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Abstract A maximum (v, G, λ)-PD and a minimum (v, G, λ)-CD are studied for 2 graphs of

6 vertices and 7 edges. By means of “difference method” and “holey graph design”, we obtain

the result: there exists a (v, Gi, λ)-OPD (OCD) for v ≡ 2, 3, 4, 5, 6 (mod 7), λ ≥ 1, i = 1, 2.
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1. Introduction

There is a quite long time to the research of the graph packing and covering designs, which

involved the simple graphs with less vertices and less edges [1–3], and some special graphs [4, 5].

But there are very few conclusions for the simple graphs with more than five vertices. In this

paper, the discussed 2 graphs are listed as follows. For convenience, as a block in a design, the

graphs G1 and G2 are denoted by (a, b, c, d, e, f) according to the following vertex-label. The

related definitions and notations are referred to literature [6].
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Figure 1 Graphs G1 and G2

In what follows, we shall give the constructions of a max(v, Gi, λ)-PD and a min(v, Gi, λ)-CD

for all positive integers v, λ and i = 1, 2, all of which are optimal. Our recursive constructions

use the following standard “Filling in Holes” method.

Lemma 1.1 ([7]) For given graph G and positive integers h, w, m, λ, if there exist a G-HDλ(hm),

Received February 13, 2009; Accepted January 18, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10671055).
* Corresponding author

E-mail address: dyk39@sohu.com (Y. K. DU)



60 Y. K. DU and Q. D. KANG

a G-IDλ(h + w, w) and a (w, G, λ)-OPD (OCD) (or a (h + w, G, λ)-OPD (OCD)), then a

(mh + w, G, λ)-OPD (OCD) exists, too.

Lemma 1.2 ([7]) There exist a Gk-HD(72t+1) and a Gk-HD(14t+2) for k = 1, 2, t ≥ 1.

Lemma 1.3 ([7, 8]) There exists a (v, Gi, 1)-GD if and only if v ≡ 0, 1(mod 7) for i =

1, 2 and (v, i) 6= (7, 2). There exists a (v, Gi, 7)-GD (i = 1, 2) for any v ≥ 6.

2. Constructions of ID

It is easy to prove that there exists no G2-ID(7 + w, w) for w = 2, 5.

Lemma 2.1 There exist a G1-ID(7+w, w) for 2 ≤ w ≤ 6, and a G2-ID(7+w, w) for w = 3, 4, 6.

Proof Let Gi-ID(7 + w, w) = (X, W,B) for i = 1, 2, where |B| = 3 + w. Then the family B

consists of the following blocks.

[Graph G1]

w = 2: X = Z7

⋃
{x1, x2}, W = {x1, x2}

(x1, 3, 6, 0, 1, 4), (x2, 4, 5, 0, 6, x1), (2, 1, 4, x1, x2, 0), (1, 0, 3, x2, 6, 4), (2, 3, 5, 6, 0, 1).

w = 3: X = (Z3 × Z3)
⋃
{x}, W = Z3 × {2}

(02, x, 00, 10, 20, 21), (11, 00, 01, 02, 22, x) mod (3,−).

w = 4: X = Z7

⋃
{x1, . . . , x4}, W = {x1, . . . , x4}

(0, 3, 1, x1, x2, x4), (1, 4, 2, x2, x3, x4), (2, 5, 3, x1, x3, x4), (3, 6, 4, x2, x3, x4),

(4, 0, 5, x1, x3, x4), (5, 1, 6, x2, x3, x4), (6, 2, 0, x3, x1, x4).

w = 5: X = Z7

⋃
{x1, . . . , x5}, W = {x1, . . . , x5}

(x1, 3, 6, 2, 0, x4), (x3, 6, 5, 4, 2, x5), (1, 2, 4, x1, x2, x4), (x2, 4, 6, 0, 5, x5),

(x4, 1, 5, 0, 3, x1), (x5, 4, 0, 2, 1, x3), (2, 5, 3, x2, x4, x5), (1, 0, 3, x3, 6, 4).

w = 6: X = (Z3 × Z4)
⋃
{x}, W = Z3 × {2, 3}

(02, x, 00, 10, 11, 21), (21, 03, 20, 02, 22, 23), (03, 11, 01, x, 10, 20) mod (3,−).

