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Abstract We give a direct proof to the classification of all indecomposable torsion modules over

a Dedekind ring. As an application, we classify all indecomposable locally-nilpotent modules over

the polynomial algebra with one variable over a field.
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1. Main result

Let R be a commutative noetherian domain with identity, R-Mod the category of R-modules.

Recall that an R-module M is a torsion module if for each element m ∈ M there exists a nonzero

element a ∈ R such that a.m = 0, or equivalently, the localization of M with respect to the zero

ideal is zero. Denote by R-Tor the subcategory of R-Mod consisting of torsion R-modules. Note

that the subcategory R-Tor is closed under direct summands and arbitrary coproducts. We are

interested in classifying indecomposable modules in R-Tor.

Set Max(R) to be the set of maximal ideals in R. For each m ∈ Max(R), consider the

R-modules R/m
n for n ≥ 1, and E(R/m) the injective hull of R/m. Note that these modules

are indecomposable and torsion (concerning the injective hull, consult [7, Theorem 18.4 (i) and

(v)]). By considering their associated primes and then their lengths, we infer that these modules

are pairwise non-isomorphic. We claim that they are all indecomposable torsion R-modules for

Dedekind rings R. More precisely, we have

Theorem 1 Let R be a Dedekind domain. Then the set of R-modules

{R/m
n, E(R/m) | n ≥ 1, m ∈ Max(R)}

is a complete set of pairwise non-isomorphic indecomposable torsion R-modules.

In case R = Z, the ring of integers, the result is known, see for example [5, Theorem 10]. We

would like to mention that the method used in [5] works for any principal ideal rings, although no

one had ever written down the details explicitly. In this article, we will give a simpler and more

direct proof to this result for any discrete valuation rings and apply it to Dedekind domains.
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We apply Theorem 1 to the study of locally-nilpotent modules. Let R be a commutative

ring and I an ideal of R. An R-module is said to be I-locally-nilpotent, if for each m ∈ M

there exists n ≥ 0 such that In.m = 0. Denote by (R, I)-Lnp the subcategory of R-Mod

consisting of I-locally-nilpotent modules. Note that for a domain R and a nonzero ideal I we

have (R, I)-Lnp ⊆ R-Tor.

Corollary 1 Let R be a commutative noetherian domain. Assume that m is a nonzero maximal

ideal which is principle. Then the set of R-modules {R/m
n, E(R/m) | n ≥ 1)} is a complete set

of pairwise non-isomorphic indecomposable m-locally-nilpotent modules.

Note that R = k[x] the polynomial algebra in one variable over a field k and m = (x)

satisfy the conditions above. Thus Corollary 1 classifies all indecomposable locally-nilpotent

k[x]-modules.

Let us remark that for commutative non-artinian rings R, the structures of (certain classes

of) indecomposable R-modules are far from being known, see for example [1, 4, 6]. Hopefully our

method makes a little contribution in this direction.

2. The Proofs

Let R be a discrete valuation ring (DVR), m its maximal ideal. Recall that the ideal m is

principle, and thus we assume that m = (t) is generated by a nonzero element t.

Recall two well-known facts.

Lemma 1 Let R be a DVR with maximal ideal m = (t), M an R-modules. Then M ≃ E(R/m)

if and only if there exists a set {ei | i = 0, 1, 2, . . .} of nonzero elements in M such that M =
∑

i≥0 Rei, t.e0 = 0 and t.ei = ei−1 for i ≥ 1.

Proof Denote by Q(R) the fraction field of R. It is well-known that E(R/m) ≃ Q(R)/R. To

see this, recall that as an R-module, Q(R) is the injective hull of R. Note that the DVR R has

global dimension one, hence quotient modules of injective modules are injective. Consequently

the quotient module Q(R)/R is injective. Note that socle of Q(R)/R is isomorphic to R/m. This

will force that E(R/m) ≃ Q(R)/R.

