less than $29C_3$'s. We consider mC_3 , where $\binom{k-1}{2} + \binom{k-1}{3} + 1 \le 3m \le \binom{k}{2} + \binom{k}{3}$, $k \ge 9$.

If $k \equiv 8, 0, 1 \pmod{9}$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3}[\binom{k}{2} + \binom{k}{3}]C_3$ using colors $\{1, 2, \ldots, k\}$. Note that in the case when $n \equiv 8 \pmod{9}$, $k \ge 17$, $\{k, 2\}$, $\{k - 3, 2\}$, $\{k - 6, 2\}$ are the color sets of all vertices of some C_3 . We can easily give k-VDET coloring of mC_3 when $\binom{k-1}{2} + \binom{k-1}{3} < 3m < \binom{k}{2} + \binom{k}{3}$.

If $k \equiv 2, 3, 4 \pmod{9}$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3} [\binom{k}{2} + \binom{k}{3} - 1]C_3$ using colors $\{1, 2, \dots, k\}$ and this coloring has used up all 2-subsets and 3-subsets of $\{1, 2, \dots, k\}$ but $\{k, 2\}$ (if $k \equiv 2 \pmod{9}$) or $\{k - 1, 2\}$ (if $k \equiv 3 \pmod{9}$) or $\{k - 2, 2\}$ (if $k \equiv 4 \pmod{9}$). We can easily give k-VDET coloring of mC_3 when $\binom{k-1}{2} + \binom{k-1}{3} < 3m < \binom{k}{2} + \binom{k}{3}$. If $k \equiv 5, 6, 7 \pmod{9}$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3} [\binom{k}{2}$

 $\binom{k}{3} - 2]C_3$ using colors $\{1, 2, \dots, k\}$ and this coloring has used up all 2-subsets and 3-subsets of $\{1, 2, \dots, k\}$ but two 2-combinations $\{k-3, 2\}, \{k, 2\}$ or $\{k-4, 2\}, \{k-1, 2\}$ or $\{k-5, 2\}, \{k-2, 2\}$. We can easily give k-VDET coloring of mK_3 when $\binom{k-1}{2} + \binom{k-1}{3} < 3m < \binom{k}{2} + \binom{k}{3}$.

The proof is completed. \Box

3. Vertex distinguishing E-total chromatic numbers of mC_4

A 2 × 2 submatrix B of A_n is called good if there exists an E-total coloring method for C_4 such that the color sets of the all vertices of C_4 are just all the entries of B.

Lemma 6 $A_n[i, i+1 \mid j, j+1]$ is a good 2×2 sub-matrix when $i \equiv 0 \pmod{2}$, $j \equiv 1 \pmod{2}$ and no entry of $A_n[i, i+1 \mid j, j+1]$ is \emptyset .

 $\begin{array}{ll} \textbf{Proof} \ \text{Note that} \ A_n[i,i+1 \mid j,j+1] = \begin{pmatrix} \{n,j,j+i-1\} & \{n,j+1,j+i\} \\ \{n,j,j+i\} & \{n,j+1,j+i+1\} \end{pmatrix}. \\ \text{Obviously, all the entries of} \ A_n[i,i+1 \mid j,j+1] \ \text{are the color sets of all the vertices of} \ C_4 \end{array}$

Obviously, all the entries of $A_n[i, i + 1 | j, j + 1]$ are the color sets of all the vertices of C_4 under the following E-total coloring:

Figure 5 VDET coloring of C_4

The proof is completed. \Box

Lemma 7 If $n \equiv 0, 1 \pmod{8}, n \geq 8$, then we can decompose all the entries of A_n (except for \emptyset) into $\frac{1}{4} \binom{n}{2}$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing E-total coloring of C_4 .

Proof By Lemma 6, we only consider the entries of A_n which are not empty sets and are not in any good 2×2 submatrices of A_n described in Lemma 6. Such entries are called left subsets.

Case 1 $n \equiv 0 \pmod{8}$.

