Journal of Mathematical Research & Exposition Jan., 2011, Vol. 31, No. 1, pp. 73–78 DOI:10.3770/j.issn:1000-341X.2011.01.008 Http://jmre.dlut.edu.cn

Indecomposable Torsion Modules over Dedekind Domains

Jia Chun DU

Department of Mathematics, University of Science and Technology of China, Anhui 230026, P. R. China

Abstract We give a direct proof to the classification of all indecomposable torsion modules over a Dedekind ring. As an application, we classify all indecomposable locally-nilpotent modules over the polynomial algebra with one variable over a field.

Keywords torison module; Dedekind ring; locally-nilpotent module.

Document code A MR(2010) Subject Classification 13C12; 13F05 Chinese Library Classification 0153.3; 0154.1

1. Main result

Let R be a commutative noetherian domain with identity, R-Mod the category of R-modules. Recall that an R-module M is a torsion module if for each element $m \in M$ there exists a nonzero element $a \in R$ such that a.m = 0, or equivalently, the localization of M with respect to the zero ideal is zero. Denote by R-Tor the subcategory of R-Mod consisting of torsion R-modules. Note that the subcategory R-Tor is closed under direct summands and arbitrary coproducts. We are interested in classifying indecomposable modules in R-Tor.

Set Max(R) to be the set of maximal ideals in R. For each $\mathfrak{m} \in Max(R)$, consider the R-modules R/\mathfrak{m}^n for $n \ge 1$, and $E(R/\mathfrak{m})$ the injective hull of R/\mathfrak{m} . Note that these modules are indecomposable and torsion (concerning the injective hull, consult [7, Theorem 18.4 (i) and (v)]). By considering their associated primes and then their lengths, we infer that these modules are pairwise non-isomorphic. We claim that they are all indecomposable torsion R-modules for Dedekind rings R. More precisely, we have

Theorem 1 Let R be a Dedekind domain. Then the set of R-modules

 $\{R/\mathfrak{m}^n, E(R/\mathfrak{m}) \mid n \ge 1, \ \mathfrak{m} \in \operatorname{Max}(R)\}$

is a complete set of pairwise non-isomorphic indecomposable torsion R-modules.

In case $R = \mathbb{Z}$, the ring of integers, the result is known, see for example [5, Theorem 10]. We would like to mention that the method used in [5] works for any principal ideal rings, although no one had ever written down the details explicitly. In this article, we will give a simpler and more direct proof to this result for any discrete valuation rings and apply it to Dedekind domains.

Received March 13, 2009; Accepted October 14, 2009

Supported by the National Natural Science Foundation of China (Grant Nos. 10501041; 10601052). E-mail address: jcdu@mail.ustc.edu.cn

We apply Theorem 1 to the study of locally-nilpotent modules. Let R be a commutative ring and I an ideal of R. An R-module is said to be I-locally-nilpotent, if for each $m \in M$ there exists $n \geq 0$ such that $I^n \cdot m = 0$. Denote by (R, I)-Lnp the subcategory of R-Mod consisting of I-locally-nilpotent modules. Note that for a domain R and a nonzero ideal I we have (R, I)-Lnp $\subseteq R$ -Tor.

Corollary 1 Let R be a commutative noetherian domain. Assume that \mathfrak{m} is a nonzero maximal ideal which is principle. Then the set of R-modules $\{R/\mathfrak{m}^n, E(R/\mathfrak{m}) \mid n \geq 1\}$ is a complete set of pairwise non-isomorphic indecomposable \mathfrak{m} -locally-nilpotent modules.

Note that R = k[x] the polynomial algebra in one variable over a field k and $\mathfrak{m} = (x)$ satisfy the conditions above. Thus Corollary 1 classifies all indecomposable locally-nilpotent k[x]-modules.

Let us remark that for commutative non-artinian rings R, the structures of (certain classes of) indecomposable R-modules are far from being known, see for example [1, 4, 6]. Hopefully our method makes a little contribution in this direction.

2. The Proofs

Let R be a discrete valuation ring (DVR), \mathfrak{m} its maximal ideal. Recall that the ideal \mathfrak{m} is principle, and thus we assume that $\mathfrak{m} = (t)$ is generated by a nonzero element t.

Recall two well-known facts.