The “only if” part follows immediately by setting ei = 1/ti+1 +R, the residue class of 1/ti+1

in Q(R)/R, for each i. To see the “if” part, note that a nonzero element in Q(R)/R is uniquely

written as a/tr+R for some r ≥ 1, a ∈ R\m. We define a map θ : Q(R)/R −→ M by θ(0) = 0 and

θ(a/tr + R) = a.er−1, for a ∈ R\m and r ≥ 1. One checks directly that this is a homomorphism

of R-modules, and it is bijective. Thus we are done. 2

Lemma 2 Let R be a DVR with maximal ideal m = (t). Then for each n ≥ 0, the quotient

ring R/m
n is self-injective and each R/m

n-module M has a decomposition of modules M ≃
⊕n

i=1(R/m
i)(Λi), where each Λi is an index set.

Proof Note that the ring R is Gorenstein of dimension 1 and thus by [7, Theorem 213] the

quotient ring R/m
n is Gorenstein of dimension 0, that is, self-injective. It is also well known that
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the set {R/m
i | 1 ≤ i ≤ n} is a complete set of pairwise non-isomorphic indecomposable finitely

generated R/m
n-modules (view R/m

n-modules as R-modules, and then use the fundamental

theorem of finitely generated modules over principle ideal domains). Then any modules have

the decomposition by a general result of Auslander [3, Corollary 4.8] and Ringel-Tachikawa [8,

Corollary 4.4]. For completeness we include a direct argument.

Let M be an R/m
n-module. Consider the submodule K = {m ∈ M | tn−1.m = 0} and the

quotient module M/K. Since t acts trivially on M/K, the module M/K is a semisimple module.

So we have a decomposition M/K ≃
⊕

i∈Λ Rēi where ei ∈ M and ēi denote the residue classes,

each component Rēi is isomorphic to R/m and Λ is an index set (maybe empty). Then it follows

that M =
∑

i∈Λ Rei + K.

We claim that
∑

i∈Λ Rei =
⊕

i∈Λ Rei and Rei ≃ R/m
n. To see this, it suffices to show that

any equation
∑

i∈Λ ai.ei = 0 (with only finite sum) will imply that each ai = 0. Take 0 ≤ l < n

such that ai = bit
l and at least one of the bi’s is invertible. Hence

∑
i∈Λ bi.ei ∈ K, this means in

the quotient module M/K we have
∑

i∈Λ bi.ēi = 0. This will force that each bi.ēi = 0 and thus

bi ∈ m. A contradiction.

Since R/m
n is self-injective, by the claim we infer that the submodule

∑
i∈Λ Rei is injective.

Hence it is a direct summand of M , say we have M = (
∑

i∈Λ Rei) ⊕ M ′ ≃ (R/m
n)(Λ) ⊕ M ′.

Note that the composite K −→ M −→ M ′ is epic, where the left morphism is the inclusion map

and the right the canonical projection. Note that tn−1 acts trivially on K, and thus also on M ′.

Therefore, M ′ can be viewed as an R/m
n−1-module. By the same argument, we can decompose

the R/m
n−1-module M ′, and then we are done by induction. 2

For an R-module M , denote by tM : M −→ M the homomorphism given by tM (m) = t.m.

Note that the module M is torsion if and only if the homomorphism tM is locally-nilpotent on

M , that is, for each m ∈ M there is n ≥ 1 such that tnM (m) = 0.

The following lemma is of interest.

Lemma 3 Let R be a DVR with maximal ideal m = (t). Let M be an R-module satisfying

KertM ⊆ ImtlM for some l ≥ 0. Then as an R-module, we have an isomorphism Kertl+1
M ≃

(R/m
l+1)(Λ) for some index set Λ.

Proof Set X = Kertl+1
M . Since tl+1 acts trivially on X , the module X can be viewed an

R/m
l+1-module. By Lemma 2 we have a decomposition X ≃ (R/m

l+1)(Λ) ⊕
⊕l

i=1(R/m
i)(Λi). If

l = 0 we are done. Otherwise we will show that for each i ≤ l the set Λi is empty. If not, we

may find an element e ∈ X such that tlM (e) = 0 and e /∈ tM (X).