When $n \ge 16$, suppose $i \equiv 1 \pmod{8}$, $1 \le i \le n - 15$. We can decompose the left subsets which are in the *i*-th, (i + 1)-th, $\ldots, (i + 7)$ -th columns and not in the first row into 3 groups:

 $\{\{n, i, n-2\}, \{n, i, n-1\}, \{n, i+2, n-2\}, \{n, i+2, n-1\}\}, \{\{n, i+4, n-2\}, \{n, i+4, n-1\}, \{n, i+6, n-2\}, \{n, i+6, n-1\}\}, \{\{n, i+1, n-1\}, \{n, i+3, n-1\}, \{n, i+5, n-1\}, \{n, i+7, n-1\}\}.$

For $\{n, n-1\}$, $\{n, n-2\}$, $\{n, n-3\}$ as well as the left subsets which are in the (n-7)-th, (n-6)-th, (n-2)-th, (n-1)-th columns and are not in first row, we can decompose them into three groups: $\{\{n, n-2, n-1\}, \{n, n-3, n-2\}, \{n, n-3, n-1\}, \{n, n-1\}\}, \{\{n, n-4, n-1\}, \{n, n-6, n-1\}, \{n, n-3\}, \{n, n-2\}\}, \{\{n, n-7, n-2\}, \{n, n-7, n-1\}, \{n, n-5, n-2\}, \{n, n-5, n-1\}\}$.

We can decompose the subsets which are in the first row of A_n except for $\{n, n-1\}, \{n, n-2\}, \{n, n-3\}$ into $\frac{n-4}{4}$ groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}, i = 1, 5, 9, \dots, n-7$.

Case 2 $n \equiv 1 \pmod{8}$.

Suppose $i \equiv 1 \pmod{8}$, $1 \le i \le n-8$. The left subsets which are in the *i*-th, (i+1)-th, ..., (i+7)-th columns and not in the first row are the sets: $\{n, i, n-1\}$, $\{n, i+2, n-1\}$, $\{n, i+4, n-1\}$, $\{n, i+6, n-1\}$. These sets may become a desired group.

Of course, the subsets in the first row may become $\frac{n-1}{4}$ desired groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}\}, i = 1, 5, 9, \dots, n-4.$

The proof is completed. \Box

Lemma 8 If $n \equiv 2 \pmod{8}$, then we can decompose all the entries of A_n (except for \emptyset and $\{n, n-1\}$) into $\frac{1}{4}[\binom{n}{2}-1]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing *E*-total coloring of C_4 .

Proof As before we only consider the left subsets.

For $i \equiv 1 \pmod{8}$, $1 \le i \le n-9$. We can decompose the left subsets which are in the *i*-th, (i+1)-th, ..., (i+7)-th columns and not in the first row into 3 groups: $\{\{n, i, n-2\}, \{n, i, n-1\}, \{n, i+2, n-2\}, \{n, i+2, n-1\}\}, \{\{n, i+4, n-2\}, \{n, i+4, n-1\}, \{n, i+6, n-2\}, \{n, i+6, n-1\}\}, \{\{n, i+1, n-1\}, \{n, i+3, n-1\}, \{n, i+5, n-1\}, \{n, i+7, n-1\}\}.$

For the entries which are in the first row (except for $\{n, n-1\}$), they may become $\frac{n-2}{4}$ desired groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}, i = 1, 5, 9, \dots, n-5$.

The proof is completed. \Box

Lemma 9 If $n \equiv 3 \pmod{8}$, then we can decompose all the entries of A_n (except for \emptyset , $\{n, n - 1\}$)

2, n-1}, $\{n, n-4, n-2\}$ and $\{n, n-3, n-1\}$) into $\frac{1}{4}[\binom{n}{2}-3]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing E-total coloring of C_4 .

Proof We only consider the left subsets as well as four sets $\{n, n-4, n-2\}$, $\{n, n-4, n-3\}$, $\{n, n-3, n-2\}$, $\{n, n-3, n-1\}$.