Lemma 1 Let R be a DVR with maximal ideal $\mathfrak{m} = (t)$, M an R-modules. Then $M \simeq E(R/\mathfrak{m})$ if and only if there exists a set $\{e_i \mid i = 0, 1, 2, ...\}$ of nonzero elements in M such that $M = \sum_{i>0} Re_i$, $t.e_0 = 0$ and $t.e_i = e_{i-1}$ for $i \ge 1$.

Proof Denote by Q(R) the fraction field of R. It is well-known that $E(R/\mathfrak{m}) \simeq Q(R)/R$. To see this, recall that as an R-module, Q(R) is the injective hull of R. Note that the DVR R has global dimension one, hence quotient modules of injective modules are injective. Consequently the quotient module Q(R)/R is injective. Note that socle of Q(R)/R is isomorphic to R/\mathfrak{m} . This will force that $E(R/\mathfrak{m}) \simeq Q(R)/R$.

The "only if" part follows immediately by setting $e_i = 1/t^{i+1} + R$, the residue class of $1/t^{i+1}$ in Q(R)/R, for each *i*. To see the "if" part, note that a nonzero element in Q(R)/R is uniquely written as $a/t^r + R$ for some $r \ge 1$, $a \in R \setminus \mathfrak{m}$. We define a map $\theta : Q(R)/R \longrightarrow M$ by $\theta(0) = 0$ and $\theta(a/t^r + R) = a.e_{r-1}$, for $a \in R \setminus \mathfrak{m}$ and $r \ge 1$. One checks directly that this is a homomorphism of *R*-modules, and it is bijective. Thus we are done. \Box

Lemma 2 Let R be a DVR with maximal ideal $\mathfrak{m} = (t)$. Then for each $n \geq 0$, the quotient ring R/\mathfrak{m}^n is self-injective and each R/\mathfrak{m}^n -module M has a decomposition of modules $M \simeq \bigoplus_{i=1}^n (R/\mathfrak{m}^i)^{(\Lambda_i)}$, where each Λ_i is an index set.

Proof Note that the ring R is Gorenstein of dimension 1 and thus by [7, Theorem 213] the quotient ring R/\mathfrak{m}^n is Gorenstein of dimension 0, that is, self-injective. It is also well known that

the set $\{R/\mathfrak{m}^i \mid 1 \leq i \leq n\}$ is a complete set of pairwise non-isomorphic indecomposable finitely generated R/\mathfrak{m}^n -modules (view R/\mathfrak{m}^n -modules as R-modules, and then use the fundamental theorem of finitely generated modules over principle ideal domains). Then any modules have the decomposition by a general result of Auslander [3, Corollary 4.8] and Ringel-Tachikawa [8, Corollary 4.4]. For completeness we include a direct argument.

Let M be an R/\mathfrak{m}^n -module. Consider the submodule $K = \{m \in M \mid t^{n-1}.m = 0\}$ and the quotient module M/K. Since t acts trivially on M/K, the module M/K is a semisimple module. So we have a decomposition $M/K \simeq \bigoplus_{i \in \Lambda} R\bar{e}_i$ where $e_i \in M$ and \bar{e}_i denote the residue classes, each component $R\bar{e}_i$ is isomorphic to R/\mathfrak{m} and Λ is an index set (maybe empty). Then it follows that $M = \sum_{i \in \Lambda} Re_i + K$.

We claim that $\sum_{i \in \Lambda} Re_i = \bigoplus_{i \in \Lambda} Re_i$ and $Re_i \simeq R/\mathfrak{m}^n$. To see this, it suffices to show that any equation $\sum_{i \in \Lambda} a_i.e_i = 0$ (with only finite sum) will imply that each $a_i = 0$. Take $0 \le l < n$ such that $a_i = b_i t^l$ and at least one of the b_i 's is invertible. Hence $\sum_{i \in \Lambda} b_i.e_i \in K$, this means in the quotient module M/K we have $\sum_{i \in \Lambda} b_i.\bar{e_i} = 0$. This will force that each $b_i.\bar{e_i} = 0$ and thus $b_i \in \mathfrak{m}$. A contradiction.

