Vertex-Distinguishing E-Total Coloring of the Graphs $m C_{3}$ and $m C_{4}$

Xiang En CHEN*, Yue ZU
College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, P. R. China

Abstract

Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let $C_{f}(u)$ or $C(u)$ denote the set of colors of vertex u and the edges incident to u. We call $C(u)$ the color set of u. If $C(u) \neq C(v)$ for any two different vertices u and v of $V(G)$, then we say that f is a vertex-distinguishing E-total-coloring of G, or a $V D E T$ coloring of G for short. The minimum number of colors required for a $V D E T$ colorings of G is denoted by $\chi_{v t}^{e}(G)$, and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs $m C_{3}$ and $m C_{4}$.

Keywords coloring; E-total coloring; vertex-distinguishing E-total coloring; vertex-distinguishing E-total chromatic number; the vertex-disjoint union of m cycles with length n.
Document code A
MR(2010) Subject Classification 05C15
Chinese Library Classification O157.5

1. Introduction

The vertex-distinguishing proper edge colorings and vertex-distinguishing general edge colorings had been widely considered in $[1-5,8,9]$ and $[7,10-14]$, respectively. The appropriate chromatic numbers are called the vertex-distinguishing proper edge chromatic number (or strong chromatic number, or observability) and point-distinguishing chromatic index, respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_{f}(v)$, or simply $C(v)$, if no confusion arises, the set of colors used to color the vertex v as well as the edges incident to v. We call $C(v)$ the color set of vertex v. Let $\bar{C}(v)$ be the complementary set of $C(v)$ in the set of all colors we used. Obviously, $|C(v)| \leq d_{G}(v)+1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$, i.e., $\bar{C}(u) \neq \bar{C}(v)$ for any two different vertices u and v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum number of colors required for a vertex-distinguishing (proper) total coloring is denoted by $\chi_{v t}(G)$.

[^0]This concept had been considered in $[6,15]$. The following conjecture had been given in [15].
Conjecture 1 ([15]) Suppose G is a simple graph and n_{d} is the number of vertices of degree $d, \delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_{d}$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{v t}(G)=k$ or $k+1$.

From [15], we know that the above conjecture is valid for complete graph, complete bipartite graph, path and cycle, etc.

When we define a proper total coloring of a graph G, we need three conditions for a total coloring which are listed as follows:

Condition (v). no two adjacent vertices receive the same color;
Condition (e). no two adjacent edges receive the same color;
Condition (i). no edge receives the same color as one of its endpoints.
If we just consider the total coloring of graph G such that the Conditions (v) and (i) are satisfied, then such a coloring is called E-total coloring of graph G.

Note that E-total coloring is total coloring, but total coloring is not necessarily E-total coloring. The proper total coloring is E-total coloring and E-total coloring is not necessarily proper total coloring.

If f is an E-total coloring of graph G with colors we use being $1,2, \ldots, k$ and $\forall u, v \in V(G)$, $u \neq v$, we have $C(u) \neq C(v)$, then f is called k-vertex-distinguishing E-total coloring, or k-VDET coloring.

The vertex-distinguishing E-total chromatic number of graph G, denoted by $\chi_{v t}^{e}(G)$, is the minimum k for which G has a vertex-distinguishing E-total coloring using k colors.

The following proposition is obviously true.
Proposition 1 For each graph G, we have $\chi_{v t}^{e}(G) \leq \chi_{v t}(G)$.
For graph G, let n_{i} denote the number of the vertices of degree $i, \delta \leq i \leq \Delta$. Suppose

$$
\eta(G)=\min \left\{l \left\lvert\,\binom{ l}{2}+\binom{l}{3}+\cdots+\binom{l}{i+1} \geq n_{\delta}+n_{\delta+1}+\cdots+n_{i}\right., 1 \leq \delta \leq i \leq \Delta\right\}
$$

Lemma 1 For each graph G, we have $\chi_{v t}^{e}(G) \geq \eta(G)$.
Proof In order to color G by the method of vertex-distinguishing E-total coloring, the number of colors we used is at least l, where l is a positive integer and $\binom{l}{2}+\binom{l}{3}+\cdots+\binom{l}{i+1} \geq n_{\delta}+$ $n_{\delta+1}+\cdots+n_{i}$ for each $1 \leq \delta \leq i \leq \Delta$, because the vertices of degree $n_{\delta}, n_{\delta+1}, \ldots, n_{i}$ should be distinguished by their color sets and each of their color sets contains 2 , or 3 , or $4, \ldots$, or $i+1$ colors.

Thus $\chi_{v t}^{e}(G)$ is not less than the minimum value of such l's.
From Lemma 1, we have
Lemma 2 If G is an r-regular graph, then $\eta(G)=\left\{l\left|\binom{l}{2}+\binom{l}{3}+\cdots+\binom{l}{r+1} \geq|V(G)|\right\}\right.$.
Suppose $m C_{n}$ denotes the vertex-disjoint union of m cycles of lengths n. In this paper we will determine the VDET chromatic numbers of $m C_{3}$ and $m C_{4}$.

2. Vertex distinguishing E-total chromatic numbers of $m C_{3}$

In order to give the vertex-distinguishing E-total coloring of $m C_{3}$ and $m C_{4}$ conveniently, we define a matrix A_{n} firstly.

For $n \geq 6$, we construct a matrix A_{n} such that A_{n} has $n-1$ rows and $n-1$ columns and the entries of A_{n} are empty sets or the subsets of $\{1,2, \ldots, n\}$ which contain n and have 2 or 3 elements. Each subset of $\{1,2, \ldots, n\}$ which contains n and has 2 or 3 elements is an element of A_{n}. The elements of A_{n} is given as follows.