[Graph G2] In the G2-designs, the vertex sets are the same as those of G1-designs, and the block

sets are listed as follows.

w = 3: (02, x, 11, 10, 01, 21), (21, 02, 20, 00, 12, 01) mod (3,−).

w = 4: (x1, 0, 3, 1, 6, x4), (x2, 2, 3, 5, 4, x3), (x3, 4, 0, 5, 2, x4), (x4, 6, 0, 2, 5, x2),

(x1, 2, 1, 4, 3, x4), (x2, 3, 4, 6, 1, x4), (x3, 6, 5, 1, 0, x1).

w = 6: (00, 02, 21, x, 13, 20), (02, 01, 03, 11, 20, x), (10, 03, 00, 21, 02, 20) mod (3,−). 2

Lemma 2.2 There exist a Gi-ID(14 + w, w) for i = 1, 2, 2 ≤ w ≤ 6, and a G2-ID(14 + w, w)

for w = 9, 12.

Proof Let Gi-ID(14 + w, w) = (X,B) for i = 1, 2, where |B| = 13 + 2w.

[Graph G1] Let X = (Z7 × Z2)
⋃
{x1, . . . , xw} for 2 ≤ w ≤ 5 and X = ((Z7

⋃
{A, B}) ×

Z2)
⋃
{C, D} for w = 6. The family B consists of the following blocks.

w = 2: (00, x1, 11, x2, 21, 40), (01, 31, 11, 10, 40, 30) mod (7,−);

(00, 60, 10, 30, 40, 20), (20, 60, 30, 50, 00, 40), (40, 60, 50, 10, 20, 00).
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w = 3: (00, x1, 01, x2, 11, 30) mod (7,−); (00, x3, 51, 21, 31, 60) + i0 (2 ≤ i ≤ 6);

(00, 60, 10, 20, 50, 30), (01, 21, 11, 61, 51, 31), (20, 60, 30, 40, 50, 00), (40, 60, 50, 10, 00, 30),

(41, 21, 31, 51, 61, 00), (00, x3, 51, 21, 61, 60), (10, x3, 61, 31, 41, 51).

w = 4: (21, x1, 00, x2, 10, x4), (00, x3, 31, 30, 20, x4), (61, 51, 00, 41, 31, 10) mod (7,−).

w = 5: (21, x1, 00, x2, 41, x4), (00, x3, 11, 01, 41, x4), mod (7,−);

(00, x5, 31, 61, 40, 50) + i0 (i = 0, 1, 2, 3, 5);

(00, 20, 10, 60, 50, 30), (40, 20, 30, 50, 10, 60), (40, x5, 01, 31, 60, 20), (60, x5, 21, 51, 50, 40).

w = 6: (00, C, 01, D, 40, 41) + i0 (i = 0, 1, 2, 3, 5); (00, A0, 21, B0, 31, 10) mod (7, 2);

(00, 20, 10, 60, 50, 30), (40, 20, 30, 50, 10, 60) mod (−, 2);

(40, C, 41, D, 60, 61), (60, C, 61, D, 50, 51).

[Graph G2] Let X = (Z7 ×Z2)
⋃
{x1, x2} for w = 2 and X = Z14

⋃
{x1, . . . , xw} for the other w.

The family B consists of the following blocks.

w = 2: (00, 01, 31, 11, 20, x2) + i0 (i = 2, 3, 4, 6); (61, 00, 51, 30, x1, 10) + i0 (1 ≤ i ≤ 5);

(00, 01, 31, 11, 50, x2), (10, 11, 41, 21, 00, x2), (50, 51, 11, 61, 40, x2), (61, 00, 51, x1, 30, 10),

(51, 60, 41, 20, 30, 00), (x1, 30, x2, 40, 10, 20), (00, 30, 10, 20, 60, x2), (x1, 50, x2, 60, 20, 00).

w = 3: (x1, 3, 4, 7, 0, x3), (x1, 4, 12, 10, 5, 0), (x1, 8, 9, 12, 13, 4), (x2, 6, 11, 4, 9, 1),

(x2, 1, 8, 3, 12, 10), (x3, 1, 12, 6, 13, 3), (8, 11, 10, 7, x2, 2), (3, x3, 9, 2, 0, 11),