Suppose $i \equiv 1 \pmod{8}, 1 \leq i \leq n-18$. The left subsets which are in the *i*-th, (i + 1)-th, \ldots , (i + 7)-th columns and not in the first row are the sets: $\{n, i, n-1\}, \{n, i+2, n-1\}, \{n, i+4, n-1\}, \{n, i+6, n-1\}$. These subsets may become a desired group.

We now consider the left subsets which are in the (n - 10)-th, (n - 9)-th, ..., (n - 6)-th, (n - 5)-th columns and are not in the first row and the subsets in the (n - 4)-th, (n - 3)-th, (n - 2)-th, (n - 1)-th columns (except for $\{n, n - 3\}, \{n, n - 4\}$). Obviously, these subsets (except for $\{n, n - 2, n - 1\}, \{n, n - 4, n - 2\}$ and $\{n, n - 3, n - 1\}$) are the color sets of all vertices of $2C_4$ under the following E-total coloring:

Figure 6 VDET coloring of $2C_4$

We may partition the entries which are in the first row (except for $\{n, n-1\}, \{n, n-2\}$) into $\frac{n-3}{4}$ desired groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}\}, i = 1, 5, 9, \dots, n-6$.

The proof is completed. \Box

Lemma 10 If $n \equiv 4 \pmod{8}$, then we can decompose all the entries of A_n (except for \emptyset , $\{n, n-1\}$, and $\{n, n-3\}$) into $\frac{1}{4} [\binom{n}{2} - 2]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing E-total coloring.

Proof We only consider the left subsets.

For $i \equiv 1 \pmod{8}$, $1 \leq i \leq n-11$, the left subsets which are in the *i*-th, (i + 1)-th, ..., (i+7)-th columns and not in the first row can become 3 desired groups: $\{\{n, i, n-2\}, \{n, i, n-1\}, \{n, i+2, n-2\}, \{n, i+2, n-1\}\}, \{\{n, i+4, n-2\}, \{n, i+4, n-1\}, \{n, i+6, n-2\}, \{n, i+6, n-1\}\}, \{\{n, i+1, n-1\}, \{n, i+3, n-1\}, \{n, i+5, n-1\}, \{n, i+7, n-1\}\}.$

The left subsets which are in the (n-2)-th, (n-3)-th columns and not in the first row: $\{n, n-2, n-1\}, \{n, n-3, n-1\}, \{n, n-3, n-2\}$ together with $\{n, n-2\}$ may become a desired group.

We may particle the entries which are in the first row (except for $\{n, n-1\}$, $\{n, n-2\}$, $\{n, n-3\}$) into $\frac{n-4}{4}$ desired groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}\}, i = 1, 5, 9, \dots, n-7$.

The proof is completed. \Box

Lemma 11 If $n \equiv 5 \pmod{8}$, $n \geq 5$, then we can decompose all the entries of A_n (except for \emptyset and $\{n, n-2, n-1\}$, $\{n, n-4, n-1\}$) into $\frac{1}{4}[\binom{n}{2}-2]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing E-total coloring.

Proof As before we consider the left subsets.

When $n \ge 13$, for $i \equiv 1 \pmod{8}$, $1 \le i \le n-12$, we have four left subsets which are in the *i*-th, (i+1)-th, ..., (i+7)-th columns and not in the first row: $\{n, i, n-2\}$, $\{n, i+2, n-1\}$, $\{n, i+4, n-1\}$, $\{n, i+6, n-1\}$. These subsets may become a desired group.

For the subsets which are in the first row, we may give $\frac{n-1}{4}$ desired groups, $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}, i = 1, 5, 9, \dots, n-4$.

The proof is completed. \Box

Lemma 12 If $n \equiv 6 \pmod{8}$, $n \geq 6$, then we can decompose all the entries of A_n (except for \emptyset , $\{n, n-2, n-1\}$, $\{n, n-3, n-1\}$ and $\{n, n-3, n-2\}$) into $\frac{1}{4}[\binom{n}{2}-3]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing E-total coloring.

Proof As before, we only consider the left subsets.