The first row of A_{n} is $(\{n, 1\},\{n, 2\},\{n, 3\}, \ldots,\{n, n-1\})$;
The second row of A_{n} is $(\{n, 1,2\},\{n, 2,3\},\{n, 3,4\}, \ldots,\{n, n-2, n-1\}, \varnothing)$;
The third row of A_{n} is $(\{n, 1,3\},\{n, 2,4\},\{n, 3,5\}, \ldots,\{n, n-3, n-1\}, \varnothing, \varnothing)$;
The fourth row of A_{n} is $(\{n, 1,4\},\{n, 2,5\},\{n, 3,6\}, \ldots,\{n, n-4, n-1\}, \varnothing, \varnothing, \varnothing)$;

The $(n-2)$-th row of A_{n} is $(\{n, 1, n-2\},\{n, 2, n-1\}, \varnothing, \varnothing, \ldots, \varnothing)$;
The $(n-1)$-th row of A_{n} is $(\{n, 1, n-1\}, \varnothing, \varnothing, \ldots, \varnothing)$;
For example

$$
A_{6}=\left(\begin{array}{ccccc}
\{6,1\} & \{6,2\} & \{6,3\} & \{6,4\} & \{6,5\} \\
\{6,1,2\} & \{6,2,3\} & \{6,3,4\} & \{6,4,5\} & \varnothing \\
\{6,1,3\} & \{6,2,4\} & \{6,3,5\} & \varnothing & \varnothing \\
\{6,1,4\} & \{6,2,5\} & \varnothing & \varnothing & \varnothing \\
\{6,1,5\} & \varnothing & \varnothing & \varnothing & \varnothing
\end{array}\right)
$$

Suppose $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n-1,1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq n-1$. The submatrix $A_{n}\left[i_{1}, i_{2}, \ldots, i_{r} \mid j_{1}, j_{2}, \ldots, j_{s}\right]$ is the $r \times s$ matrix obtained from A_{n} by removing the rows with indices not in $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ and columns with indices not in $\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}$. A 3×2 sub-matrix B of A_{n} is called good if there exists an E-total coloring method of the vertex-disjoint union of two C_{3} 's such that the color sets of all the vertices of $2 C_{3}$ are just all the entries of B .

For example, $A_{6}[2,3,4 \mid 1,2]$ is good, since all the entries of $A_{6}[2,3,4 \mid 1,2]$ are the color sets of all the vertices of $2 C_{3}$ in the following vertex-distinguishing E-total coloring:

Figure 1 VDTC coloring of $2 C_{3}$

In this section, we will use the following three types of VDET coloring of C_{3}.

Figure 2 Coloring $f(a, b ; c, d)$

Figure 3 Coloring $g(a ; b, c ; d, e)$

Figure 4 Coloring $h(a ; b, c, d)$

The first type coloring is denoted by $f(a, b ; c, d)$. Under $f(a, b ; c, d)$, the color sets of three vertices are $\{a, b, c\},\{a, b, d\}$ and $\{a, b\}$.

The second type coloring is denoted by $g(a ; b, c ; d, e)$. Under $g(a ; b, c ; d, e)$, the color sets of three vertices are $\{a, b, c\},\{a, d, e\}$ and $\{a, b, d\}$.

The third type coloring is denoted by $h(a ; b, c, d)$. Under $h(a ; b, c, d)$, the color sets of three vertices are $\{a, b\},\{a, c\}$ and $\{a, d\}$.

Lemma $3 A_{n}[i, i+1, i+2 \mid j, j+1]$ is a good 3×2 submatrix when $i \equiv 2(\bmod 3), j \equiv 1(\bmod 2)$ and no entry of $A_{n}[i, i+1, i+2 \mid j, j+1]$ is \emptyset.

Proof If $i=2$, then

$$
A_{n}[i, i+1, i+2 \mid j, j+1]=\left(\begin{array}{ll}
\{n, j, j+1\} & \{n, j+1, j+2\} \\
\{n, j, j+2\} & \{n, j+1, j+3\} \\
\{n, j, j+3\} & \{n, j+1, j+4\}
\end{array}\right) .
$$

Obviously, $\{n, j, j+2\},\{n, j+1, j+3\},\{n, j+1, j+2\}$ are the color sets of all vertices of C_{3} under some vertex distinguishing E-total coloring. So are $\{n, j, j+3\},\{n, j+1, j+4\},\{n, j, j+1\}$.

If $i \geq 5$, then

$$
A_{n}[i, i+1, i+2 \mid j, j+1]=\left(\begin{array}{cc}
\{n, j, j+i-1\} & \{n, j+1, j+i\} \\
\{n, j, j+i\} & \{n, j+1, j+i+1\} \\
\{n, j, j+i+1\} & \{n, j+1, j+i+2\}
\end{array}\right)
$$

Obviously, $\{n, j, j+i-1\},\{n, j+1, j+i\},\{n, j, j+i\}$ are the color sets of all vertices of C_{3} under some vertex distinguishing E-total coloring. So are $\{n, j+1, j+i+1\},\{n, j, j+i+1\},\{n, j+$ $1, j+i+2\}$

The proof is completed.
Lemma 4 If $n \equiv 1,3,4,0(\bmod 6)(n \geq 7)$, then we can decompose all the entries of A_{n} (except for \emptyset) into $\frac{1}{3}\binom{n}{2}$ groups such that each group contains exactly 3 subsets and three subsets in each group are exactly the color sets of all vertices of C_{3} under some vertex-distinguishing E-total coloring.

Proof By Lemma 3, we only consider the entries of A_{n} which are not empty set and are not in any good 3×2 submatrices of A_{n} described in Lemma 3 . Such entries are called left subsets in this proof.

Case $1 \quad n \equiv 1(\bmod 6)$.
For $i \equiv 1(\bmod 6), 1 \leq i \leq n-1$, we consider such entries (left subsets) which are in the i-th, $(i+1)$-th columns and are not in the first row: $\{n, i, n-1\},\{n, i, n-2\},\{n, i+1, n-1\}$. Obviously, they may become a desired group.

For the entries which are in the $(i+2)$-th, $(i+3)$-th, $(i+4)$-th, $(i+5)$-th columns and are not in the first row, $\{n, i+2, n-2\},\{n, i+3, n-1\},\{n, i+3, n-2\}$ may become a desired group, and $\{n, i+2, n-1\},\{n, i+2, n-3\},\{n, i+4, n-1\}$ may become another desired group.

Of course $\{\{n, i\},\{n, i+1\},\{n, i+2\}\}$ is a desired group, $i=1,4,7, \ldots, n-3$.

Case $2 n \equiv 3(\bmod 6)$.
For $i \equiv 3(\bmod 6), 3 \leq i \leq n-12$, the left subsets which are in the i-th, $(i+1)$-th, \ldots, $(i+5)$-th columns and not in the first row can become 3 groups (obviously):
$\{\{n, i, n-2\},\{n, i, n-1\},\{n, i+1, n-1\}\},\{\{n, i+2, n-3\},\{n, i+2, n-1\},\{n, i+4, n-$ $1\}\},\{\{n, i+3, n-2\},\{n, i+3, n-1\},\{n, i+2, n-2\}\}$.