(13, 9, 0, 10, 11, 5), (x1, 1, 7, 9, 11, x3), (x2, 5, 3, 10, 13, 11), (13, 4, 5, 8, 0, 11),

(x2, 0, 2, 7, 11, x1), (12, 13, 6, 7, 5, 10), (x3, 0, 6, 8, 10, x1), (1, 13, 2, 5, 10, 8),

(0, 1, 2, 4, 11, 6), (5, 6, 3, 9, 7, 13), (x3, 11, 2, 12, 5, x2).

w = 4: (x1, 5, 9, 6, 11, x2), (x2, 5, 12, 7, 6, 4), (x2, 10, 1, 11, 0, x4), (13, 11, 2, 12, 3, x2),

(x2, 3, 7, 4, 13, 9), (x3, 12, 1, 6, 10, x1), (x2, 8, 9, 12, 1, x1), (13, 0, 11, 5, 2, 9),

(x1, 0, 12, 3, 4, x4), (x1, 7, 11, 8, 12, 3), (x3, 1, 3, 8, 7, 9), (x3, 4, 6, 11, 13, 8),

(x4, 3, 5, 10, 13, 1), (x4, 0, 2, 7, 5, 9), (x4, 2, 3, 6, 9, x3), (x1, 2, 8, 10, 13, 0),

(0, 1, 2, 4, 6, x3), (13, 6, 10, 7, 8, 12), (x3, 9, 10, 0, 5, 13), (1, 13, 4, 9, 7, 10),

(x4, 4, 5, 8, 11, 2).

w = 5: (x1, 0, 4, 1, 11, x2), (x1, 7, 11, 8, 13, x4), (x1, 2, 6, 3, 4, 13), (x5, 1, 9, 7, 2, 4),

(6, x2, 7, 5, x1, 13), (x5, 10, 1, 11, 9, x3), (x2, 1, 8, 3, 9, 13), (x4, 3, 7, 4, 9, 0),

(3, x5, 8, 0, 12, x2), (x5, 12, 1, 6, 13, x4), (x3, 9, 11, 3, 7, 0), (13, 1, 2, 5, 0, 7),

(9, x1, 12, 5, 8, 13), (x4, 6, 7, 10, 13, 12), (13, 4, 6, 11, 9, 8), (x2, 0, 9, 10, 2, 12),

(5, x3, 6, 0, x5, 9), (x3, 8, 2, 10, 13, 4), (2, x4, 12, 0, 9, 8), (13, 3, 5, 10, 2, 11),

(x4, 5, 4, 8, 7, x5), (x3, 4, 10, 12, 11, x1), (x2, 11, 2, 12, 13, x3).

w = 6: (1, x2, 3, 8, x4, 13), (8, x1, 11, 7, 13, x3), (x1, 0, 4, 1, 13, 2), (x2, 0, 9, 10, 2, 4),

(5, x3, 6, 0, 13, x6), (x3, 4, 10, 12, 1, x1), (x1, 2, 6, 3, 4, 10), (2, x3, 10, 8, 7, 13),

(x4, 5, 4, 8, 13, x2), (x3, 9, 11, 3, 13, x4), (x4, 3, 7, 4, 9, 13), (2, x4, 12, 0, 13, 8),

(6, x4, 10, 7, 8, x6), (6, x2, 7, 5, x1, x3), (4, x5, 9, 6, 13, 2), (0, x5, 12, 3, 13, 6),

(x5, 1, 9, 7, 13, x2), (5, x1, 12, 9, 11, 13), (0, x6, 12, 7, 8, 5), (11, x6, 9, 8, 0, 13),

(x6, 3, 10, 5, 13, 2), (x5, 10, 1, 11, 8, 12), (1, 13, 11, 6, 3, 4), (x6, 1, 5, 2, 4, x5),

(x2, 11, 2, 12, 13, x5).

w = 9: (0, x1, 4, 1, x6, 11), (10, x2, 12, 4, x1, 1), (5, x1, 9, 6, x3, x2), (7, x2, 1, 13, 5, x5),
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(8, x3, 12, 9, x2, 10), (7, x1, 11, 8, x4, x6), (5, x2, 11, 0, 3, x5), (11, x3, 1, 10, 3, x6),