We claim that for each 0 ≤ i ≤ l, there exists an element ei ∈ X such that tiM (ei) = 0 and

ei /∈ tM (X). The case i = l is known by taking el = e. Use induction on l − i. Assume that ei

is chosen. Then ti−1
M (ei) ∈ KertM ⊆ ImtlM . Thus there exits y ∈ M such that ti−1

M (ei) = tlM (y).

Note that 0 = tiM (ei) = tl+1
M (y) and thus y ∈ Kertl+1

M . Set ei−1 = ei − tM (y), and observe that

ti−1
M (ei−1) = 0 and ei−1 /∈ tM (X). Thus we are done with the claim. By considering the case

i = 0 of the claim, we see the contradiction. 2

The following lemma seems to be very technical.
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Lemma 4 Let R be a DVR with maximal ideal m = (t). Set U = (R\m) ∪ {0}. Let M be an

R-module satisfying KertM ⊆ ImtlM for some l ≥ 0. Assume that V is a subset of M satisfying

(a) 0 ∈ V and V ⊆ M is closed under actions by elements in U ;

(b) V ∩ (ImtM + Kertl+1
M ) = {0} and M = R.V + (ImtM + Kertl+1

M ), where R.V denotes the

submodule generated by V .

Set M ′ = R.V + Imtl+1
M and M ′′ = M ′ ∩ Kertl+1

M . Then we have

(1) M = M ′ + Kertl+1
M ;

(2) tiM (V ) ∩ Imti+1
M = {0} for 0 ≤ i ≤ l;

(3) M ′ ∩ KertM ⊆ Imtl+1
M ;

(4) The submodule M ′′ also satisfies KertM ′′ ⊆ ImtlM ′′ .

Proof (1) It suffices to show that for each i ≥ 1, M = R.V + ImtiM + Kertl+1
M . The case i = 1

is clear. Use induction on i. Assume that we have M = R.V + ImtiM + Kertl+1
M . Then we have

M = R.V + tM (M) + Kertl+1
M = R.V + tM (R.V + ImtiM + Kertl+1

M ) + Kertl+1
M

= R.V + tM (ImtiM ) + Kertl+1
M = R.V + Imti+1

M + Kertl+1
M .

Thus we are done.

(2) Use induction on i to show tiM (V ) ∩ Imti+1
M = {0} for 0 ≤ i ≤ l. The case i = 0 is

clear. Assume that tiM (V )∩ Imti+1
M = {0} for i < l. Consider m ∈ ti+1

M (V )∩ Imti+2
M . Hence m =

ti+1
M (v) = ti+2(m′) with v ∈ V and m′ ∈ M . Then tiM (v) − ti+1

M (m′) ∈ KertM ⊆ ImtlM ⊆ Imti+1
M

(note that i + 1 ≤ l). Hence tiM (v) ∈ Imti+1
M ∩ tiM (V ). By induction we have tiM (v) = 0 and thus

m = 0. Hence we get ti+1
M (V ) ∩ Imti+2

M = {0}.

(3) First note that each element in R can be written as
∑l

i=0 cit
i + tl+1a for some ci ∈ U

and a ∈ R, and note that the subset U ⊆ R is closed under multiplication and V is closed under

actions by elements in U . From these facts one infers that any element m′ in M ′ may be written

as m′ =
∑l

i=0 tiM (vi) + tl+1
M (m) for some vi ∈ V and m ∈ M . Consider m′ ∈ M ′ ∩ KertM .

Since KertM ⊆ ImtlM , we have m′ ∈ ImtlM . This forces that v0 ∈ V ∩ ImtM and thus by

(2) we have v0 = 0. Hence we have m′ =
∑l

i=1 tiM (vi) + tl+1
M (m) and use the same argument

we get t1M (v1) = 0 and then by induction we deduce that tiM (vi) = 0 for all 0 ≤ i ≤ l − 1.