For the left subsets which are in the first, second, $(n-6)$-th, $(n-5)$-th, $(n-4)$-th, $(n-3)$-th, $(n-2)$-th columns and are not in the first row as well as the subsets $\{n, n-1\},\{n, n-2\}$, they can become four desired groups: $\{\{n, 1, n-1\},\{n, n-1, n-6\},\{n, n-1\}\},\{\{n, n-4, n-2\}$, $\{n, n-2, n-6\},\{n, n-2\}\},\{\{n, n-5, n-1\},\{n, n-3, n-2\},\{n, n-3, n-1\}\},\{\{n, n-4, n-1\}$, $\{n, n-4, n-3\},\{n, n-1, n-2\}\}$.

We can easily partition the subsets in the first row (except for $\{n, n-1\},\{n, n-2\}$) into $\frac{n-3}{3}$ desired groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\}\}, n=1,4,7, \ldots, n-5$.

Case $3 n \equiv 4(\bmod 6)$.
Assume that $i \equiv 1(\bmod 6), 1 \leq i \leq n-15($ if $n \geq 16)$. The left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+5)$-th columns and not in the first row can become 3 groups (obviously):
$\{\{n, i, n-2\},\{n, i, n-1\},\{n, i+1, n-1\}\},\{\{n, i+2, n-2\},\{n, i+3, n-1\},\{n, i+3, n-$ $2\}\},\{\{n, i+4, n-1\},\{n, i+2, n-1\},\{n, i+2, n-3\}\}$.

The left subsets which are in the $(n-9)$-th, $(n-8)$-th, $\ldots,(n-3)$-th, $(n-2)$-th columns and are not in the first row can become four groups: $\{\{n, n-9, n-2\},\{n, n-1, n-8\}$, $\{n, n-9, n-1\}\},\{\{n, n-7, n-3\},\{n, n-2, n-1\},\{n, n-7, n-2\}\},\{\{n, n-7, n-1\}$, $\{n, n-3, n-2\},\{n, n-3, n-1\}\},\{\{n, n-6, n-1\},\{n, n-1, n-5\},\{n, n-6, n-2\}\}$.

Of course $\{\{n, i\},\{n, i+1\},\{n, i+2\}\}$ are desired groups, $i=1,4,7, \ldots, n-3$.
Case $4 n \equiv 0(\bmod 6)$.
Suppose $i \equiv 5(\bmod 6), 5 \leq i \leq n-13$ (if $n \geq 18$). We can decompose the left subsets which are in the i-th, $(i+1)$-th $, \ldots,(i+5)$-th columns and not in the first row into 3 groups:
$\{\{n, i, n-2\},\{n, i+1, n-1\},\{n, i+1, n-2\}\},\{\{n, i+2, n-1\},\{n, i, n-1\},\{n, i, n-$ $3\}\},\{\{n, i+4, n-1\},\{n, i+4, n-2\},\{n, i+5, n-1\}\}$.

For the left subsets which are in the first, second, third, fourth, $(n-7)$-th, $(n-6)$-th, $\ldots,(n-2)$-th, $(n-1)$-th columns and are not in first row as well as $\{n, n-1\},\{n, n-2\}$, we can decompose them into five groups: $\{\{n, 1, n-1\},\{n, n-3, n-7\},\{n, n-3, n-1\}\},\{\{n, 4, n-$ $1\},\{n, 3, n-1\},\{n, 3, n-2\}\},\{\{n, n-7, n-2\},\{n, n-6, n-2\},\{n, n-6, n-1\}\},\{\{n, n-7, n-$ $1\},\{n, n-1\},\{n, n-5, n-1\}\},\{\{n, n-2, n-1\},\{n, n-2\},\{n, n-3, n-2\}\}$.

We can decompose the subsets which are in the first row of A_{n} except for $\{n, n-1\},\{n, n-2\}$ into $\frac{n-3}{3}$ groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\}\}, i=1,4,7, \ldots, n-5$.

The proof is completed.
Lemma 5 If $n \equiv 2,5(\bmod 6), n \geq 11$, then we can decompose all the entries of A_{n} (except for \emptyset and $\{n, 2\}$) into $\frac{1}{3}\left[\binom{n}{2}-1\right]$ groups such that each group contains exactly 3 subsets and three subsets in each group are the color sets of all vertices of C_{3} under some vertex-distinguishing

E-total coloring.
Proof by Lemma 3, we only consider the entries of A_{n} which are not empty sets and are not in any good 3×2 submatrices of A_{n} described in Lemma 3 . Such entries are called left subsets in this proof.

Case $1 \quad n \equiv 2(\bmod 6)$.
For $i \equiv 1(\bmod 6), 1 \leq i \leq n-13$ (if $n \geq 14)$, the left entries which are in the i-th, \ldots, $(i+5)$-th columns and not in the first row can be decomposed into 3 desired groups: $\{\{n, i, n-$ $3\},\{n, i, n-1\},\{n, i+2, n-1\}\},\{\{n, i, n-2\},\{n, i+1, n-2\},\{n, i+1, n-1\}\},\{\{n, i+4, n-$ $2\},\{n, i+4, n-1\},\{n, i+5, n-1\}\}$.

The left subsets which are in the $(n-7)$-th $, \ldots,(n-2)$-th columns and are not in the first row may become 3 desired groups: $\{\{n, n-7, n-3\},\{n, n-7, n-1\},\{n, n-2, n-1\}\},\{\{n, n-$ $6, n-2\},\{n, n-6, n-1\},\{n, n-7, n-2\}\},\{\{n, n-5, n-1\},\{n, n-3, n-1\},\{n, n-3 . n-2\}\}$.

We may partiton the entries which are in the first row (except $\{n, 2\}$) into $\frac{n-2}{3}$ desired groups: $\{\{n, 1\},\{n, 3\},\{n, 4\}\},\{\{n, i\},\{n, i+1\},\{n, i+2\}\}, i=5,8, \ldots, n-3$.

Case $2 n \equiv 5(\bmod 6)$.
Suppose $i \equiv 1(\bmod 6), 1 \leq i \leq n-10$. The left subsets which are in the i-th, $\ldots,(i+5)$ th columns and are not in the first row can become three groups: $\{\{n, i, n-2\},\{n, i+1, n-$ $2\},\{n, i+1, n-1\}\},\{\{n, i, n-1\},\{n, i, n-3\},\{n, i+2, n-1\}\},\{\{n, i+4, n-2\},\{n, i+4, n-$ $1\},\{n, i+5, n-1\}\}$.

For the left subsets which are in the $(n-4)$-th , $(n-3)$-th,$(n-2)$-th columns and are not in the first row, they can become two desired groups: $\{\{n, n-4, n-2\},\{n, n-4, n-3\},\{n, n-$ $3, n-1\}\},\{\{n, n-4, n-1\},\{n, n-3, n-2\},\{n, n-2, n-1\}\}$.

