Packings and Coverings of λK_{v} with 2 Graphs of 6 Vertices and 7 Edges

Yan Ke DU ${ }^{1, *}$, Qing De KANG ${ }^{2}$
1. Institute of Applied Mathematics, Mechanical Engineering College, Hebei 050003, P. R. China;
2. Institute of Mathematics, Hebei Normal University, Hebei 050016, P. R. China

Abstract A maximum $(v, G, \lambda)-P D$ and a minimum $(v, G, \lambda)-C D$ are studied for 2 graphs of 6 vertices and 7 edges. By means of "difference method" and "holey graph design", we obtain the result: there exists a $\left(v, G_{i}, \lambda\right)-O P D(O C D)$ for $v \equiv 2,3,4,5,6(\bmod 7), \lambda \geq 1, i=1,2$.
Keywords G-design; G-packing design; G-covering design.
Document code A
MR(2010) Subject Classification 05B40
Chinese Library Classification O157.2

1. Introduction

There is a quite long time to the research of the graph packing and covering designs, which involved the simple graphs with less vertices and less edges $[1-3]$, and some special graphs $[4,5]$. But there are very few conclusions for the simple graphs with more than five vertices. In this paper, the discussed 2 graphs are listed as follows. For convenience, as a block in a design, the graphs G_{1} and G_{2} are denoted by (a, b, c, d, e, f) according to the following vertex-label. The related definitions and notations are referred to literature [6].

Figure 1 Graphs G_{1} and G_{2}
In what follows, we shall give the constructions of a $\max \left(v, G_{i}, \lambda\right)-P D$ and a $\min \left(v, G_{i}, \lambda\right)-C D$ for all positive integers v, λ and $i=1,2$, all of which are optimal. Our recursive constructions use the following standard "Filling in Holes" method.

Lemma 1.1 ([7]) For given graph G and positive integers h, w, m, λ, if there exist a $G-H D_{\lambda}\left(h^{m}\right)$,

[^0]a $G-I D_{\lambda}(h+w, w)$ and a $(w, G, \lambda)-O P D(O C D)($ or a $(h+w, G, \lambda)-O P D(O C D)$, then a $(m h+w, G, \lambda)-O P D(O C D)$ exists, too.

Lemma $1.2([7])$ There exist a $G_{k}-H D\left(7^{2 t+1}\right)$ and a $G_{k}-H D\left(14^{t+2}\right)$ for $k=1,2, t \geq 1$.
Lemma $1.3([7,8])$ There exists a $\left(v, G_{i}, 1\right)-G D$ if and only if $v \equiv 0,1(\bmod 7)$ for $i=$ 1,2 and $(v, i) \neq(7,2)$. There exists a $\left(v, G_{i}, 7\right)-G D(i=1,2)$ for any $v \geq 6$.

2. Constructions of $I D$

It is easy to prove that there exists no $G_{2}-I D(7+w, w)$ for $w=2,5$.
Lemma 2.1 There exist a $G_{1}-I D(7+w, w)$ for $2 \leq w \leq 6$, and a $G_{2}-I D(7+w, w)$ for $w=3,4,6$.
Proof Let $G_{i}-I D(7+w, w)=(X, W, \mathcal{B})$ for $i=1,2$, where $|\mathcal{B}|=3+w$. Then the family \mathcal{B} consists of the following blocks.
[Graph G_{1}]
$\underline{w=2:} \quad X=Z_{7} \bigcup\left\{x_{1}, x_{2}\right\}, \quad W=\left\{x_{1}, x_{2}\right\}$
$\left(x_{1}, 3,6,0,1,4\right),\left(x_{2}, 4,5,0,6, x_{1}\right),\left(2,1,4, x_{1}, x_{2}, 0\right),\left(1,0,3, x_{2}, 6,4\right),(2,3,5,6,0,1)$.
$\underline{w=3:} \quad X=\left(Z_{3} \times Z_{3}\right) \bigcup\{x\}, \quad W=Z_{3} \times\{2\}$
$\left(0_{2}, x, 0_{0}, 1_{0}, 2_{0}, 2_{1}\right),\left(1_{1}, 0_{0}, 0_{1}, 0_{2}, 2_{2}, x\right) \quad \bmod (3,-)$.
$\underline{w=4:} \quad X=Z_{7} \bigcup\left\{x_{1}, \ldots, x_{4}\right\}, \quad W=\left\{x_{1}, \ldots, x_{4}\right\}$
$\left(0,3,1, x_{1}, x_{2}, x_{4}\right),\left(1,4,2, x_{2}, x_{3}, x_{4}\right),\left(2,5,3, x_{1}, x_{3}, x_{4}\right),\left(3,6,4, x_{2}, x_{3}, x_{4}\right)$,
$\left(4,0,5, x_{1}, x_{3}, x_{4}\right),\left(5,1,6, x_{2}, x_{3}, x_{4}\right),\left(6,2,0, x_{3}, x_{1}, x_{4}\right)$.
$\underline{w=5:} \quad X=Z_{7} \bigcup\left\{x_{1}, \ldots, x_{5}\right\}, \quad W=\left\{x_{1}, \ldots, x_{5}\right\}$
$\left(x_{1}, 3,6,2,0, x_{4}\right),\left(x_{3}, 6,5,4,2, x_{5}\right),\left(1,2,4, x_{1}, x_{2}, x_{4}\right),\left(x_{2}, 4,6,0,5, x_{5}\right)$,
$\left(x_{4}, 1,5,0,3, x_{1}\right),\left(x_{5}, 4,0,2,1, x_{3}\right),\left(2,5,3, x_{2}, x_{4}, x_{5}\right),\left(1,0,3, x_{3}, 6,4\right)$.
$\underline{w=6:} \quad X=\left(Z_{3} \times Z_{4}\right) \bigcup\{x\}, \quad W=Z_{3} \times\{2,3\}$
$\left(0_{2}, x, 0_{0}, 1_{0}, 1_{1}, 2_{1}\right),\left(2_{1}, 0_{3}, 2_{0}, 0_{2}, 2_{2}, 2_{3}\right),\left(0_{3}, 1_{1}, 0_{1}, x, 1_{0}, 2_{0}\right) \bmod (3,-)$.
[Graph G_{2}] In the G_{2}-designs, the vertex sets are the same as those of G_{1}-designs, and the block sets are listed as follows.
$\underline{w=3}:\left(0_{2}, x, 1_{1}, 1_{0}, 0_{1}, 2_{1}\right),\left(2_{1}, 0_{2}, 2_{0}, 0_{0}, 1_{2}, 0_{1}\right) \quad \bmod (3,-)$.
$\underline{w=4}:\left(x_{1}, 0,3,1,6, x_{4}\right),\left(x_{2}, 2,3,5,4, x_{3}\right),\left(x_{3}, 4,0,5,2, x_{4}\right),\left(x_{4}, 6,0,2,5, x_{2}\right)$,
$\left(x_{1}, 2,1,4,3, x_{4}\right),\left(x_{2}, 3,4,6,1, x_{4}\right),\left(x_{3}, 6,5,1,0, x_{1}\right)$.
$\underline{w=6:}\left(0_{0}, 0_{2}, 2_{1}, x, 1_{3}, 2_{0}\right),\left(0_{2}, 0_{1}, 0_{3}, 1_{1}, 2_{0}, x\right),\left(1_{0}, 0_{3}, 0_{0}, 2_{1}, 0_{2}, 2_{0}\right) \bmod (3,-)$.
Lemma 2.2 There exist a $G_{i}-I D(14+w, w)$ for $i=1,2,2 \leq w \leq 6$, and a $G_{2}-I D(14+w, w)$ for $w=9,12$.