(3, x3, 13, 4, x4, x8), (4, x4, 13, 0, x5, 2), (2, x4, 11, 1, 10, x7), (3, x6, 5, 10, x7, x8),

(6, x6, 9, 7, x3, 11), (7, x5, 12, 3, x7, 13), (4, x6, 12, 8, x9, x7), (6, x7, 8, 13, x8, 3),

(7, x9, 8, 10, 12, x8), (10, x7, 1, 9, x8, x9), (2, x9, 5, 12, 8, 11), (8, x4, 9, 5, 0, x9),

(2, x1, 13, 3, x5, x6), (6, x9, 13, 11, 1, 10), (3, x8, 7, 1, x9, 4), (10, x4, 12, 6, x5, x1),

(12, x8, 2, 11, 0, 7), (2, x3, 7, 0, 9, 11), (0, x8, 4, 9, x9, x7), (5, x5, 9, 13, 1, 3),

(x7, 2, 4, 5, 0, 6), (8, x5, 0, 6, 1, 10), (2, x2, 3, 6, x6, 0).

w = 12:(8, x3, 12, 9, x2, 0), (4, x4, 13, 0, x9, 10), (10, x2, 12, 4, x8, x1), (3, x6, 5, 10, x9, 1),

(7, x5, 12, 3, x7, 13), (11, x3, 1, 10, x10, x5), (3, x8, 7, 1, x7, 11), (4, x6, 12, 8, x7, 10),

(10, x4, 12, 6, x1, x12), (0, x1, 4, 1, x6, x5), (2, x1, 13, 3, x5, x8), (3, x3, 13, 4, x4, x6),

(5, x1, 9, 6, x8, x2), (7, x1, 11, 8, x12, x5), (2, x4, 11, 1, x6, x7), (12, x10, 8, 1, x7, 0),

(2, x9, 5, 12, 10, x12), (12, x8, 2, 11, x11, x12), (x12, 1, x11, 6, 10, 0), (7, x11, 13, 2, 12, x10),

(6, x9, 13, 11, x10, x12), (6, x6, 9, 7, x3, x10), (7, x2, 1, 13, x4, x9), (5, x5, 9, 13, x3, x9),

(0, x8, 4, 9, x12, x10), (5, x2, 11, 0, x10, x6), (10, x7, 1, 9, x11, x6), (8, x5, 0, 6, x8, x9),

(8, x4, 9, 5, 2, x12), (7, x9, 8, 10, x10, x12), (2, x3, 7, 0, x10, 4), (4, x12, 3, 11, 6, 8),

(6, x7, 8, 13, x8, x11), (9, x11, 5, 11, 3, 7), (2, x2, 3, 6, 9, 5), (3, x10, 10, 0, x11, x5),

(x7, 2, 4, 5, 0, x11). 2

3. Packings and coverings for λ = 1

In what follows, the symbols Cn, Pn and St(n) denote the graphs respectively: cycle with n

vertices, path with n vertices, and star with n terminal vertices.

Lemma 3.1 There exist a (7 + w, G1, 1)-OPD (OCD) for 2 ≤ w ≤ 6, and a (7 + w, G2, 1)-

OPD (OCD) for w = 3, 4, 6.

Proof Let (7+w, Gi, 1)-OPD = (X,Ai(w)), where X is taken from the definition of vertex sets

in Gi-ID(7 + w, w) except for specification, and generally Ai(w)= (Bi(w)−C)
⋃
C′

⋃
D, where

Bi(w) is the block set of Gi-ID(7 + w, w) constructed in Lemma 2.1, C′ is the modification of C.

Bm(x → y) (or Bm(x ↔ y)) denotes that we replace x with y (or exchange x and y) in the mth

block of Bi(w).

For w = 2, 3 and i = 1, 2, a (7 + w, Gi, 1)-OPD is just the Gi-ID(7 + w, w), and L(Ai(2)) =

P2, L(Ai(3)) = C3 except that (i, w) 6= (2, 2) (ref. Lemma 2.1). As well, the leave-edge graph

L(Ai(6)) = P2, i = 1, 2, will be omitted, since the value of the end point in P2 does not affect

the constructions from OPD to OCD and from λ = 1 to λ > 1.