At last, we consider the entries which are in the first row and which are not in any group constructed. We only give $\frac{n-2}{3}$ groups, and $\{\{n, 1\},\{n, 3\},\{n, 4\}\},\{\{n, i\},\{n, i+1\},\{n, i+2\}\}$ is a desired group, $i=5,8, \ldots, n-3$.

The proof is completed.
It is easy to see that $\chi_{v t}^{e}\left(C_{3}\right)=4$.
Theorem 1 If $\binom{k-1}{2}+\binom{k-1}{3}<3 m \leq\binom{ k}{2}+\binom{k}{3}, m \geq 2, k \geq 4, m \neq 3$, then $\chi_{v t}^{e}\left(m C_{3}\right)=k$; $\chi_{v t}^{e}\left(3 C_{3}\right)=5$.

Proof Obviously, we have $\chi_{v t}^{e}\left(m C_{3}\right) \geq \eta\left(m C_{3}\right)=k$. So we need only to give k-VDET coloring of $m C_{3}$ in the following.

If $m=2$, then two C_{3} 's can be colored by $f(1,2 ; 3,4)$ and $f(3,4 ; 1,2)$. So $\chi_{v t}^{e}\left(2 C_{3}\right)=4$.
When $m=3$, $\chi_{v t}^{e}\left(3 C_{3}\right) \geq \eta\left(3 C_{3}\right)=4$. Suppose $3 C_{3}$ has a 4 -VDET coloring. Consider a 4 -VDET coloring g of a $3 C_{3}$.

When the colors of 3 edges of C_{3} are the same, then the color set of each vertex of C_{3} is 2 -set (i.e., it has 2 elements or 2 colors). When the number of the different colors of 3 edges of C_{3} is 2 , then the color set of one vertex of C_{3} is 2 -set, and the color sets of other two vertices are 3 -sets.

When the colors of 3 edges of C_{3} are different, then the color set of each vertex of C_{3} is 3 -set.
$\{1,2,3,4\}$ has six 2 -subsets and four 3 -subsets. And the color set of each vertex of $3 C_{3}$ under g is 2 -subsets or 3 -subsets of $\{1,2,3,4\}$. Note that in $3 C_{3}$, there are at least 3 color sets which have 3 colors. We consider two cases as follows:

Case 1 If there exists one C_{3}, say the first C_{3}, such that the sets of all vertices of the C_{3} are all 3 -set, then the color sets of all vertices of other two C_{3} 's must be 2 -subsets of $\{1,2,3,4\}$. So the colors of edges of the second C_{3} are the same, say 1 ; The colors of edges of the third C_{3} are the same, say 2 . This illustrates that there are three 2 -subsets which contain 1 and other three 2 -subsets contain 2 among six 2 -subsets of $\{1,2,3,4\}$. This is a contradiction.

Case 2 The cardinals of the color sets of the three vertices of the first and the second C_{3} under g are $2,3,3$; The cardinals, for the third C_{3}, are $2,2,2$.

Denote the i-th C_{3} by C_{3}^{i}, then $V\left(C_{3}^{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}\right\}, 1 \leq i \leq m$. We may suppose that $C\left(v_{2}^{1}\right)=\{1,2,3\}, C\left(v_{3}^{1}\right)=\{1,2,4\}, C\left(v_{2}^{2}\right)=\{1,3,4\}, C\left(v_{3}^{2}\right)=\{2,3,4\}$. Without loss of generality we assume $g\left(v_{2}^{1} v_{3}^{1}\right)=1, g\left(v_{2}^{2} v_{3}^{2}\right)=3$. The number of the different colors of 3 edges of C_{3}^{i} is 2 and $g\left(v_{1}^{i} v_{2}^{i}\right) \neq g\left(v_{2}^{i} v_{3}^{i}\right) \neq g\left(v_{1}^{i} v_{3}^{i}\right), i=1,2$, so $g\left(v_{1}^{1} v_{2}^{1}\right)=g\left(v_{1}^{1} v_{3}^{1}\right)=2, g\left(v_{1}^{2} v_{2}^{2}\right)=$ $g\left(v_{1}^{2} v_{3}^{2}\right)=4$. By the characteristic of E-total coloring we know that $g\left(v_{1}^{1}\right)=1, g\left(v_{1}^{2}\right)=3$. So $C\left(v_{1}^{1}\right)=\{1,2\}, C\left(v_{1}^{2}\right)=\{3,4\}$. Thus $\left\{C\left(v_{1}^{3}\right), C\left(v_{2}^{3}\right), C\left(v_{3}^{3}\right)\right\} \subseteq\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$. This is a contradiction for the 3 edges of the third C_{3} accept the same color. So $3 C_{3}$ has no 4VDET coloring. But we can color $3 C_{3}$'s by $f(1,2 ; 3,4), f(3,4 ; 1,2)$ and $h(1 ; 3,4,5)$, respectively. Thus $\chi_{v t}^{e}\left(3 C_{3}\right)=5$.

If $4 \leq m \leq 6, \chi_{v t}^{e}\left(m C_{3}\right) \geq 5.6 C_{3}$ can be colored by $f(1,2 ; 3,4), f(3,4 ; 1,2), h(1 ; 3,4,5)$, $h(2 ; 3,4,5), g(5 ; 3,1 ; 2,4)$ and $g(5 ; 1,2 ; 4,3)$. Of course for $4 C_{3}$ and $5 C_{3}$ we can easily obtain their 5 -VDET coloring. So $\chi_{v t}^{e}\left(m C_{3}\right)=5$, if $4 \leq m \leq 6$. Note that $\{5,3\},\{5,4\}$ are not color sets of any vertex under the above 5 -VEDT coloring of $6 C_{3}$.

If $7 \leq m \leq 11$, then $\chi_{v t}^{e}\left(m C_{3}\right) \geq 6$. we give the 6 -VDET coloring of $11 C_{3}$ as follows:
Based on the 5 -VDET coloring of $6 C_{3}$ given in the preceding paragraph, we color the $7,8,9,10,11$-th C_{3} by $f(6,5 ; 1,3), g(6 ; 1,4 ; 2,5), g(6 ; 3,1 ; 2,4), f(6,4 ; 3,5), h(6 ; 1,2,3)$. The resulting coloring is a 6 -VDET coloring of $11 C_{3}$.

The restriction of 6 -VDET coloring of $11 C_{3}$ on $m C_{3}(7 \leq m \leq 10)$ is a 6 -VDET coloring of $m C_{3}$. So $\chi_{v t}^{e}\left(m C_{3}\right)=6$, if $7 \leq m \leq 11$.