Proof Let $G_{i}-I D(14+w, w)=(X, \mathcal{B})$ for $i=1,2$, where $|\mathcal{B}|=13+2 w$.
[Graph G_{1}] Let $X=\left(Z_{7} \times Z_{2}\right) \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$ for $2 \leq w \leq 5$ and $X=\left(\left(Z_{7} \bigcup\{A, B\}\right) \times\right.$ $\left.Z_{2}\right) \bigcup\{C, D\}$ for $w=6$. The family \mathcal{B} consists of the following blocks.
$\underline{w=2:}\left(0_{0}, x_{1}, 1_{1}, x_{2}, 2_{1}, 4_{0}\right),\left(0_{1}, 3_{1}, 1_{1}, 1_{0}, 4_{0}, 3_{0}\right) \quad \bmod (7,-) ;$

$$
\left(0_{0}, 6_{0}, 1_{0}, 3_{0}, 4_{0}, 2_{0}\right),\left(2_{0}, 6_{0}, 3_{0}, 5_{0}, 0_{0}, 4_{0}\right),\left(4_{0}, 6_{0}, 5_{0}, 1_{0}, 2_{0}, 0_{0}\right)
$$

$\underline{w=3:}\left(0_{0}, x_{1}, 0_{1}, x_{2}, 1_{1}, 3_{0}\right) \bmod (7,-) ; \quad\left(0_{0}, x_{3}, 5_{1}, 2_{1}, 3_{1}, 6_{0}\right)+i_{0} \quad(2 \leq i \leq 6) ;$
$\left(0_{0}, 6_{0}, 1_{0}, 2_{0}, 5_{0}, 3_{0}\right),\left(0_{1}, 2_{1}, 1_{1}, 6_{1}, 5_{1}, 3_{1}\right),\left(2_{0}, 6_{0}, 3_{0}, 4_{0}, 5_{0}, 0_{0}\right),\left(4_{0}, 6_{0}, 5_{0}, 1_{0}, 0_{0}, 3_{0}\right)$, $\left(4_{1}, 2_{1}, 3_{1}, 5_{1}, 6_{1}, 0_{0}\right),\left(0_{0}, x_{3}, 5_{1}, 2_{1}, 6_{1}, 6_{0}\right),\left(1_{0}, x_{3}, 6_{1}, 3_{1}, 4_{1}, 5_{1}\right)$.
$\underline{w=4:}\left(2_{1}, x_{1}, 0_{0}, x_{2}, 1_{0}, x_{4}\right),\left(0_{0}, x_{3}, 3_{1}, 3_{0}, 2_{0}, x_{4}\right),\left(6_{1}, 5_{1}, 0_{0}, 4_{1}, 3_{1}, 1_{0}\right) \bmod (7,-)$.
$\underline{w=5:}\left(2_{1}, x_{1}, 0_{0}, x_{2}, 4_{1}, x_{4}\right),\left(0_{0}, x_{3}, 1_{1}, 0_{1}, 4_{1}, x_{4}\right), \quad \bmod (7,-) ;$
$\left(0_{0}, x_{5}, 3_{1}, 6_{1}, 4_{0}, 5_{0}\right)+i_{0} \quad(i=0,1,2,3,5) ;$
$\left(0_{0}, 2_{0}, 1_{0}, 6_{0}, 5_{0}, 3_{0}\right),\left(4_{0}, 2_{0}, 3_{0}, 5_{0}, 1_{0}, 6_{0}\right),\left(4_{0}, x_{5}, 0_{1}, 3_{1}, 6_{0}, 2_{0}\right),\left(6_{0}, x_{5}, 2_{1}, 5_{1}, 5_{0}, 4_{0}\right)$.
$\underline{w=6:}\left(0_{0}, C, 0_{1}, D, 4_{0}, 4_{1}\right)+i_{0} \quad(i=0,1,2,3,5) ; \quad\left(0_{0}, A_{0}, 2_{1}, B_{0}, 3_{1}, 1_{0}\right) \bmod (7,2) ;$
$\left(0_{0}, 2_{0}, 1_{0}, 6_{0}, 5_{0}, 3_{0}\right),\left(4_{0}, 2_{0}, 3_{0}, 5_{0}, 1_{0}, 6_{0}\right) \quad \bmod (-, 2) ;$
$\left(4_{0}, C, 4_{1}, D, 6_{0}, 6_{1}\right),\left(6_{0}, C, 6_{1}, D, 5_{0}, 5_{1}\right)$.
[Graph G_{2}] Let $X=\left(Z_{7} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}\right\}$ for $w=2$ and $X=Z_{14} \bigcup\left\{x_{1}, \ldots, x_{w}\right\}$ for the other w. The family \mathcal{B} consists of the following blocks.


```
w=3:}(\mp@subsup{x}{1}{},3,4,7,0,\mp@subsup{x}{3}{}),(\mp@subsup{x}{1}{},4,12,10,5,0),(\mp@subsup{x}{1}{},8,9,12,13,4),(\mp@subsup{x}{2}{},6,11,4,9,1)
    ( }\mp@subsup{x}{2}{},1,8,3,12,10),(\mp@subsup{x}{3}{},1,12,6,13,3),(8,11,10,7, \mp@subsup{x}{2}{},2),(3, \mp@subsup{x}{3}{},9,2,0,11)
    (13, 9, 0, 10, 11, 5), (x , 1, 7, 9, 11, , x3), (x2, 5, 3, 10, 13,11), (13, 4, 5, 8, 0, 11),
    ( }\mp@subsup{x}{2}{},0,2,7,11,\mp@subsup{x}{1}{}),(12,13,6,7,5,10),(\mp@subsup{x}{3}{},0,6,8,10,\mp@subsup{x}{1}{}),(1,13,2,5,10,8)
    (0,1,2,4,11,6), (5,6,3, 9, 7, 13), ( }\mp@subsup{x}{3}{},11,2,12,5,\mp@subsup{x}{2}{})
w=4:}(\mp@subsup{x}{1}{},5,9,6,11,\mp@subsup{x}{2}{}),(\mp@subsup{x}{2}{},5,12,7,6,4),(\mp@subsup{x}{2}{},10,1,11,0,\mp@subsup{x}{4}{}),(13,11,2,12,3,\mp@subsup{x}{2}{})
```



```
    (0,1,2,4,6, 和), (13,6,10,7, 8, 12), ( (x, 9, 10, 0, 5, 13), (1,13, 4, 9, 7, 10),
    ( }\mp@subsup{x}{4}{},4,5,8,11,2)
w=5:}(\mp@subsup{x}{1}{},0,4,1,11,\mp@subsup{x}{2}{}),(\mp@subsup{x}{1}{},7,11,8,13,\mp@subsup{x}{4}{}),(\mp@subsup{x}{1}{},2,6,3,4,13),(\mp@subsup{x}{5}{},1,9,7,2,4)
```



```
    (3, \mp@subsup{x}{5}{},8,0,12, \mp@subsup{x}{2}{}),(\mp@subsup{x}{5}{},12,1,6,13,\mp@subsup{x}{4}{}),(\mp@subsup{x}{3}{},9,11,3,7,0), (13,1,2, 5,0,7),
    (9, \mp@subsup{x}{1}{},12,5,8,13),(\mp@subsup{x}{4}{},6,7,10,13,12), (13,4,6,11,9,8), (x, 0, 9, 10, 2, 12),
    (5, \mp@subsup{x}{3}{},6,0,\mp@subsup{x}{5}{},9),(\mp@subsup{x}{3}{},8,2,10,13,4),(2, \mp@subsup{x}{4}{},12,0,9,8), (13,3,5,10,2,11),
    (x4, 5,4,8,7, \mp@subsup{x}{5}{}),(\mp@subsup{x}{3}{},4,10,12,11, \mp@subsup{x}{1}{}),(\mp@subsup{x}{2}{},11,2,12,13,\mp@subsup{x}{3}{}).
w=6:}(1,\mp@subsup{x}{2}{},3,8,\mp@subsup{x}{4}{},13),(8,\mp@subsup{x}{1}{},11,7,13,\mp@subsup{x}{3}{}),(\mp@subsup{x}{1}{},0,4,1,13,2),(\mp@subsup{x}{2}{},0,9,10,2,4)
```



```
    ( }\mp@subsup{x}{5}{},1,9,7,13,\mp@subsup{x}{2}{}),(5,\mp@subsup{x}{1}{},12,9,11,13),(0,\mp@subsup{x}{6}{},12,7,8,5),(11, \mp@subsup{x}{6}{},9,8,0,13)
    (x. (x, 3,10,5,13,2), (x5,10,1,11, 8,12), (1, 13,11, 6, 3,4), (x6, 1, 5, 2, 4, 秥),
    (x, 11, 2,12,13, x5).
w=9:}(0,\mp@subsup{x}{1}{},4,1,\mp@subsup{x}{6}{},11),(10,\mp@subsup{x}{2}{},12,4,\mp@subsup{x}{1}{},1),(5,\mp@subsup{x}{1}{},9,6,\mp@subsup{x}{3}{},\mp@subsup{x}{2}{}),(7,\mp@subsup{x}{2}{},1,13,5,\mp@subsup{x}{5}{})
```