Thus m′ = tlM (vl) + tl+1
M (m). Since tM (m′) = 0, we get vl + tM (m) ∈ Kertl+1

M , and this forces

vl ∈ V ∩ (ImtM + Kertl+1
M ) = {0}. Hence m′ = tl+1

M (m), and this shows (3).

(4) It suffices to show that M ′ ∩ KertM ⊆ tlM (M ′ ∩ Kertl+1
M ). By (3), we have M ′ ∩

KertM ⊆ tl+1
M (M) = tl+1

M (M ′ + Kertl+1
M ) = tl+1

M (M ′) while the first equality uses (1). Consider

m′ ∈ M ′ ∩KertM . Thus m′ = tl+1
M (m) for some m ∈ M ′. Note that tM (m′) = 0, and this forces

tM (m) ∈ M ′ ∩ Kertl+1
M . Hence m′ ∈ tlM (M ′ ∩ Kertl+1

M ). We are done. 2

Now we are in the position to show the local version of our main theorem. Recall that a local

Dedekind domain is nothing but a DVR.

Proposition 1 Let R be a DVR with maximal ideal m = (t). Then the set of R-modules

{R/m
n, E(R/m) | n ≥ 1)} is a complete set of pairwise non-isomorphic indecomposable torsion

R-modules.
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Proof As we pointed out in Section 1 that the listed modules are indecomposable and torsion

and they are pairwise non-isomorphic. So it suffices to show any indecomposable torsion R-

module is isomorphic to one in the list. Otherwise, choose an R-module M such that it is

indecomposable, torsion and isomorphic to none of the modules in the list.

First we claim that KertM *
⋂

i≥0 ImtiM . Otherwise, we show by induction that for each

n ≥ 1, KertnM ⊆ ImtM . For this, the case n = 1 is clear. Assume that KertnM ⊆ ImtM .

Consider m ∈ Kertn+1
M . Thus tnM (m) ∈ KertM ⊆ Imtn+1

M . That is, there exists y ∈ M such that

tnM (m) = tn+1
M (y) and thus m− t(y) ∈ KertnM ⊆ ImtM by induction. This forces that m ∈ ImtM .

This proves that Kertn+1
M ⊆ ImtM . Now since M is a torsion module and equivalently tM is

locally-nilpotent, we have M =
⋃

n≥1 KertnM ⊆ ImtM , that is, tM is surjective. However this is

impossible. In fact, this allows us to find a set of nonzero elements {ei | i ≥ 0} in M such that

tM (e0) = 0 and tM (ei) = ei−1 for i ≥ 1. However by Lemma 1 the submodule E generated by

{ei | i ≥ 0} is isomorphic to the injective module E(R/m). Hence the submodule E is a direct

summand of M and this forces that M ≃ E(R/m). A contradiction to the choice of M .

By the claim above, we may choose l ≥ 0 such that KertM ⊆ ImtlM and KertM * Imtl+1
M .

Note that we may choose a subset V ⊆ M satisfying the conditions in Lemma 4 : in fact,

consider the quotient module M/(ImtM + Kertl+1
M ) and note that it is a semisimple module;

take a decomposition M/(ImtM + Kertl+1
M ) =

⊕
i∈Λ Rv̄i where Λ is a set, vi ∈ M and v̄i =

vi + (ImtM + Kertl+1
M ) the residue class, and each component Rv̄i is a simple module; take

V := {
∑

i∈Λ

ui.vi | ui ∈ U, ui’s are zero but finitely many i’s}.

It is direct to see that this subset V satisfies the conditions (a) and (b).