If $12 \leq m \leq 18$, then $\chi_{v t}^{e}\left(m C_{3}\right) \geq 7$. Based on the 6 -VDET coloring of $11 C_{3}$, we only need color 12 -th, $\ldots, 18$-th C_{3} by the method mentioned in Lemma 4 (the case $n=7$). We can obtain 7 -VDET coloring of $18 C_{3}$ and then the restriction of 7 -VDET coloring of $18 C_{3}$ on $m C_{3}(12 \leq m \leq 17)$ is a 7 -VDET coloring of $m C_{3}$. The coloring of $18 C_{3}$ has used up all 2-subsets and 3 -subsets of $\{1,2,3,4,5,6,7\}$ except $\{5,3\},\{5,4\}$. So we have $\chi_{v t}^{e}\left(m C_{3}\right)=7$.

If $19 \leq m \leq 28$, then $\chi_{v t}^{e}\left(m C_{3}\right) \geq 8$. Now in order to prove $\chi_{v t}^{e}\left(m C_{3}\right)=8$, if $19 \leq m \leq 28$, we give the 8 -VDET coloring of $28 C_{3}$. The first $18 C_{3}$ are colored by the 7 -VDET coloring of $18 C_{3}$. And the last $10 C_{3}$'s are colored by $h(5 ; 3,4,8), f(8,1 ; 5,7), h(8 ; 2,3,4), g(8 ; 6,1 ; 2,7)$, $f(8,7 ; 3,5), f(8,6 ; 5,7), g(8 ; 2,4 ; 3,1), g(8 ; 1,4 ; 2,5), g(8 ; 4,6 ; 5,3), g(8 ; 3,6 ; 4,7)$. It is easy to see
that the above coloring is a 8 -VDET coloring of $28 C_{3}$. So far the 8 -VDET coloring of $28 C_{3}$ has used up all 2-combinations and 3 -combinations of $\{1,2, \ldots, 8\}$.

Suppose $m \geq 29$ and the result is valid for the vertex-disjoint union of less than $29 C_{3}$'s. We consider $m C_{3}$, where $\binom{k-1}{2}+\binom{k-1}{3}+1 \leq 3 m \leq\binom{ k}{2}+\binom{k}{3}, k \geq 9$.

If $k \equiv 8,0,1(\bmod 9)$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3}\left[\binom{k}{2}+\binom{k}{3}\right] C_{3}$ using colors $\{1,2, \ldots, k\}$. Note that in the case when $n \equiv 8(\bmod 9), k \geq 17,\{k, 2\},\{k-3,2\}$, $\{k-6,2\}$ are the color sets of all vertices of some C_{3}. We can easily give k-VDET coloring of $m C_{3}$ when $\binom{k-1}{2}+\binom{k-1}{3}<3 m<\binom{k}{2}+\binom{k}{3}$.

If $k \equiv 2,3,4(\bmod 9)$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3}\left[\binom{k}{2}+\right.$ $\left.\binom{k}{3}-1\right] C_{3}$ using colors $\{1,2, \ldots, k\}$ and this coloring has used up all 2 -subsets and 3 -subsets of $\{1,2, \ldots, k\}$ but $\{k, 2\}$ (if $k \equiv 2(\bmod 9)$) or $\{k-1,2\}$ (if $k \equiv 3(\bmod 9)$) or $\{k-2,2\}$ (if $k \equiv 4(\bmod 9)$). We can easily give k-VDET coloring of $m C_{3}$ when $\binom{k-1}{2}+\binom{k-1}{3}<3 m<\binom{k}{2}+\binom{k}{3}$.

If $k \equiv 5,6,7(\bmod 9)$, then by Lemmas 4 and 5 we can obtain VDET coloring of $\frac{1}{3}\left[\binom{k}{2}+\right.$ $\left.\binom{k}{3}-2\right] C_{3}$ using colors $\{1,2, \ldots, k\}$ and this coloring has used up all 2 -subsets and 3 -subsets of $\{1,2, \ldots, k\}$ but two 2-combinations $\{k-3,2\},\{k, 2\}$ or $\{k-4,2\},\{k-1,2\}$ or $\{k-5,2\},\{k-2,2\}$. We can easily give k-VDET coloring of $m K_{3}$ when $\binom{k-1}{2}+\binom{k-1}{3}<3 m<\binom{k}{2}+\binom{k}{3}$.

The proof is completed.

3. Vertex distinguishing E-total chromatic numbers of $m C_{4}$

A 2×2 submatrix B of A_{n} is called good if there exists an E-total coloring method for C_{4} such that the color sets of the all vertices of C_{4} are just all the entries of B.

Lemma $6 A_{n}[i, i+1 \mid j, j+1]$ is a good $2 \times 2 \operatorname{sub}-m a t r i x$ when $i \equiv 0(\bmod 2), j \equiv 1(\bmod 2)$ and no entry of $A_{n}[i, i+1 \mid j, j+1]$ is \emptyset.

Proof Note that $A_{n}[i, i+1 \mid j, j+1]=\left(\begin{array}{cc}\{n, j, j+i-1\} & \{n, j+1, j+i\} \\ \{n, j, j+i\} & \{n, j+1, j+i+1\}\end{array}\right)$.
Obviously, all the entries of $A_{n}[i, i+1 \mid j, j+1]$ are the color sets of all the vertices of C_{4} under the following E-total coloring:

Figure 5 VDET coloring of C_{4}
The proof is completed.

Lemma 7 If $n \equiv 0,1(\bmod 8), n \geq 8$, then we can decompose all the entries of A_{n} (except for $\emptyset)$ into $\frac{1}{4}\binom{n}{2}$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring of C_{4}.

Proof By Lemma 6, we only consider the entries of A_{n} which are not empty sets and are not in any good 2×2 submatrices of A_{n} described in Lemma 6 . Such entries are called left subsets.

Case $1 \quad n \equiv 0(\bmod 8)$.
When $n \geq 16$, suppose $i \equiv 1(\bmod 8), 1 \leq i \leq n-15$. We can decompose the left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row into 3 groups:
$\{\{n, i, n-2\},\{n, i, n-1\},\{n, i+2, n-2\},\{n, i+2, n-1\}\},\{\{n, i+4, n-2\},\{n, i+4, n-$ $1\},\{n, i+6, n-2\},\{n, i+6, n-1\}\},\{\{n, i+1, n-1\},\{n, i+3, n-1\},\{n, i+5, n-1\},\{n, i+7, n-1\}\}$.