When $n \ge 14$, for $i \equiv 1 \pmod{8}$, $1 \le i \le n-13$, we can decompose the left subsets which are in the *i*-th, (i+1)-th, ..., (i+7)-th columns and not in the first row into 3 groups: $\{\{n, i, n-2\}, \{n, i, n-1\}, \{n, i+2, n-2\}, \{n, i+2, n-1\}\}, \{\{n, i+4, n-2\}, \{n, i+4, n-1\}, \{n, i+6, n-2\}, \{n, i+6, n-1\}\}, \{\{n, i+1, n-1\}, \{n, i+3, n-1\}, \{n, i+5, n-1\}, \{n, i+7, n-1\}\}.$

We have six left subsets which are in the (n-2)-th, (n-3)-th, (n-4)-th, (n-5)-th columns and are not in first row. Among these subsets and $\{n, n-1\}$, it is obvious that $\{n, n-1\}$, $\{n, n-4, n-1\}$, $\{n, n-5, n-1\}$, $\{n, n-5, n-2\}$ are the color sets of all vertices of C_4 under the following E-total coloring:

Figure 7 VDET coloring of C_4

At last, we consider the entries which are in the first row (except for $\{n, n-1\}$). They may become $\frac{n-2}{4}$ desired groups, $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}\}, i = 1, 5, 9, \dots, n-5$.

The proof is completed. \Box

Lemma 13 If $n \equiv 7 \pmod{8}$, $n \geq 7$, then we can decompose all the entries of A_n (except for \emptyset

and $\{n, n-2, n-1\}$ into $\frac{1}{4}[\binom{n}{2}-1]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_4 under some vertex-distinguishing *E*-total coloring of C_4 .

Proof As before, we only consider the left subsets.

When $n \ge 15$, for $i \equiv 1 \pmod{8}$, $1 \le i \le n - 14$, the left subsets which are in the *i*-th, (i+1)-th, ..., (i+7)-th columns and not in the first row are the sets: $\{n, i, n-1\}, \{n, i+2, n-1\}, \{n, i+4, n-1\}, \{n, i+6, n-1\}\}$. These subsets may become a desired group.

We have three left subsets which are in the (n-6)-th, (n-5)-th, ..., (n-2)-th columns and are not in first row. For these subsets and the subsets $\{n, n-1\}$, $\{n, n-2\}$, it is obvious that $\{n, n-1\}$, $\{n, n-2\}$, $\{n, n-4, n-1\}$, $\{n, n-6, n-1\}$ are the color sets of all vertices of C_4 under the following E-total coloring:

Figure 8 VDET coloring of C_4

For the subsets which are in the first row (except for $\{n, n-1\}, \{n, n-2\}$), we may give $\frac{n-3}{4}$ groups: $\{\{n, i\}, \{n, i+1\}, \{n, i+2\}, \{n, i+3\}, i = 1, 5, 9, ..., n-6$.

The proof is completed. \Box

It is easy to see that $\chi_{vt}^e(C_4) = 4$.

Theorem 2 If $\binom{k-1}{2} + \binom{k-1}{3} + 1 \le 4m \le \binom{k}{2} + \binom{k}{3}$, $m \ge 2$, $k \ge 4$, then $\chi_{vt}^e(mC_4) = k$.

Proof Obviously we have $\chi_{vt}^e(mC_4) \ge \eta(mC_4) = k$. So we need only to give k-VDET coloring of mC_4 in the following. Denote the *i*-th C_4 by C_4^i , and $V(C_4^i) = \{v_1^i, v_2^i, v_3^i, v_4^i\}; E(C_4^i) = \{v_1^i v_2^i, v_2^i v_3^i, v_3^i v_4^i, v_4^i v_1^i\}, 1 \le i \le m$.