A1(4): C : B1, B2, B6, B7; C′ : B1(x2 → x3), B2(x4 → 0), B6(x4 → 0), B7(x4 ↔ 0).

L(A1(4)) = {(x1, x3), (x1, x4), (x1, x2), (x2, x3), (x2, x4), (x2, 0)}.

A1(5): C : B1, B2; C′ : B1(0 → x3), B2(2 → x2); D : (x5, x2, x1, x4, x3, 0).

L(A1(5)) = {(2, x3), (x2, x4), (x3, x4)}.

A1(6): D : (x1, x2, x3, x4, x5, x6), (x5, x4, x6, x2, x3, x1).

A2(4): C : B1; C′ : B1(6 → x3). L(A2(4)) = {(6, x1), (x1, x2), (x1, x4), (x2, x4), (x2, x3), (x3, x4)}.

A2(6): X = Z11

⋃
{x1, x2} (3, 0, 5, 1, x1, x2) mod 11.
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Obviously, each L(Ai(w)) is a subgraph of Gi, so each OCD can be obtained by adding a

block containing this L(Ai(w)). 2

Lemma 3.2 There exists a (14 + w, Gi, 1)-OPD (OCD) for 2 ≤ w ≤ 6, i = 1, 2.

Proof Let (14+w, Gi, 1)-OPD = (X,Ai(w)), where X is taken from the definition of vertex set

in Gi-ID(14 + w, w) except for specification, and generally Ai(w)= (Bi(w)−C)
⋃
C′

⋃
D, where

Bi(w) is the block set of Gi-ID(14+w, w) constructed in Lemma 2.2, C′ is the modification of C.

For w = 2, 3 and i = 1, 2, a (14+w, Gi, 1)-OPD is just the Gi-ID(14+w, w) and L(Ai(2)) =

P2, L(Ai(3)) = C3. By the same reason stated in Lemma 3.1, L(Ai(6))= P2 (i = 1, 2) can be

omitted.

A1(4): C : (21, x1, 00, x2, 10, x4), (31, x1, 10, x2, 20, x4), (01, 61, 10, 51, 41, 20).

(00, x3, 31, 30, 20, x4), (51, x1, 30, x2, 40, x4);

C′ : (21, x1, 00, x2, 10, 31), (31, 20, 10, x2, x3, x4), (01, 61, 10, 51, 41, x1),

(00, x3, x4, 30, 20, 31), (51, x1, 30, x2, 40, 31).

L(A1(4)) = {(31, x1), (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4)}.

A1(5): C : (21, x1, 00, x2, 41, x4); C′ : (21, 00, x1, x2, 41, x4); D : (x4, x3, x5, x2, 00, x1).

L(A1(5)) = {(x1, x3), (x3, x2), (x2, 00)}.

A1(6): D : (A0, A1, B0, B1, C, D), (C, B1, D, A1, B0, A0).

A2(4): C : (x1, 5, 9, 6, 11, x2); C′ : (x1, 5, 9, 6, x3, x2).

L(A2(4)) = {(11, x1), (x1, x2), (x1, x4), (x2, x4), (x2, x3), (x3, x4)}.

A2(5): C : (x1, 7, 11, 8, 13, x4), (x2, 11, 2, 12, 13, x3), (x3, 8, 2, 10, 13, 4);

C′ : (x1, 7, 11, 8, x5, x4), (x2, 11, 2, 12, x4, x3), (x3, 8, 2, 10, x1, 4);

D : (x1, 13, x3, x2, x4, x5). L(A2(5)) = {(x3, x4), (x4, x5), (x5, x2)}.

A2(6): X = (Z9 × Z2)
⋃
{x1, x2}

(20, 01, 30, 10, x1, x2), (01, 00, 11, 31, x1, x2), (30, 00, 41, 51, 70, 01) mod (9,−).

Obviously, each L(Ai(w)) is a subgraph of Gi, so each OCD can be obtained from the OPD

by adding a block containing this L(Ai(w)). 2

Lemma 3.3 There exists a Gi-HD(74) for i = 1, 2.

Proof Let Gi-HD(74) = (X,Bi) and X = Z7×Z4. Then the family Bi is listed in the following.