For $\{n, n-1\},\{n, n-2\},\{n, n-3\}$ as well as the left subsets which are in the $(n-7)$-th, $(n-6)$ th, $\ldots,(n-2)$-th, $(n-1)$-th columns and are not in first row, we can decompose them into three groups: $\{\{n, n-2, n-1\},\{n, n-3, n-2\},\{n, n-3, n-1\},\{n, n-1\}\},\{\{n, n-4, n-1\},\{n, n-$ $6, n-1\},\{n, n-3\},\{n, n-2\}\},\{\{n, n-7, n-2\},\{n, n-7, n-1\},\{n, n-5, n-2\},\{n, n-5, n-1\}\}$.

We can decompose the subsets which are in the first row of A_{n} except for $\{n, n-1\},\{n, n-$ $2\},\{n, n-3\}$ into $\frac{n-4}{4}$ groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}, i=1,5,9, \ldots, n-7$.

Case $2 n \equiv 1(\bmod 8)$.
Suppose $i \equiv 1(\bmod 8), 1 \leq i \leq n-8$. The left subsets which are in the i-th, $(i+1)$-th, \ldots, $(i+7)$-th columns and not in the first row are the sets: $\{n, i, n-1\},\{n, i+2, n-1\},\{n, i+4, n-1\}$, $\{n, i+6, n-1\}$. These sets may become a desired group.

Of course, the subsets in the first row may become $\frac{n-1}{4}$ desired groups: $\{\{n, i\},\{n, i+$ $1\},\{n, i+2\},\{n, i+3\}\}, i=1,5,9, \ldots, n-4$.

The proof is completed.
Lemma 8 If $n \equiv 2(\bmod 8)$, then we can decompose all the entries of A_{n} (except for \emptyset and $\{n, n-1\}$) into $\left.\frac{1}{4}\left[\begin{array}{c}n \\ 2\end{array}\right)-1\right]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring of C_{4}.

Proof As before we only consider the left subsets.
For $i \equiv 1(\bmod 8), 1 \leq i \leq n-9$. We can decompose the left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row into 3 groups: $\{\{n, i, n-2\},\{n, i, n-$ $1\},\{n, i+2, n-2\},\{n, i+2, n-1\}\},\{\{n, i+4, n-2\},\{n, i+4, n-1\},\{n, i+6, n-2\},\{n, i+$ $6, n-1\}\},\{\{n, i+1, n-1\},\{n, i+3, n-1\},\{n, i+5, n-1\},\{n, i+7, n-1\}\}$.

For the entries which are in the first row (except for $\{n, n-1\}$), they may become $\frac{n-2}{4}$ desired groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}, i=1,5,9, \ldots, n-5$.

The proof is completed.
Lemma 9 If $n \equiv 3(\bmod 8)$, then we can decompose all the entries of A_{n} (except for $\emptyset,\{n, n-$
$2, n-1\},\{n, n-4, n-2\}$ and $\{n, n-3, n-1\})$ into $\frac{1}{4}\left[\binom{n}{2}-3\right]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring of C_{4}.

Proof We only consider the left subsets as well as four sets $\{n, n-4, n-2\},\{n, n-4, n-3\}$, $\{n, n-3, n-2\},\{n, n-3, n-1\}$.

Suppose $i \equiv 1(\bmod 8), 1 \leq i \leq n-18$. The left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row are the sets: $\{n, i, n-1\},\{n, i+2, n-1\}$, $\{n, i+4, n-1\},\{n, i+6, n-1\}$. These subsets may become a desired group.

We now consider the left subsets which are in the $(n-10)$-th, $(n-9)$-th, $\ldots,(n-6)$-th, $(n-5)$-th columns and are not in the first row and the subsets in the $(n-4)$-th, $(n-3)$-th, $(n-2)$-th, $(n-1)$-th columns (except for $\{n, n-3\},\{n, n-4\}$). Obviously, these subsets (except for $\{n, n-2, n-1\},\{n, n-4, n-2\}$ and $\{n, n-3, n-1\})$ are the color sets of all vertices of $2 C_{4}$ under the following E-total coloring:

Figure 6 VDET coloring of $2 C_{4}$
We may partition the entries which are in the first row (except for $\{n, n-1\},\{n, n-2\}$) into $\frac{n-3}{4}$ desired groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}\}, i=1,5,9, \ldots, n-6$.

The proof is completed.
Lemma 10 If $n \equiv 4(\bmod 8)$, then we can decompose all the entries of A_{n} (except for $\emptyset,\{n, n-1\}$, and $\{n, n-3\}$) into $\frac{1}{4}\left[\binom{n}{2}-2\right]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring.

Proof We only consider the left subsets.
For $i \equiv 1(\bmod 8), 1 \leq i \leq n-11$, the left subsets which are in the i-th, $(i+1)$-th, \ldots, $(i+7)$-th columns and not in the first row can become 3 desired groups: $\{\{n, i, n-2\},\{n, i, n-$ $1\},\{n, i+2, n-2\},\{n, i+2, n-1\}\},\{\{n, i+4, n-2\},\{n, i+4, n-1\},\{n, i+6, n-2\},\{n, i+$ $6, n-1\}\},\{\{n, i+1, n-1\},\{n, i+3, n-1\},\{n, i+5, n-1\},\{n, i+7, n-1\}\}$.

The left subsets which are in the $(n-2)$-th, $(n-3)$-th columns and not in the first row: $\{n, n-2, n-1\},\{n, n-3, n-1\},\{n, n-3, n-2\}$ together with $\{n, n-2\}$ may become a desired group.

We may partion the entries which are in the first row (except for $\{n, n-1\},\{n, n-2\}$, $\{n, n-3\})$ into $\frac{n-4}{4}$ desired groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}\}, i=1,5,9, \ldots, n-7$.

The proof is completed.
Lemma 11 If $n \equiv 5(\bmod 8)$, $n \geq 5$, then we can decompose all the entries of A_{n} (except for \emptyset and $\{n, n-2, n-1\},\{n, n-4, n-1\})$ into $\left.\frac{1}{4}\left[\begin{array}{c}n \\ 2\end{array}\right)-2\right]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring.

Proof As before we consider the left subsets.
When $n \geq 13$, for $i \equiv 1(\bmod 8), 1 \leq i \leq n-12$, we have four left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row: $\{n, i, n-2\},\{n, i+2, n-1\}$, $\{n, i+4, n-1\},\{n, i+6, n-1\}\}$. These subsets may become a desired group.

For the subsets which are in the first row, we may give $\frac{n-1}{4}$ desired groups, $\{\{n, i\},\{n, i+$ $1\},\{n, i+2\},\{n, i+3\}, i=1,5,9, \ldots, n-4$.