$$
\begin{aligned}
&\left(8, x_{3}, 12,9, x_{2}, 10\right),\left(7, x_{1}, 11,8, x_{4}, x_{6}\right),\left(5, x_{2}, 11,0,3, x_{5}\right),\left(11, x_{3}, 1,10,3, x_{6}\right), \\
&\left(3, x_{3}, 13,4, x_{4}, x_{8}\right),\left(4, x_{4}, 13,0, x_{5}, 2\right),\left(2, x_{4}, 11,1,10, x_{7}\right),\left(3, x_{6}, 5,10, x_{7}, x_{8}\right), \\
&\left(6, x_{6}, 9,7, x_{3}, 11\right),\left(7, x_{5}, 12,3, x_{7}, 13\right),\left(4, x_{6}, 12,8, x_{9}, x_{7}\right),\left(6, x_{7}, 8,13, x_{8}, 3\right), \\
&\left(7, x_{9}, 8,10,12, x_{8}\right),\left(10, x_{7}, 1,9, x_{8}, x_{9}\right),\left(2, x_{9}, 5,12,8,11\right),\left(8, x_{4}, 9,5,0, x_{9}\right) \\
&\left(2, x_{1}, 13,3, x_{5}, x_{6}\right),\left(6, x_{9}, 13,11,1,10\right),\left(3, x_{8}, 7,1, x_{9}, 4\right),\left(10, x_{4}, 12,6, x_{5}, x_{1}\right), \\
&\left(12, x_{8}, 2,11,0,7\right),\left(2, x_{3}, 7,0,9,11\right),\left(0, x_{8}, 4,9, x_{9}, x_{7}\right),\left(5, x_{5}, 9,13,1,3\right), \\
& \quad\left(x_{7}, 2,4,5,0,6\right),\left(8, x_{5}, 0,6,1,10\right),\left(2, x_{2}, 3,6, x_{6}, 0\right) . \\
& w=12:\left(8, x_{3}, 12,9, x_{2}, 0\right),\left(4, x_{4}, 13,0, x_{9}, 10\right),\left(10, x_{2}, 12,4, x_{8}, x_{1}\right),\left(3, x_{6}, 5,10, x_{9}, 1\right), \\
&\left(7, x_{5}, 12,3, x_{7}, 13\right),\left(11, x_{3}, 1,10, x_{10}, x_{5}\right),\left(3, x_{8}, 7,1, x_{7}, 11\right),\left(4, x_{6}, 12,8, x_{7}, 10\right), \\
&\left(10, x_{4}, 12,6, x_{1}, x_{12}\right),\left(0, x_{1}, 4,1, x_{6}, x_{5}\right),\left(2, x_{1}, 13,3, x_{5}, x_{8}\right),\left(3, x_{3}, 13,4, x_{4}, x_{6}\right) \\
&\left(5, x_{1}, 9,6, x_{8}, x_{2}\right),\left(7, x_{1}, 11,8, x_{12}, x_{5}\right),\left(2, x_{4}, 11,1, x_{6}, x_{7}\right),\left(12, x_{10}, 8,1, x_{7}, 0\right) \\
&\left(2, x_{9}, 5,12,10, x_{12}\right),\left(12, x_{8}, 2,11, x_{11}, x_{12}\right),\left(x_{12}, 1, x_{11}, 6,10,0\right),\left(7, x_{11}, 13,2,12, x_{10}\right), \\
&\left(6, x_{9}, 13,11, x_{10}, x_{12}\right),\left(6, x_{6}, 9,7, x_{3}, x_{10}\right),\left(7, x_{2}, 1,13, x_{4}, x_{9}\right),\left(5, x_{5}, 9,13, x_{3}, x_{9}\right) \\
&\left(0, x_{8}, 4,9, x_{12}, x_{10}\right),\left(5, x_{2}, 11,0, x_{10}, x_{6}\right),\left(10, x_{7}, 1,9, x_{11}, x_{6}\right),\left(8, x_{5}, 0,6, x_{8}, x_{9}\right) \\
&\left(8, x_{4}, 9,5,2, x_{12}\right),\left(7, x_{9}, 8,10, x_{10}, x_{12}\right),\left(2, x_{3}, 7,0, x_{10}, 4\right),\left(4, x_{12}, 3,11,6,8\right), \\
&\left(6, x_{7}, 8,13, x_{8}, x_{11}\right),\left(9, x_{11}, 5,11,3,7\right),\left(2, x_{2}, 3,6,9,5\right),\left(3, x_{10}, 10,0, x_{11}, x_{5}\right), \\
&\left(x_{7}, 2,4,5,0, x_{11}\right) . \square
\end{aligned}
$$