B1 : (00, 53, 62, 11, 01, 10) mod(7, 4); (00, 33, 02, 31, 32, 30) + ij (0 ≤ i ≤ 6, j = 0, 1).

B2 : (53, 62, 11, 00, 01, 10) mod(7, 4); (33, 02, 31, 00, 01, 03) + ij (0 ≤ i ≤ 6, j = 0, 1). 2

Lemma 3.4 There exist a (28+w, G2, 1)-OPD (OCD) for w = 2, 5, 9, 12 and a (14+w, G2, 1)-

OPD (OCD) for w = 9, 12.

Proof (30, G2, 1)-OPD X = (Z7 × Z4)
⋃
{x1, x2}

(00, x1, 52, 61, x2, 50), (43, x2, 01, 52, x1, 33), (42, 00, 32, 11, 60, 20), (31, 01, 63, 11, 50, 30),

(32, 02, 53, 12, 61, 42), (33, 03, 20, 13, 32, 23), (51, 62, 00, 23, 63, 13), (22, 43, 41, 00, 21, 63)mod(7,−);

(00, 01, 40, 50, 60, 61), (60, 11, 10, 50, 61, 30), (00, 21, 60, 20, 40, 30), (10, 31, 30, 00, 60, 40),

(20, 41, 40, 10, 30, 60), (30, 51, 20, 50, 61, 40).
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(33, G2, 1)-OPD X = (Z15 × Z2)
⋃
{x1, x2, x3}

(50, 00, 30, 61, x1, x2), (01, 71, 21, 00, x2, x3), (40, 00, 51, 81, x3, x1), (101, 00, 91, 111, 61, 31),

(20, 01, 30, 10, 80, 100) mod (15,−).

(23, G2, 1)-OPD X = (Z3 × Z7)
⋃
{x1, x2}

(00, x1, 02, 21, x2, 12), (03, x1, 15, 04, 13, 11), (16, x2, 04, 25, x1, 14), (01, x2, 13, 02, 14, 04),

(22, 00, 26, 14, 01, 16), (03, 00, 11, 05, 21, 01), (03, 01, 04, 06, 12, 11), (15, 02, 16, 03, 25, 12),

(20, 02, 04, 05, 10, 22), (13, 00, 16, 24, 06, 01), (00, 01, 15, 23, 04, 16), (02, 00, 06, 25, 26, 11) mod (3,−).

(37, G2, 1)-OPD X = (Z5 × Z7)
⋃
{x1, x2}

(00, x1, 22, 11, x2, 31), (03, x1, 25, 24, 14, 35), (46, x2, 04, 15, x1, 01), (43, x2, 01, 32, 15, 30),

(02, 00, 03, 40, 30, 23), (34, 00, 15, 20, 14, 40), (43, 01, 44, 11, 21, 42), (45, 01, 46, 21, 11, 26),

(44, 02, 45, 12, 20, 40), (46, 02, 43, 22, 12, 00), (45, 03, 46, 13, 41, 20), (46, 04, 13, 14, 32, 01),

(36, 00, 16, 01, 30, 26), (26, 05, 34, 03, 35, 46), (14, 16, 20, 05, 36, 43), (22, 01, 20, 03, 45, 14),

(24, 01, 15, 02, 05, 35), (42, 00, 41, 04, 10, 46), (43, 06, 02, 05, 46, 03) mod (5,−).

(26, G2, 1)-OPD X = Z23

⋃
{x1, x2, x3}

(0, 5, 1, 7, x1, x2), (0, 10, 2, 11, x3, 5) mod 23.

(40, G2, 1)-OPD X = Z37

⋃
{x1, x2, x3}

(0, 7, 1, 10, x1, x2), (0, 12, 1, 14, x3, 9), (0, 17, 2, 18, 4, 7) mod 37.

It is easy to see that L(B) = P2 for v = 30, 23, 37 and L(B) = C3 for v = 33, 26, 40. Obviously,

each L(B) is a subgraph of G2, so each OCD can be obtained from the OPD by adding a block

containing this L(B). 2

By Lemmas 1.1, 2.1, 3.1, 3.3 and 3.4, we get the following lemma.