We are now able to apply Lemma 4. By Lemma 4(3) we infer from KertM * Imtl+1
M that M ′

is a proper submodule of M . Note that M ′′ = Kertl+1
M ′′ . We may apply Lemma 3 to M ′′, and

we deduce that M ′′ is direct sum of copies of R/m
l+1 and thus by Lemma 2 the module M ′′ is

an injective R/m
l+1-module. Consider the inclusion M ′′ −→ Kertl+1

M , both of which are viewed

as R/m
l+1-modules, and therefore the inclusion map splits. Hence we have a decomposition

Kertl+1
M = M ′′ ⊕ H of modules. By Lemma 4(1) we get that M = M ′ ⊕ H . Note that M is

indecomposable and M ′ ⊆ M is proper, we have M ′ = 0. By Lemma 4(1) again we infer that

M = Kertl+1
M and by applying Lemma 3 to M we get that the indecomposable module M is

isomorphic to R/m
l+1. This contradicts the choice of M and completes the proof. 2

Theorem 1 follows immediately from Proposition 1 and the following well-known result.

Lemma 5 Let R be a commutative noetherian domain of Krull dimension one, M ∈ R-Tor a tor-

sion module. Then we have a decomposition M =
⊕

m∈Max(R){x ∈ M | m
n.x = 0 for some n ≥

0} of R-modules. Assume further that R is a Dedekind domain. Then each component in the

direct sum is a torsion Rm-module.

Proof Note that every nonzero component {x ∈ M | m
n.x = 0 for some n ≥ 0} has associated

prime {m}. Thus the sum on the right hand side is a direct sum by an argument on their as-

sociated primes (say, by [7, Theorem 6.3]). Now it suffices to show that M =
∑

m∈Max(R){x ∈
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M | m
n.x = 0 for some n ≥ 0}. Take m ∈ M and consider the submodule N = R.m generated

by m and denote by Ann(N) the annihilator ideal of N . Note that the quotient ring R/Ann(N)

is artinian, since R is a domain of Krull dimension 1. By the structure theorem of artinian rings

([2, Theorem 8.7]) we have an isomorphism of rings R/Ann(N) ≃ R1 × · · · × Rs where each Ri

is a local artinian ring with maximal ideal m̄i = mi/Ann(N) for some mi ∈ Max(R). We may

view Ri as the subring {(a1, . . . , as) ∈ R1 × · · · × Rs | aj = 0 ∀j 6= i} of R. Therefore we have

a decomposition of modules N = N1 ⊕ · · · ⊕ Ns, where each Ni = RiN is an Ri-module. Since

m̄i is nilpotent, we infer that Ni ⊆ {x ∈ M | m
n
i .x = 0 for some n ≥ 0} and this forces that

N ⊆
∑

m∈Max(R){x ∈ M | m
n.x = 0 for some n ≥ 0}. Thus we are done with the decomposition.

Note that if R is a Dedekind domain, every localization Rm is a DVR. Then the last statement

follows from the following easy observation. 2

Corollary 1 follows from Proposition 1 and the following easy observation. Just note that in

Corollary 1, the localization ring Rm is a DVR.

Lemma 6 Let R be a commutative ring with a maximal ideal m. Then we have a natural

identification of categories (R, m)-Lnp = (Rm, mRm)-Lnp. Assume further that Rm is a DVR.

Then we have (R, m)-Lnp = Rm-Tor.

Proof Note that the category Rm-Mod of Rm-modules is identified as the subcategory of R-Mod

consisting of modules on which the elements outside m act invertibly. So to show the lemma, it

suffices to show that every m-locally-nilpotent module lies in Rm-Mod. For this, let a /∈ m and

M ∈ (R, m)-Lnp. Since m is a maximal ideal, we have R = Ra + m. In particular, 1 = a′a + t

for some a′ ∈ R and t ∈ m. Since t acts on M locally-nilpotently, it is classical that 1 − t is

invertible on M (its inverse is given by
∑

i≥0 tiM ). Therefore the action of a on M is invertible.

For the last statement, just note that for the DVR Rm, locally-nilpotent modules coincide with

torsion modules. 2
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