3. Packings and coverings for $\lambda=1$

In what follows, the symbols C_{n}, P_{n} and $S t(n)$ denote the graphs respectively: cycle with n vertices, path with n vertices, and star with n terminal vertices.

Lemma 3.1 There exist a $\left(7+w, G_{1}, 1\right)-O P D(O C D)$ for $2 \leq w \leq 6$, and a $\left(7+w, G_{2}, 1\right)$ $O P D(O C D)$ for $w=3,4,6$.

Proof Let $\left(7+w, G_{i}, 1\right)-O P D=\left(X, \mathcal{A}_{i}(w)\right)$, where X is taken from the definition of vertex sets in $G_{i}-I D(7+w, w)$ except for specification, and generally $\mathcal{A}_{i}(w)=\left(\mathcal{B}_{i}(w)-\mathcal{C}\right) \bigcup \mathcal{C}^{\prime} \bigcup \mathcal{D}$, where $\mathcal{B}_{i}(w)$ is the block set of $G_{i}-I D(7+w, w)$ constructed in Lemma 2.1, \mathcal{C}^{\prime} is the modification of \mathcal{C}. $B_{m}(x \rightarrow y)$ (or $\left.B_{m}(x \leftrightarrow y)\right)$ denotes that we replace x with y (or exchange x and y) in the m th block of $\mathcal{B}_{i}(w)$.

For $w=2,3$ and $i=1,2$, a $\left(7+w, G_{i}, 1\right)-O P D$ is just the $G_{i}-I D(7+w, w)$, and $L\left(\mathcal{A}_{i}(2)\right)=$ $P_{2}, L\left(\mathcal{A}_{i}(3)\right)=C_{3}$ except that $(i, w) \neq(2,2)$ (ref. Lemma 2.1). As well, the leave-edge graph $L\left(A_{i}(6)\right)=P_{2}, i=1,2$, will be omitted, since the value of the end point in P_{2} does not affect the constructions from $O P D$ to $O C D$ and from $\lambda=1$ to $\lambda>1$.
$\mathcal{A}_{1}(4): \mathcal{C}: B_{1}, B_{2}, B_{6}, B_{7} ; \mathcal{C}^{\prime}: B_{1}\left(x_{2} \rightarrow x_{3}\right), B_{2}\left(x_{4} \rightarrow 0\right), B_{6}\left(x_{4} \rightarrow 0\right), B_{7}\left(x_{4} \leftrightarrow 0\right)$. $L\left(\mathcal{A}_{1}(4)\right)=\left\{\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, 0\right)\right\}$.
$\mathcal{A}_{1}(5): \quad \mathcal{C}: B_{1}, B_{2} ; \quad \mathcal{C}^{\prime}: B_{1}\left(0 \rightarrow x_{3}\right), B_{2}\left(2 \rightarrow x_{2}\right) ; \quad \mathcal{D}:\left(x_{5}, x_{2}, x_{1}, x_{4}, x_{3}, 0\right)$.
$L\left(\mathcal{A}_{1}(5)\right)=\left\{\left(2, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{3}, x_{4}\right)\right\}$.
$\mathcal{A}_{1}(6): \mathcal{D}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right),\left(x_{5}, x_{4}, x_{6}, x_{2}, x_{3}, x_{1}\right)$.
$\mathcal{A}_{2}(4): \mathcal{C}: B_{1} ; \mathcal{C}^{\prime}: B_{1}\left(6 \rightarrow x_{3}\right) . L\left(\mathcal{A}_{2}(4)\right)=\left\{\left(6, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{4}\right)\right\}$.
$\mathcal{A}_{2}(6): \quad X=Z_{11} \bigcup\left\{x_{1}, x_{2}\right\} \quad\left(3,0,5,1, x_{1}, x_{2}\right) \quad \bmod 11$.

Obviously, each $L\left(\mathcal{A}_{i}(w)\right)$ is a subgraph of G_{i}, so each $O C D$ can be obtained by adding a block containing this $L\left(\mathcal{A}_{i}(w)\right)$.

Lemma 3.2 There exists a $\left(14+w, G_{i}, 1\right)-O P D(O C D)$ for $2 \leq w \leq 6, i=1,2$.
Proof Let $\left(14+w, G_{i}, 1\right)-O P D=\left(X, \mathcal{A}_{i}(w)\right)$, where X is taken from the definition of vertex set in $G_{i^{-}} I D(14+w, w)$ except for specification, and generally $\mathcal{A}_{i}(w)=\left(\mathcal{B}_{i}(w)-\mathcal{C}\right) \bigcup \mathcal{C}^{\prime} \bigcup \mathcal{D}$, where $\mathcal{B}_{i}(w)$ is the block set of $G_{i}-I D(14+w, w)$ constructed in Lemma $2.2, \mathcal{C}^{\prime}$ is the modification of \mathcal{C}.