Lemma 3.5 There exists a (28 + w, Gi, 1)-OPD (OCD) for 2 ≤ w ≤ 6, i = 1, 2.

Theorem 3.1 There exists a (v, Gi, 1)-OPD (OCD) for i = 1, 2, v ≡ 2, 3, 4, 5, 6 (mod 7).

Proof For clearance, we list Tables 1 and 2 to prove the theorem.

v(mod14) w = 2, 3, 4, 5, 6 7 + w = 9, 10, 11, 12, 13

HD 14t+2 72t+1

ID(v, w) (14 + w, w) (7 + w, w)

OPD(OCD)(v) 14 + w, 28 + w 7 + w

Table 1 Construction of a (v, G1, 1)-OPD (OCD) (t ≥ 1)

v(mod 14) w = 2, 3, 4, 5, 6, 9, 12 w = 10, 11, 13

HD 14t+2 72t+1

ID(v, w) (14 + w, w) (7 + w, w)

OPD(OCD)(v) 14 + w, 28 + w 7 + w

Table 2 Construction of a (v, G2, 1)-OPD (OCD) (t ≥ 1)

The desired designs in the tables refer to Lemmas 1.2, 2.1, 2.2, 3.1, 3.2, 3.4, 3.5. 2
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4. Packings and coverings for λ > 1

Lemma 4.1([5]) Given positive integers v, λ and µ. Let X be a v set.

(1) Suppose there exists a (v, G, λ)-OPD = (X,A) with leave-edge graph Lλ(A) and Lλ(A)⊂

G. Then there exists a (v, G, λ)-OCD with the repeat-edge graph G\Lλ(A).

(2) Suppose there exist both a (v, G, λ)-OPD = (X,A) (with leave-edge graph Lλ(A)) and

a (v, G, µ)-OPD = (X,B) (with leave-edge graph Lµ(B)). If |Lλ(A)|+|Lµ(B)|= lλ+µ, then there

exists a (v, G, λ + µ)-OPD = (X,A
⋃
B) and its leave-edge graph is just Lλ(A)

⋃
Lµ(B).

(3) Suppose there exist both a (v, G, λ)-OCD = (X,A) (with repeat-edge graph Rλ(A)) and

a (v, G, µ)-OCD = (X,B) (with repeat-edge graph Rµ(B)). If |Rλ(A)|+|Rµ(B)|= rλ+µ, then

there exists a (v, G, λ + µ)-OCD = (X,A
⋃
B) and its repeat-edge graph is just Rλ(A)

⋃
Rµ(B).

(4) Suppose there exist both a (v, G, λ)-OPD = (X,A) (with leave-edge graph Lλ(A)) and a

(v, G, µ)-OCD = (X,B) (with repeat-edge graph Rµ(B)). If Lλ(A)⊃ Rµ(B) and |Lλ(A)|−|Rµ(B)|=

lλ+µ, then there exists a (v, G, λ+µ)-OPD = (X,A
⋃
B) with the leave-edge graph Lλ(A)\Rµ(B).

(5) Suppose there exist both a (v, G, λ)-OCD = (X,A) (with repeat-edge graph Rλ(A)), and a

(v, G, µ)-OPD = (X,B) (with leave-edge graph Lµ(B)). If Rλ(A)⊃ Lµ(B) and |Rλ(A)|−|Lµ(B)|=

rλ+µ, then there exists a (v, G, λ+µ)-OCD = (X,A
⋃
B) with the repeat-edge graph Rλ(A)\Lµ(B).

In this section, we only need to consider 1 < λ < λmin, where λmin denotes the minimal λ

such that there exists a (v, Gi, λ)-GD for v ≥ |E(G)|, i = 1, 2. Here λmin = 7.

Lemma 4.2 There exist a (7+w, G1, λ)-OPD (OCD) for λ > 1, w = 2, 6 and a (7+w, G2, λ)-

OPD (OCD) for λ > 1, w = 6.

Proof By Lemmas 3.1 and 4.1, for 1 < λ ≤ 6, Lλ = L1

⋃
Lλ−1, Rλ = Gi \ Lλ. 2

Lemma 4.3 There exists a (7 + 4, Gi, λ)-OPD (OCD) for λ > 1 and i = 1, 2.