If m = 2, then two C_4 can be colored by 4 colors 1, 2, 3, 4 as follows:

Let $v_1^1, v_2^1, v_3^1, v_4^1$ receive 2, 3, 2, 4 respectively; Let $v_1^1 v_2^1, v_2^1 v_3^1, v_3^1 v_4^1, v_4^1 v_1^1$ receive 1, 1, 3, 1, respectively; Let $v_1^2, v_2^2, v_3^2, v_4^2$ receive 3, 4, 3, 1 respectively and let $v_1^2 v_2^2, v_2^2 v_3^2, v_3^2 v_4^2, v_4^2 v_1^2$ receive 2, 2, 4, 2, respectively. The resulting coloring is obviously 4-VDET coloring of a C_4 and it has used up all 2, 3-combinations of $\{1, 2, 3, 4\}$ but $\{1, 4\}$ and $\{3, 4\}$

So $\chi^{e}_{vt}(2C_3) = 4.$

If $3 \le m \le 5$, $\chi_{vt}^e(mC_4) \ge 5$. Based on the 4-VDET coloring of $2C_4$ given above, the third, fourth C_4 of $5C_4$ can be colored by the method given in Lemma 11. The fifth C_5 of $5C_4$ can be colored as follows: we assign 1, 3, 1, 3 to $v_1^5, v_2^5, v_3^5, v_4^5$ respectively and assign 4, 4, 5, 4 to $v_1^5 v_2^5, v_2^5 v_3^5, v_3^5 v_4^5, v_4^5 v_1^5$, respectively. The resulting coloring is 5-VDET coloring of $5C_5$. Of course for $3C_4$ and $4C_4$, we can easily obtain their 5-VDET colorings. So $\chi_{vt}^e(mC_4) = 5$, if $3 \le m \le 5$.

Suppose $m \ge 6$, we consider mC_4 , where $\binom{k-1}{2} + \binom{k-1}{3} + 1 \le 4m \le \binom{k}{2} + \binom{k}{3}, k \ge 9$.

If $k \equiv 0, 1, 3, 5, 7 \pmod{8}$, then by Lemmas 7, 9, 11 and 13 we can obtain k-VDET coloring of $(\frac{1}{4}[\binom{k}{2} + \binom{k}{3}])C_4$ using colors $\{1, 2, \ldots, k\}$. Note that in the case when $k \equiv 3 \pmod{8}$, $k \ge 11$, $\{k - 1, k - 2\}$, $\{k, k - 2, k - 1\}$, $\{k, k - 3, k - 1\}$ and $\{k, k - 4, k - 2\}$ are the color sets of all vertices of some C_4 under some vertex-distinguishing E-total coloring; when $k \equiv 5 \pmod{8}$, $k \ge 13$, $\{k, k - 2, k - 1\}$, $\{k, k - 4, k - 1\}$, $\{k - 1, k - 2\}$ and $\{k - 1, k - 4\}$ are the color sets of all vertices of some C_4 under some vertex-distinguishing E-total coloring; when $k \equiv 7 \pmod{8}$, $k \ge 7$, $\{k, k - 2, k - 1\}$, $\{k - 1, k - 3, k - 2\}$, $\{k - 1, k - 4, k - 3\}$ and $\{k - 1, k - 4, k - 2\}$ are the color sets of some color sets of all vertices of some C_4 under some vertex-distinguishing E-total coloring; when $k \equiv 7 \pmod{8}$, $k \ge 7$, $\{k, k - 2, k - 1\}$, $\{k - 1, k - 3, k - 2\}$, $\{k - 1, k - 4, k - 3\}$ and $\{k - 1, k - 4, k - 2\}$ are the color sets of all vertices of some C_4 under some vertex-distinguishing E-total coloring. We can easily obtain k-VDET coloring of mC_4 when $\binom{k-1}{2} + \binom{k-1}{3} < 4m < \binom{k}{2} + \binom{k}{3}$.

If $k \equiv 2 \pmod{8}$, then by Lemma 8 we can obtain VDET coloring of $(\frac{1}{4} [\binom{k}{2} + \binom{k}{3} - 1])C_4$ and this coloring has used up all 2, 3-combinations of $\{1, 2, \ldots, k\}$ but $\{k, k-1\}$. We can easily obtain k-VDET coloring of mC_4 when $\binom{k-1}{2} + \binom{k-1}{3} < 4m < \binom{k}{2} + \binom{k}{3}$.