For $w=2,3$ and $i=1,2$, a $\left(14+w, G_{i}, 1\right)-O P D$ is just the $G_{i}-I D(14+w, w)$ and $L\left(\mathcal{A}_{i}(2)\right)=$ $P_{2}, L\left(\mathcal{A}_{i}(3)\right)=C_{3}$. By the same reason stated in Lemma 3.1, $L\left(\mathcal{A}_{i}(6)\right)=P_{2}(i=1,2)$ can be omitted.

$$
\begin{aligned}
& \mathcal{A}_{1}(4): \quad \mathcal{C}:\left(2_{1}, x_{1}, 0_{0}, x_{2}, 1_{0}, x_{4}\right),\left(3_{1}, x_{1}, 1_{0}, x_{2}, 2_{0}, x_{4}\right),\left(0_{1}, 6_{1}, 1_{0}, 5_{1}, 4_{1}, 2_{0}\right) . \\
&\left(0_{0}, x_{3}, 3_{1}, 3_{0}, 2_{0}, x_{4}\right),\left(5_{1}, x_{1}, 3_{0}, x_{2}, 4_{0}, x_{4}\right) ; \\
& \mathcal{C}^{\prime}:\left(2_{1}, x_{1}, 0_{0}, x_{2}, 1_{0}, 3_{1}\right),\left(3_{1}, 2_{0}, 1_{0}, x_{2}, x_{3}, x_{4}\right),\left(0_{1}, 6_{1}, 1_{0}, 5_{1}, 4_{1}, x_{1}\right) \\
&\left(0_{0}, x_{3}, x_{4}, 3_{0}, 2_{0}, 3_{1}\right),\left(5_{1}, x_{1}, 3_{0}, x_{2}, 4_{0}, 3_{1}\right) . \\
& L\left(\mathcal{A}_{1}(4)\right)=\left\{\left(3_{1}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right)\right\} . \\
& \mathcal{A}_{1}(5): \quad \mathcal{C}:\left(2_{1}, x_{1}, 0_{0}, x_{2}, 4_{1}, x_{4}\right) ; \mathcal{C}^{\prime}:\left(2_{1}, 0_{0}, x_{1}, x_{2}, 4_{1}, x_{4}\right) ; \quad \mathcal{D}:\left(x_{4}, x_{3}, x_{5}, x_{2}, 0_{0}, x_{1}\right) . \\
& L\left(\mathcal{A}_{1}(5)\right)=\left\{\left(x_{1}, x_{3}\right),\left(x_{3}, x_{2}\right),\left(x_{2}, 0_{0}\right)\right\} . \\
& \mathcal{A}_{1}(6): \quad \mathcal{D}:\left(A_{0}, A_{1}, B_{0}, B_{1}, C, D\right),\left(C, B_{1}, D, A_{1}, B_{0}, A_{0}\right) . \\
& \mathcal{A}_{2}(4): \quad \mathcal{C}:\left(x_{1}, 5,9,6,11, x_{2}\right) ; \mathcal{C}^{\prime}:\left(x_{1}, 5,9,6, x_{3}, x_{2}\right) . \\
& L\left(\mathcal{A}_{2}(4)\right)=\left\{\left(11, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{4}\right)\right\} . \\
& \mathcal{A}_{2}(5): \quad \mathcal{C}:\left(x_{1}, 7,11,8,13, x_{4}\right),\left(x_{2}, 11,2,12,13, x_{3}\right),\left(x_{3}, 8,2,10,13,4\right) ; \\
& \mathcal{C}^{\prime}:\left(x_{1}, 7,11,8, x_{5}, x_{4}\right),\left(x_{2}, 11,2,12, x_{4}, x_{3}\right),\left(x_{3}, 8,2,10, x_{1}, 4\right) ; \\
& \mathcal{D}:\left(x_{1}, 13, x_{3}, x_{2}, x_{4}, x_{5}\right) . L\left(\mathcal{A}_{2}(5)\right)=\left\{\left(x_{3}, x_{4}\right),\left(x_{4}, x_{5}\right),\left(x_{5}, x_{2}\right)\right\} . \\
& \mathcal{A}_{2}(6): \quad X=\left(Z_{9} \times Z_{2}\right) \cup\left\{x_{1}, x_{2}\right\} \\
&\left(2_{0}, 0_{1}, 3_{0}, 1_{0}, x_{1}, x_{2}\right),\left(0_{1}, 0_{0}, 1_{1}, 3_{1}, x_{1}, x_{2}\right),\left(3_{0}, 0_{0}, 4_{1}, 5_{1}, 7_{0}, 0_{1}\right) \bmod (9,-) .
\end{aligned}
$$

Obviously, each $L\left(\mathcal{A}_{i}(w)\right)$ is a subgraph of G_{i}, so each $O C D$ can be obtained from the $O P D$ by adding a block containing this $L\left(\mathcal{A}_{i}(w)\right)$.

Lemma 3.3 There exists a $G_{i}-H D\left(7^{4}\right)$ for $i=1,2$.
Proof Let $G_{i}-H D\left(7^{4}\right)=\left(X, \mathcal{B}_{i}\right)$ and $X=Z_{7} \times Z_{4}$. Then the family \mathcal{B}_{i} is listed in the following.
$\mathcal{B}_{1}: \quad\left(0_{0}, 5_{3}, 6_{2}, 1_{1}, 0_{1}, 1_{0}\right) \bmod (7,4) ; \quad\left(0_{0}, 3_{3}, 0_{2}, 3_{1}, 3_{2}, 3_{0}\right)+i_{j} \quad(0 \leq i \leq 6, j=0,1)$.
$\mathcal{B}_{2}: \quad\left(5_{3}, 6_{2}, 1_{1}, 0_{0}, 0_{1}, 1_{0}\right) \bmod (7,4) ; \quad\left(3_{3}, 0_{2}, 3_{1}, 0_{0}, 0_{1}, 0_{3}\right)+i_{j} \quad(0 \leq i \leq 6, j=0,1)$.
Lemma 3.4 There exist a $\left(28+w, G_{2}, 1\right)-O P D(O C D)$ for $w=2,5,9,12$ and a $\left(14+w, G_{2}, 1\right)$ $O P D(O C D)$ for $w=9,12$.