The proof is completed.
Lemma 12 If $n \equiv 6(\bmod 8), n \geq 6$, then we can decompose all the entries of A_{n} (except for \emptyset, $\{n, n-2, n-1\},\{n, n-3, n-1\}$ and $\{n, n-3, n-2\}$) into $\frac{1}{4}\left[\binom{n}{2}-3\right]$ groups such that each group has 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring.

Proof As before, we only consider the left subsets.
When $n \geq 14$, for $i \equiv 1(\bmod 8), 1 \leq i \leq n-13$, we can decompose the left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row into 3 groups: $\{\{n, i, n-2\},\{n, i, n-1\},\{n, i+2, n-2\},\{n, i+2, n-1\}\},\{\{n, i+4, n-2\},\{n, i+4, n-1\},\{n, i+$ $6, n-2\},\{n, i+6, n-1\}\},\{\{n, i+1, n-1\},\{n, i+3, n-1\},\{n, i+5, n-1\},\{n, i+7, n-1\}\}$.

We have six left subsets which are in the $(n-2)$-th, $(n-3)$-th, $(n-4)$-th, $(n-5)$-th columns and are not in first row. Among these subsets and $\{n, n-1\}$, it is obvious that $\{n, n-1\}$, $\{n, n-4, n-1\},\{n, n-5, n-1\},\{n, n-5, n-2\}$ are the color sets of all vertices of C_{4} under the following E-total coloring:

Figure 7 VDET coloring of C_{4}
At last, we consider the entries which are in the first row (except for $\{n, n-1\}$). They may become $\frac{n-2}{4}$ desired groups, $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}\}, i=1,5,9, \ldots, n-5$.

The proof is completed.
Lemma 13 If $n \equiv 7(\bmod 8), n \geq 7$, then we can decompose all the entries of A_{n} (except for \emptyset
and $\{n, n-2, n-1\}$) into $\left.\frac{1}{4}\left[\begin{array}{l}n \\ 2\end{array}\right)-1\right]$ groups such that each group contains exactly 4 subsets and four subsets in each group are the color sets of all vertices of C_{4} under some vertex-distinguishing E-total coloring of C_{4}.

Proof As before, we only consider the left subsets.
When $n \geq 15$, for $i \equiv 1(\bmod 8), 1 \leq i \leq n-14$, the left subsets which are in the i-th, $(i+1)$-th, $\ldots,(i+7)$-th columns and not in the first row are the sets: $\{n, i, n-1\},\{n, i+2, n-$ $1\},\{n, i+4, n-1\},\{n, i+6, n-1\}\}$. These subsets may become a desired group.

We have three left subsets which are in the $(n-6)$-th, $(n-5)$-th, $\ldots,(n-2)$-th columns and are not in first row. For these subsets and the subsets $\{n, n-1\},\{n, n-2\}$, it is obvious that $\{n, n-1\},\{n, n-2\},\{n, n-4, n-1\},\{n, n-6, n-1\}$ are the color sets of all vertices of C_{4} under the following E-total coloring:

Figure 8 VDET coloring of C_{4}
For the subsets which are in the first row (except for $\{n, n-1\},\{n, n-2\}$), we may give $\frac{n-3}{4}$ groups: $\{\{n, i\},\{n, i+1\},\{n, i+2\},\{n, i+3\}, i=1,5,9, \ldots, n-6$.

The proof is completed.
It is easy to see that $\chi_{v t}^{e}\left(C_{4}\right)=4$.
Theorem 2 If $\binom{k-1}{2}+\binom{k-1}{3}+1 \leq 4 m \leq\binom{ k}{2}+\binom{k}{3}, m \geq 2, k \geq 4$, then $\chi_{v t}^{e}\left(m C_{4}\right)=k$.
Proof Obviously we have $\chi_{v t}^{e}\left(m C_{4}\right) \geq \eta\left(m C_{4}\right)=k$. So we need only to give k-VDET coloring of $m C_{4}$ in the following. Denote the i-th C_{4} by C_{4}^{i}, and $V\left(C_{4}^{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}\right\} ; E\left(C_{4}^{i}\right)=$ $\left\{v_{1}^{i} v_{2}^{i}, v_{2}^{i} v_{3}^{i}, v_{3}^{i} v_{4}^{i}, v_{4}^{i} v_{1}^{i}\right\}, 1 \leq i \leq m$.

If $m=2$, then two C_{4} can be colored by 4 colors $1,2,3,4$ as follows:
Let $v_{1}^{1}, v_{2}^{1}, v_{3}^{1}, v_{4}^{1}$ receive $2,3,2,4$ respectively; Let $v_{1}^{1} v_{2}^{1}, v_{2}^{1} v_{3}^{1}, v_{3}^{1} v_{4}^{1}, v_{4}^{1} v_{1}^{1}$ receive $1,1,3,1$, respectively; Let $v_{1}^{2}, v_{2}^{2}, v_{3}^{2}, v_{4}^{2}$ receive $3,4,3,1$ respectively and let $v_{1}^{2} v_{2}^{2}, v_{2}^{2} v_{3}^{2}, v_{3}^{2} v_{4}^{2}, v_{4}^{2} v_{1}^{2}$ receive $2,2,4,2$, respectively. The resulting coloring is obviously 4 -VDET coloring of a C_{4} and it has used up all 2,3 -combinations of $\{1,2,3,4\}$ but $\{1,4\}$ and $\{3,4\}$

So $\chi_{v t}^{e}\left(2 C_{3}\right)=4$.
If $3 \leq m \leq 5, \chi_{v t}^{e}\left(m C_{4}\right) \geq 5$. Based on the 4 -VDET coloring of $2 C_{4}$ given above, the third, fourth C_{4} of $5 C_{4}$ can be colored by the method given in Lemma 11. The fifth C_{5} of $5 C_{4}$ can be colored as follows: we assign $1,3,1,3$ to $v_{1}^{5}, v_{2}^{5}, v_{3}^{5}, v_{4}^{5}$ respectively and assign $4,4,5,4$ to $v_{1}^{5} v_{2}^{5}, v_{2}^{5} v_{3}^{5}, v_{3}^{5} v_{4}^{5}, v_{4}^{5} v_{1}^{5}$, respectively. The resulting coloring is 5 -VDET coloring of $5 C_{5}$. Of course for $3 C_{4}$ and $4 C_{4}$, we can easily obtain their 5 -VDET colorings.