If $k \equiv 4 \pmod{8}$, $k \geq 12$, then by Lemma 10 we can obtain VDET coloring of $(\frac{1}{4}[\binom{k}{2} + \binom{k}{3} - 2]C_4$ with all colors $1, 2, \ldots, k$. This coloring has used up all 2, 3-combinations but two 2-combinations $\{k, k - 1\}$, $\{k, k - 3\}$. We can easily obtain k-VDET coloring of mC_4 when $\binom{k-1}{2} + \binom{k-1}{3} < 4m < \binom{k}{2} + \binom{k}{3}$.

If $k \equiv 6 \pmod{8}$, $k \ge 6$, then by Lemma 12 we can obtain VDET coloring of $(\frac{1}{4}[\binom{k}{2} + \binom{k}{3} - 3])C_4$ with all colors $1, 2, \ldots, k$. This coloring has used up all 2, 3-combinations but three subsets $\{k, k-2, k-1\}, \{k, k-3, k-2\}$ and $\{k, k-3, k-1\}$. We can easily obtain k-VDET coloring of mC_4 when $\binom{k-1}{2} + \binom{k-1}{3} < 4m < \binom{k}{2} + \binom{k}{3}$.

The proof is completed. \Box

Acknowledgement The authors are very grateful to Prof. Zhongfu ZHANG for his helpful comments and suggestions.

References

- [1] BALISTER P N, BOLLOBÁS B, SCHELP R H. Vertex distinguishing colorings of graphs with Δ(G) = 2
 [J]. Discrete Math., 2002, 252(1-3): 17–29.
- BALISTER P N, RIORDAN O M, SCHELP R H. Vertex distinguishing edge colorings of graphs [J]. J. Graph Theory, 2003, 42(2): 95–109.
- BAZGAN C, HARKAT-BENHAMDINE A, LI Hao. et al. On the vertex-distinguishing proper edge-colorings of graphs [J]. J. Combin. Theory Ser. B, 1999, 75(2): 288–301.
- BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-colorings [J]. J. Graph Theory, 1997, 26(2): 73–82.
- [5] ČERNY J, HORŇÁK M, SOTÁK R. Observability of a graph [J]. Math. Slovaca, 1996, 46(1): 21–31.
- [6] CHEN Xiang'en. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cubes [J].
 Xibei Shifan Daxue Xuebao Ziran Kexue Ban, 2005, 41(5): 1–3. (in Chinese)
- [7] HARARY F, PLANTHOLT M. The Point-Distinguishing Chromatic Index [M]. Wiley-Intersci. Publ., Wiley, New York, 1985.
- [8] HORŇÁK M, SOTÁK R. Observability of complete multipartite graphs with equipotent parts [J]. Ars Combin., 1995, 41: 289–301.
- [9] HORŇÁK M, SOTÁK R. Asymptotic behaviour of the observability of Q_n [J]. Discrete Math., 1997, 176(1-3): 139–148.

- [10] HORŇÁK M, SOTÁK R. The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$ [J]. Ars Combin., 1996, **42**: 233–242.
- [11] HORŇÁK M, SOTÁK R. Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}$ [J]. Discuss. Math. Graph Theory, 1997, **17**(2): 243–251.
- [12] HORŇÁK M, ZAGAGLIA S N. On the point-distinguishing chromatic index of complete bipartite graphs
 [J]. Ars Combin., 2006, 80: 75–85.
- [13] ZAGAGLIA S N. On the point-distinguishing chromatic index of $K_{n,n}$ [J]. Ars Combin., 1988, **25B**: 93–104.
- [14] ZAGAGLIA S N. On the value of the point-distinguishing chromatic index of $K_{n,n}$ [J]. Ars Combin., 1990, **29B**: 235–244.
- [15] ZHANG Zhongfu, QIU Pengxiang, XU Baogen. et al. Vertex-distinguishing total coloring of graphs [J]. Ars Combin., 2008, 87: 33–45.