Proof By Lemmas 3.1 and 4.1, for 1 < λ ≤ 6, Lλ = Lλ−1 \ R1, Rλ = Gi \ Lλ. 2

Lemma 4.4 There exist a (7 + 3, Gi, λ)-OPD (OCD) for λ > 1, i = 1, 2 and a (7 + 5, G1, λ)-

OPD (OCD) for λ > 1.

Proof By Lemma 3.1, L(A1(5)) = P4. Further, for i = 1, 2, in Gi-ID(10, 3) = (Z7

⋃
W, W,B)

constructed in Lemma 2.1, there exists an x ∈ W such that x adjoins with a pendant vertex, so

it is easy to obtain the desired OPD with leave-edge P4. We list Table 3 for clearance.

λ 1 2 3 4 5 6

lλ 3 6 = 2l1 2 = l1 − r2 5 = l1 + l3 1 = l3 − r2 4 = l1 + l5

Lλ P4 · ·
···
· P3 · ·

···
P2 C4

rλ 4 1 5 2 6 3

Rλ Gi \ P4 P2 Gi \ P3 Gi \ L4 Gi \ P2 Gi \ C4

Table 3 Leave (repeat)-edge graphs of the OPDs (OCDs)

Lemma 4.5 There exists a (14 + w, Gi, λ)-OPD (OCD) for λ > 1, 2 ≤ w ≤ 6, and i = 1, 2.
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Proof For w = 2, 4, 6, the conclusion holds by the proofs of Lemmas 4.2 and 4.3; For w = 5,

by Lemma 3.2, L(Ai(5)) = P4 for i = 1, 2; For w = 3, similarly to Lemmas 4.4 and 4.5, we can

obtain a (14 + w, Gi, λ)-OPD with the leave-edge graph P4.

A1(3): C : (00, x1, 01, x2, 11, 30); C′ : (00, 01, x1, x2, 11, x3).

A2(3): C : (x1, 3, 4, 7, 0, x3); C′ : (x1, 3, 4, 7, x2, x3). 2

Lemma 4.6 There exist a (28 + w, G2, λ)-OPD (OCD) for λ > 1, w = 2, 5, 9, 12, and a

(14 + w, G2, λ)-OPD (OCD) for λ > 1, w = 9, 12.

Proof By Lemma 3.4, for v = 30, 23, 37, the leave-edge graph of the (v, G2, 1)-OPD is P2. In

the following, we will obtain (v, G2, 1)-OPD with leave-edge graph P4 for v = 33, 26, 40.

(33, G2, 1)-OPD C : (50, 00, 30, 61, x1, x2), (41, 111, 61, 40, x2, x3), (00, 110, 11, 41, x3, x1).

C′ : (x3, 00, 30, 61, x1, x2), (41, 111, 61, 40, x2, 50), (00, 110, 11, 41, 50, x1).

(26, G2, 1)-OPD C : (0, 5, 1, 7, x1, x2), (5, 15, 7, 16, x3, 10), (7, 17, 9, 18, x3, 12).

C′ : (x3, 5, 1, 7, x1, x2), (5, 15, 7, 16, 0, 10), (7, 17, 9, 18, 0, 12).

(40, G2, 1)-OPD C : (0, 7, 1, 10, x1, x2), (7, 19, 8, 21, x3, 16), (10, 22, 11, 24, x3, 19).

C′ : (x3, 7, 1, 10, x1, x2), (7, 19, 8, 21, 0, 16), (10, 22, 11, 24, 0, 19).

So the lemma holds by Lemmas 4.2 and 4.4. 2

By Lemmas 3.3, 4.2–4.5, we derive the following lemma.

Lemma 4.7 There exist a (28 + w, G1, λ)-OPD (OCD) for 2 ≤ w ≤ 6, λ > 1, and a (28 +

w, G2, λ)-OPD (OCD) for w = 3, 4, 6, λ > 1.

Similarly to the proof of Theorem 3.1, by Lemmas 1.1, 1.2, 2.1, 2,2, 4.2–4.7, we obtain the

following result.

Theorem 4.1 There exists a (v, Gi, λ)-OPD (OCD) for λ > 1, i = 1, 2 and v ≡ 2, 3, 4, 5, 6 (mod 7).
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