So $\chi_{v t}^{e}\left(m C_{4}\right)=5$, if $3 \leq m \leq 5$.
Suppose $m \geq 6$, we consider $m C_{4}$, where $\binom{k-1}{2}+\binom{k-1}{3}+1 \leq 4 m \leq\binom{ k}{2}+\binom{k}{3}, k \geq 9$.
If $k \equiv 0,1,3,5,7(\bmod 8)$, then by Lemmas $7,9,11$ and 13 we can obtain k-VDET coloring of $\left(\frac{1}{4}\left[\binom{k}{2}+\binom{k}{3}\right]\right) C_{4}$ using colors $\{1,2, \ldots, k\}$. Note that in the case when $k \equiv 3(\bmod 8), k \geq 11$, $\{k-1, k-2\},\{k, k-2, k-1\},\{k, k-3, k-1\}$ and $\{k, k-4, k-2\}$ are the color sets of all vertices of some C_{4} under some vertex-distinguishing E-total coloring; when $k \equiv 5(\bmod 8)$, $k \geq 13,\{k, k-2, k-1\},\{k, k-4, k-1\},\{k-1, k-2\}$ and $\{k-1, k-4\}$ are the color sets of all vertices of some C_{4} under some vertex-distinguishing E-total coloring; when $k \equiv 7(\bmod 8)$, $k \geq 7,\{k, k-2, k-1\},\{k-1, k-3, k-2\},\{k-1, k-4, k-3\}$ and $\{k-1, k-4, k-2\}$ are the color sets of all vertices of some C_{4} under some vertex-distinguishing E-total coloring. We can easily obtain k-VDET coloring of $m C_{4}$ when $\binom{k-1}{2}+\binom{k-1}{3}<4 m<\binom{k}{2}+\binom{k}{3}$.

If $k \equiv 2(\bmod 8)$, then by Lemma 8 we can obtain VDET coloring of $\left.\left(\frac{1}{4}\left[\begin{array}{l}k \\ 2\end{array}\right)+\binom{k}{3}-1\right]\right) C_{4}$ and this coloring has used up all 2,3 -combinations of $\{1,2, \ldots, k\}$ but $\{k, k-1\}$. We can easily obtain k-VDET coloring of $m C_{4}$ when $\binom{k-1}{2}+\binom{k-1}{3}<4 m<\binom{k}{2}+\binom{k}{3}$.

If $k \equiv 4(\bmod 8), k \geq 12$, then by Lemma 10 we can obtain VDET coloring of $\left(\frac{1}{4}\left[\binom{k}{2}+\right.\right.$ $\left.\left.\binom{k}{3}-2\right]\right) C_{4}$ with all colors $1,2, \ldots, k$. This coloring has used up all 2,3 -combinations but two 2 -combinations $\{k, k-1\},\{k, k-3\}$. We can easily obtain k-VDET coloring of $m C_{4}$ when $\binom{k-1}{2}+\binom{k-1}{3}<4 m<\binom{k}{2}+\binom{k}{3}$.

If $k \equiv 6(\bmod 8), k \geq 6$, then by Lemma 12 we can obtain VDET coloring of $\left.\left(\frac{1}{4}\left[\begin{array}{l}k \\ 2\end{array}\right)+\binom{k}{3}-3\right]\right) C_{4}$ with all colors $1,2, \ldots, k$. This coloring has used up all 2, 3-combinations but three subsets $\{k, k-2, k-1\},\{k, k-3, k-2\}$ and $\{k, k-3, k-1\}$. We can easily obtain k-VDET coloring of $m C_{4}$ when $\binom{k-1}{2}+\binom{k-1}{3}<4 m<\binom{k}{2}+\binom{k}{3}$.

The proof is completed.
Acknowledgement The authors are very grateful to Prof. Zhongfu ZHANG for his helpful comments and suggestions.

References

[1] BALISTER P N, BOLLOBÁS B, SCHELP R H. Vertex distinguishing colorings of graphs with $\Delta(G)=2$ [J]. Discrete Math., 2002, 252(1-3): 17-29.
[2] BALISTER P N, RIORDAN O M, SCHELP R H. Vertex distinguishing edge colorings of graphs [J]. J. Graph Theory, 2003, 42(2): 95-109.
[3] BAZGAN C, HARKAT-BENHAMDINE A, LI Hao. et al. On the vertex-distinguishing proper edge-colorings of graphs [J]. J. Combin. Theory Ser. B, 1999, 75(2): 288-301.
[4] BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-colorings [J]. J. Graph Theory, 1997, 26(2): 73-82.
[5] ČERNY J, HORŇÁK M, SOTÁK R. Observability of a graph [J]. Math. Slovaca, 1996, 46(1): 21-31.
[6] CHEN Xiang'en. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cubes [J]. Xibei Shifan Daxue Xuebao Ziran Kexue Ban, 2005, 41(5): 1-3. (in Chinese)
[7] HARARY F, PLANTHOLT M. The Point-Distinguishing Chromatic Index [M]. Wiley-Intersci. Publ., Wiley, New York, 1985.
[8] HORŇÁK M, SOTÁK R. Observability of complete multipartite graphs with equipotent parts [J]. Ars Combin., 1995, 41: 289-301.
[9] HORŇÁK M, SOTÁK R. Asymptotic behaviour of the observability of Q_{n} [J]. Discrete Math., 1997, 176(13): 139-148.
[10] HORŇÁK M, SOTÁK R. The fifth jump of the point-distinguishing chromatic index of $K_{n, n}$ [J]. Ars Combin., 1996, 42: 233-242.
[11] HORŇÁK M, SOTÁK R. Localization of jumps of the point-distinguishing chromatic index of $K_{n, n}$ [J]. Discuss. Math. Graph Theory, 1997, 17(2): 243-251.
[12] HORŇÁK M, ZAGAGLIA S N. On the point-distinguishing chromatic index of complete bipartite graphs [J]. Ars Combin., 2006, 80: 75-85.
[13] ZAGAGLIA S N. On the point-distinguishing chromatic index of $K_{n, n}$ [J]. Ars Combin., 1988, 25B: 93-104.
[14] ZAGAGLIA S N. On the value of the point-distinguishing chromatic index of $K_{n, n}$ [J]. Ars Combin., 1990, 29B: 235-244.
[15] ZHANG Zhongfu, QIU Pengxiang, XU Baogen. et al. Vertex-distinguishing total coloring of graphs [J]. Ars Combin., 2008, 87: 33-45.

[^0]: Received January 1, 2009; Accepted January 28, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10771091) and the Scientific Research
 Project of Northwest Normal University (Grant No. NWNU-KJCXGC-03-61).

 * Corresponding author

 E-mail address: chenxe@nwnu.edu.cn (X. E. CHEN)