Proof $\left(30, G_{2}, 1\right)-O P D \quad X=\left(Z_{7} \times Z_{4}\right) \bigcup\left\{x_{1}, x_{2}\right\}$
$\left(0_{0}, x_{1}, \overline{\left.5_{2}, 6_{1}, x_{2}, 5_{0}\right),\left(4_{3}\right.}, x_{2}, 0_{1}, 5_{2}, x_{1}, 3_{3}\right),\left(4_{2}, 0_{0}, 3_{2}, 1_{1}, 6_{0}, 2_{0}\right),\left(3_{1}, 0_{1}, 6_{3}, 1_{1}, 5_{0}, 3_{0}\right)$,
$\left(3_{2}, 0_{2}, 5_{3}, 1_{2}, 6_{1}, 4_{2}\right),\left(3_{3}, 0_{3}, 2_{0}, 1_{3}, 3_{2}, 2_{3}\right),\left(5_{1}, 6_{2}, 0_{0}, 2_{3}, 6_{3}, 1_{3}\right),\left(2_{2}, 4_{3}, 4_{1}, 0_{0}, 2_{1}, 6_{3}\right) \bmod (7,-)$;
$\left(0_{0}, 0_{1}, 4_{0}, 5_{0}, 6_{0}, 6_{1}\right),\left(6_{0}, 1_{1}, 1_{0}, 5_{0}, 6_{1}, 3_{0}\right),\left(0_{0}, 2_{1}, 6_{0}, 2_{0}, 4_{0}, 3_{0}\right),\left(1_{0}, 3_{1}, 3_{0}, 0_{0}, 6_{0}, 4_{0}\right)$,
$\left(2_{0}, 4_{1}, 4_{0}, 1_{0}, 3_{0}, 6_{0}\right),\left(3_{0}, 5_{1}, 2_{0}, 5_{0}, 6_{1}, 4_{0}\right)$.
$\underline{\left(33, G_{2}, 1\right)-O P D} \quad X=\left(Z_{15} \times Z_{2}\right) \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}$
$\left(5_{0}, 0_{0}, 3_{0}, 6_{1}, x_{1}, x_{2}\right),\left(0_{1}, 7_{1}, 2_{1}, 0_{0}, x_{2}, x_{3}\right),\left(4_{0}, 0_{0}, 5_{1}, 8_{1}, x_{3}, x_{1}\right),\left(10_{1}, 0_{0}, 9_{1}, 11_{1}, 6_{1}, 3_{1}\right)$,
$\left(2_{0}, 0_{1}, 3_{0}, 1_{0}, 8_{0}, 10_{0}\right) \bmod (15,-)$.
$\underline{\left(23, G_{2}, 1\right)-O P D} \quad X=\left(Z_{3} \times Z_{7}\right) \bigcup\left\{x_{1}, x_{2}\right\}$
$\left(0_{0}, x_{1}, 0_{2}, 2_{1}, x_{2}, 1_{2}\right),\left(0_{3}, x_{1}, 1_{5}, 0_{4}, 1_{3}, 1_{1}\right),\left(1_{6}, x_{2}, 0_{4}, 2_{5}, x_{1}, 1_{4}\right),\left(0_{1}, x_{2}, 1_{3}, 0_{2}, 1_{4}, 0_{4}\right)$,
$\left(2_{2}, 0_{0}, 2_{6}, 1_{4}, 0_{1}, 1_{6}\right),\left(0_{3}, 0_{0}, 1_{1}, 0_{5}, 2_{1}, 0_{1}\right),\left(0_{3}, 0_{1}, 0_{4}, 0_{6}, 1_{2}, 1_{1}\right),\left(1_{5}, 0_{2}, 1_{6}, 0_{3}, 2_{5}, 1_{2}\right)$,
$\left(2_{0}, 0_{2}, 0_{4}, 0_{5}, 1_{0}, 2_{2}\right),\left(1_{3}, 0_{0}, 1_{6}, 2_{4}, 0_{6}, 0_{1}\right),\left(0_{0}, 0_{1}, 1_{5}, 2_{3}, 0_{4}, 1_{6}\right),\left(0_{2}, 0_{0}, 0_{6}, 2_{5}, 2_{6}, 1_{1}\right) \bmod (3,-)$.
$\underline{\left(37, G_{2}, 1\right)-O P D} \quad X=\left(Z_{5} \times Z_{7}\right) \bigcup\left\{x_{1}, x_{2}\right\}$
$\left(0_{0}, x_{1}, 2_{2}, 1_{1}, x_{2}, 3_{1}\right),\left(0_{3}, x_{1}, 2_{5}, 2_{4}, 1_{4}, 3_{5}\right),\left(4_{6}, x_{2}, 0_{4}, 1_{5}, x_{1}, 0_{1}\right),\left(4_{3}, x_{2}, 0_{1}, 3_{2}, 1_{5}, 3_{0}\right)$,
$\left(0_{2}, 0_{0}, 0_{3}, 4_{0}, 3_{0}, 2_{3}\right),\left(3_{4}, 0_{0}, 1_{5}, 2_{0}, 1_{4}, 4_{0}\right),\left(4_{3}, 0_{1}, 4_{4}, 1_{1}, 2_{1}, 4_{2}\right),\left(4_{5}, 0_{1}, 4_{6}, 2_{1}, 1_{1}, 2_{6}\right)$,
$\left(4_{4}, 0_{2}, 4_{5}, 1_{2}, 2_{0}, 4_{0}\right),\left(4_{6}, 0_{2}, 4_{3}, 2_{2}, 1_{2}, 0_{0}\right),\left(4_{5}, 0_{3}, 4_{6}, 1_{3}, 4_{1}, 2_{0}\right),\left(4_{6}, 0_{4}, 1_{3}, 1_{4}, 3_{2}, 0_{1}\right)$,
$\left(3_{6}, 0_{0}, 1_{6}, 0_{1}, 3_{0}, 2_{6}\right),\left(2_{6}, 0_{5}, 3_{4}, 0_{3}, 3_{5}, 4_{6}\right),\left(1_{4}, 1_{6}, 2_{0}, 0_{5}, 3_{6}, 4_{3}\right),\left(2_{2}, 0_{1}, 2_{0}, 0_{3}, 4_{5}, 1_{4}\right)$,
$\left(2_{4}, 0_{1}, 1_{5}, 0_{2}, 0_{5}, 3_{5}\right),\left(4_{2}, 0_{0}, 4_{1}, 0_{4}, 1_{0}, 4_{6}\right),\left(4_{3}, 0_{6}, 0_{2}, 0_{5}, 4_{6}, 0_{3}\right) \bmod (5,-)$.
$\left(26, G_{2}, 1\right)-O P D \quad X=Z_{23} \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}$
$\left(0,5,1,7, x_{1}, x_{2}\right),\left(0,10,2,11, x_{3}, 5\right) \bmod 23$.
$\underline{\left(40, G_{2}, 1\right)-O P D} \quad X=Z_{37} \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}$
$\left(0,7,1,10, x_{1}, x_{2}\right),\left(0,12,1,14, x_{3}, 9\right),(0,17,2,18,4,7) \bmod 37$.
It is easy to see that $L(\mathcal{B})=P_{2}$ for $v=30,23,37$ and $L(\mathcal{B})=C_{3}$ for $v=33,26,40$. Obviously, each $L(\mathcal{B})$ is a subgraph of G_{2}, so each $O C D$ can be obtained from the $O P D$ by adding a block containing this $L(\mathcal{B})$.

By Lemmas 1.1, 2.1, 3.1, 3.3 and 3.4, we get the following lemma.
Lemma 3.5 There exists a $\left(28+w, G_{i}, 1\right)-O P D(O C D)$ for $2 \leq w \leq 6, i=1,2$.
Theorem 3.1 There exists a $\left(v, G_{i}, 1\right)-O P D(O C D)$ for $i=1,2, v \equiv 2,3,4,5,6(\bmod 7)$.
Proof For clearance, we list Tables 1 and 2 to prove the theorem.

$v(\bmod 14)$	$w=2,3,4,5,6$	$7+w=9,10,11,12,13$
$H D$	14^{t+2}	$7^{2 t+1}$
$I D(v, w)$	$(14+w, w)$	$(7+w, w)$
$O P D(O C D)(v)$	$14+w, 28+w$	$7+w$

Table 1 Construction of a $\left(v, G_{1}, 1\right)-O P D(O C D)(t \geq 1)$

$v(\bmod 14)$	$w=2,3,4,5,6,9,12$	$w=10,11,13$
$H D$	14^{t+2}	$7^{2 t+1}$
$I D(v, w)$	$(14+w, w)$	$(7+w, w)$
$O P D(O C D)(v)$	$14+w, 28+w$	$7+w$

Table 2 Construction of a $\left(v, G_{2}, 1\right)-O P D(O C D)(t \geq 1)$
The desired designs in the tables refer to Lemmas 1.2, 2.1, 2.2, 3.1, 3.2, 3.4, 3.5.

4. Packings and coverings for $\lambda>1$

Lemma 4.1([5]) Given positive integers v, λ and μ. Let X be a v set.
(1) Suppose there exists a $(v, G, \lambda)-O P D=(X, \mathcal{A})$ with leave-edge graph $L_{\lambda}(\mathcal{A})$ and $L_{\lambda}(\mathcal{A}) \subset$ G. Then there exists a $(v, G, \lambda)-O C D$ with the repeat-edge graph $G \backslash L_{\lambda}(\mathcal{A})$.
(2) Suppose there exist both a $(v, G, \lambda)-O P D=(X, \mathcal{A})$ (with leave-edge graph $L_{\lambda}(\mathcal{A})$) and a $(v, G, \mu)-O P D=(X, \mathcal{B})$ (with leave-edge graph $\left.L_{\mu}(\mathcal{B})\right)$. If $\left|L_{\lambda}(\mathcal{A})\right|+\left|L_{\mu}(\mathcal{B})\right|=l_{\lambda+\mu}$, then there exists a $(v, G, \lambda+\mu)-O P D=(X, \mathcal{A} \cup \mathcal{B})$ and its leave-edge graph is just $L_{\lambda}(\mathcal{A}) \bigcup L_{\mu}(\mathcal{B})$.
(3) Suppose there exist both a $(v, G, \lambda)-O C D=(X, \mathcal{A})$ (with repeat-edge graph $R_{\lambda}(\mathcal{A})$) and a $(v, G, \mu)-O C D=(X, \mathcal{B})$ (with repeat-edge graph $R_{\mu}(\mathcal{B})$). If $\left|R_{\lambda}(\mathcal{A})\right|+\left|R_{\mu}(\mathcal{B})\right|=r_{\lambda+\mu}$, then there exists a $(v, G, \lambda+\mu)-O C D=(X, \mathcal{A} \cup \mathcal{B})$ and its repeat-edge graph is just $R_{\lambda}(\mathcal{A}) \cup R_{\mu}(\mathcal{B})$.
(4) Suppose there exist both a $(v, G, \lambda)-O P D=(X, \mathcal{A})$ (with leave-edge graph $L_{\lambda}(\mathcal{A})$) and a $(v, G, \mu)-O C D=(X, \mathcal{B})\left(\right.$ with repeat-edge graph $\left.R_{\mu}(\mathcal{B})\right)$. If $L_{\lambda}(\mathcal{A}) \supset R_{\mu}(\mathcal{B})$ and $\left|L_{\lambda}(\mathcal{A})\right|-\left|R_{\mu}(\mathcal{B})\right|=$ $l_{\lambda+\mu}$, then there exists a $(v, G, \lambda+\mu)-O P D=(X, \mathcal{A} \cup \mathcal{B})$ with the leave-edge graph $L_{\lambda}(\mathcal{A}) \backslash R_{\mu}(\mathcal{B})$.
(5) Suppose there exist both a $(v, G, \lambda)-O C D=(X, \mathcal{A})$ (with repeat-edge graph $R_{\lambda}(\mathcal{A})$), and a $(v, G, \mu)-O P D=(X, \mathcal{B})\left(\right.$ with leave-edge graph $\left.L_{\mu}(\mathcal{B})\right)$. If $R_{\lambda}(\mathcal{A}) \supset L_{\mu}(\mathcal{B})$ and $\left|R_{\lambda}(\mathcal{A})\right|-\left|L_{\mu}(\mathcal{B})\right|=$ $r_{\lambda+\mu}$, then there exists a $(v, G, \lambda+\mu)-O C D=(X, \mathcal{A} \cup \mathcal{B})$ with the repeat-edge graph $R_{\lambda}(\mathcal{A}) \backslash L_{\mu}(\mathcal{B})$. In this section, we only need to consider $1<\lambda<\lambda_{\min }$, where $\lambda_{\text {min }}$ denotes the minimal λ such that there exists a $\left(v, G_{i}, \lambda\right)-G D$ for $v \geq|E(G)|, i=1,2$. Here $\lambda_{\min }=7$.

Lemma 4.2 There exist a $\left(7+w, G_{1}, \lambda\right)-O P D(O C D)$ for $\lambda>1, w=2,6$ and a $\left(7+w, G_{2}, \lambda\right)$ $O P D(O C D)$ for $\lambda>1, w=6$.

Proof By Lemmas 3.1 and 4.1, for $1<\lambda \leq 6, L_{\lambda}=L_{1} \bigcup L_{\lambda-1}, R_{\lambda}=G_{i} \backslash L_{\lambda}$.
Lemma 4.3 There exists a $\left(7+4, G_{i}, \lambda\right)-O P D(O C D)$ for $\lambda>1$ and $i=1,2$.
Proof By Lemmas 3.1 and 4.1, for $1<\lambda \leq 6, L_{\lambda}=L_{\lambda-1} \backslash R_{1}, R_{\lambda}=G_{i} \backslash L_{\lambda}$.
Lemma 4.4 There exist a $\left(7+3, G_{i}, \lambda\right)$-OPD $(O C D)$ for $\lambda>1, i=1,2$ and a $\left(7+5, G_{1}, \lambda\right)$ $O P D(O C D)$ for $\lambda>1$.

Proof By Lemma 3.1, $L\left(\mathcal{A}_{1}(5)\right)=P_{4}$. Further, for $i=1,2$, in $G_{i}-I D(10,3)=\left(Z_{7} \cup W, W, \mathcal{B}\right)$ constructed in Lemma 2.1, there exists an $x \in W$ such that x adjoins with a pendant vertex, so it is easy to obtain the desired $O P D$ with leave-edge P_{4}. We list Table 3 for clearance.

λ	1	2	3	4	5	6
l_{λ}	3	$6=2 l_{1}$	$2=l_{1}-r_{2}$	$5=l_{1}+l_{3}$	$1=l_{3}-r_{2}$	$4=l_{1}+l_{5}$
L_{λ}	P_{4}	\square	P_{3}	\square	P_{2}	C_{4}
r_{λ}	4	1	5	2	6	3
R_{λ}	$G_{i} \backslash P_{4}$	P_{2}	$G_{i} \backslash P_{3}$	$G_{i} \backslash L_{4}$	$G_{i} \backslash P_{2}$	$G_{i} \backslash C_{4}$

Table 3 Leave (repeat)-edge graphs of the $O P D s(O C D s)$
Lemma 4.5 There exists a $\left(14+w, G_{i}, \lambda\right)-O P D(O C D)$ for $\lambda>1,2 \leq w \leq 6$, and $i=1,2$.

Proof For $w=2,4,6$, the conclusion holds by the proofs of Lemmas 4.2 and 4.3 ; For $w=5$, by Lemma 3.2, $L\left(\mathcal{A}_{i}(5)\right)=P_{4}$ for $i=1,2$; For $w=3$, similarly to Lemmas 4.4 and 4.5, we can obtain a $\left(14+w, G_{i}, \lambda\right)-O P D$ with the leave-edge graph P_{4}.
$\mathcal{A}_{1}(3): \mathcal{C}:\left(0_{0}, x_{1}, 0_{1}, x_{2}, 1_{1}, 3_{0}\right) ; \quad \mathcal{C}^{\prime}:\left(0_{0}, 0_{1}, x_{1}, x_{2}, 1_{1}, x_{3}\right)$.
$\mathcal{A}_{2}(3): \mathcal{C}:\left(x_{1}, 3,4,7,0, x_{3}\right) ; \quad \mathcal{C}^{\prime}:\left(x_{1}, 3,4,7, x_{2}, x_{3}\right)$.
Lemma 4.6 There exist a $\left(28+w, G_{2}, \lambda\right)-O P D(O C D)$ for $\lambda>1, w=2,5,9,12$, and a $\left(14+w, G_{2}, \lambda\right)-O P D(O C D)$ for $\lambda>1, w=9,12$.

Proof By Lemma 3.4, for $v=30,23,37$, the leave-edge graph of the $\left(v, G_{2}, 1\right)-O P D$ is P_{2}. In the following, we will obtain $\left(v, G_{2}, 1\right)-O P D$ with leave-edge graph P_{4} for $v=33,26,40$.

$$
\begin{array}{rl}
\left(33, G_{2}, 1\right)-O P D & \mathcal{C}:\left(5_{0}, 0_{0}, 3_{0}, 6_{1}, x_{1}, x_{2}\right),\left(4_{1}, 11_{1}, 6_{1}, 4_{0}, x_{2}, x_{3}\right),\left(0_{0}, 11_{0}, 1_{1}, 4_{1}, x_{3}, x_{1}\right) . \\
& \mathcal{C}^{\prime}:\left(x_{3}, 0_{0}, 3_{0}, 6_{1}, x_{1}, x_{2}\right),\left(4_{1}, 11_{1}, 6_{1}, 4_{0}, x_{2}, 5_{0}\right),\left(0_{0}, 11_{0}, 1_{1}, 4_{1}, 5_{0}, x_{1}\right) . \\
\left(26, G_{2}, 1\right)-O P D & \mathcal{C}:\left(0,5,1,7, x_{1}, x_{2}\right),\left(5,15,7,16, x_{3}, 10\right),\left(7,17,9,18, x_{3}, 12\right) . \\
& \mathcal{C}^{\prime}:\left(x_{3}, 5,1,7, x_{1}, x_{2}\right),(5,15,7,16,0,10),(7,17,9,18,0,12) . \\
\left(40, G_{2}, 1\right)-O P D & \mathcal{C}:\left(0,7,1,10, x_{1}, x_{2}\right),\left(7,19,8,21, x_{3}, 16\right),\left(10,22,11,24, x_{3}, 19\right) . \\
& \mathcal{C}^{\prime}:\left(x_{3}, 7,1,10, x_{1}, x_{2}\right),(7,19,8,21,0,16),(10,22,11,24,0,19) .
\end{array}
$$

So the lemma holds by Lemmas 4.2 and 4.4.
By Lemmas 3.3, 4.2-4.5, we derive the following lemma.
Lemma 4.7 There exist a $\left(28+w, G_{1}, \lambda\right)-O P D(O C D)$ for $2 \leq w \leq 6, \lambda>1$, and a $(28+$ $\left.w, G_{2}, \lambda\right)-O P D(O C D)$ for $w=3,4,6, \lambda>1$.

Similarly to the proof of Theorem 3.1, by Lemmas 1.1, 1.2, 2.1, 2,2, 4.2-4.7, we obtain the following result.

Theorem 4.1 There exists a $\left(v, G_{i}, \lambda\right)-O P D(O C D)$ for $\lambda>1, i=1,2$ and $v \equiv 2,3,4,5,6(\bmod 7)$.

References

[1] GE Gennian. Existence of holey LSSOM of type 2^{n} with application to G_{7}-packing of K_{v} [J]. J. Statist. Plann. Inference, 2001, 94(2): 211-218.
[2] KANG Qingde, WANG Zhiqin. Optimal packings and coverings of λK_{v} with graph $K_{5}-P_{5}$ [J]. Bull. Inst. Combin. Appl., 2004, 41: 22-41.
[3] ZHANG Shucheng, YIN Jianxing. Packing of K_{v} with certain graphs of five vertices [J]. J. Statist. Plann. Inference, 2002, 106(1-2): 387-408.
[4] KANG Qingde, ZHANG Yanfang, ZUO Huijuan. Packings and coverings of λK_{v} by k-circuits with one chord [J]. Discrete Math., 2004, 279(1-3): 287-315.
[5] KANG Qingde, LIANG Zhihe. Optimal packings and coverings of $\lambda D K_{v}$ with k-circuits [J]. J. Combin. Math. Combin. Comput., 2001, 39: 203-253.
[6] DU Yanke, KANG Qingde. Packings and coverings of a graph with 6 vertices and 7 edges [J]. J. Math. Res. Exposition, 2008, 28(4): 799-806.
[7] TIAN Zihong, DU Yanke, KANG Qingde. Decomposing complete graphs into isomorphic subgraphs with six vertices and seven edges [J]. Ars Combin., 2006, 81: 257-279.
[8] KANG Qingde, DU Yanke, TIAN Zihong. Decomposition of λK_{v} into some graph with six vertices and seven edges [J]. J. Statist. Plann. Inference, 2006, 136(4): 1394-1409.

[^0]: Received February 13, 2009; Accepted January 18, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10671055).

 * Corresponding author

 E-mail address: dyk39@sohu.com (Y. K. DU)