Since R/\mathfrak{m}^n is self-injective, by the claim we infer that the submodule $\sum_{i \in \Lambda} Re_i$ is injective. Hence it is a direct summand of M, say we have $M = (\sum_{i \in \Lambda} Re_i) \oplus M' \simeq (R/\mathfrak{m}^n)^{(\Lambda)} \oplus M'$. Note that the composite $K \longrightarrow M \longrightarrow M'$ is epic, where the left morphism is the inclusion map and the right the canonical projection. Note that t^{n-1} acts trivially on K, and thus also on M'. Therefore, M' can be viewed as an R/\mathfrak{m}^{n-1} -module. By the same argument, we can decompose the R/\mathfrak{m}^{n-1} -module M', and then we are done by induction. \Box

For an *R*-module M, denote by $t_M : M \longrightarrow M$ the homomorphism given by $t_M(m) = t.m$. Note that the module M is torsion if and only if the homomorphism t_M is locally-nilpotent on M, that is, for each $m \in M$ there is $n \ge 1$ such that $t_M^n(m) = 0$.

The following lemma is of interest.

Lemma 3 Let R be a DVR with maximal ideal $\mathfrak{m} = (t)$. Let M be an R-module satisfying $\operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^l$ for some $l \geq 0$. Then as an R-module, we have an isomorphism $\operatorname{Ker} t_M^{l+1} \simeq (R/\mathfrak{m}^{l+1})^{(\Lambda)}$ for some index set Λ .

Proof Set $X = \operatorname{Kert}_{M}^{l+1}$. Since t^{l+1} acts trivially on X, the module X can be viewed an R/\mathfrak{m}^{l+1} -module. By Lemma 2 we have a decomposition $X \simeq (R/\mathfrak{m}^{l+1})^{(\Lambda)} \oplus \bigoplus_{i=1}^{l} (R/\mathfrak{m}^{i})^{(\Lambda_{i})}$. If l = 0 we are done. Otherwise we will show that for each $i \leq l$ the set Λ_{i} is empty. If not, we may find an element $e \in X$ such that $t_{M}^{l}(e) = 0$ and $e \notin t_{M}(X)$.

We claim that for each $0 \leq i \leq l$, there exists an element $e_i \in X$ such that $t_M^i(e_i) = 0$ and $e_i \notin t_M(X)$. The case i = l is known by taking $e_l = e$. Use induction on l - i. Assume that e_i is chosen. Then $t_M^{i-1}(e_i) \in \operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^l$. Thus there exist $y \in M$ such that $t_M^{i-1}(e_i) = t_M^l(y)$. Note that $0 = t_M^i(e_i) = t_M^{l+1}(y)$ and thus $y \in \operatorname{Ker} t_M^{l+1}$. Set $e_{i-1} = e_i - t_M(y)$, and observe that $t_M^{i-1}(e_{i-1}) = 0$ and $e_{i-1} \notin t_M(X)$. Thus we are done with the claim. By considering the case i = 0 of the claim, we see the contradiction. \Box

The following lemma seems to be very technical.

Lemma 4 Let R be a DVR with maximal ideal $\mathfrak{m} = (t)$. Set $U = (R \setminus \mathfrak{m}) \cup \{0\}$. Let M be an R-module satisfying $\operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^l$ for some $l \ge 0$. Assume that V is a subset of M satisfying (a) $0 \in V$ and $V \subseteq M$ is closed under actions by elements in U;

(b) $V \cap (\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1}) = \{0\}$ and $M = R.V + (\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1})$, where R.V denotes the submodule generated by V.

Set $M' = R.V + \operatorname{Im} t_M^{l+1}$ and $M'' = M' \cap \operatorname{Ker} t_M^{l+1}$. Then we have

- (1) $M = M' + \text{Ker}t_M^{l+1};$
- (2) $t_M^i(V) \cap \operatorname{Im} t_M^{i+1} = \{0\} \text{ for } 0 \le i \le l;$
- (3) $M' \cap \operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^{l+1}$;
- (4) The submodule M'' also satisfies $\operatorname{Ker} t_{M''} \subseteq \operatorname{Im} t_{M''}^l$.

Proof (1) It suffices to show that for each $i \ge 1$, $M = R.V + \operatorname{Im} t_M^i + \operatorname{Ker} t_M^{l+1}$. The case i = 1 is clear. Use induction on i. Assume that we have $M = R.V + \operatorname{Im} t_M^i + \operatorname{Ker} t_M^{l+1}$. Then we have

$$M = R.V + t_M(M) + \operatorname{Ker} t_M^{l+1} = R.V + t_M(R.V + \operatorname{Im} t_M^i + \operatorname{Ker} t_M^{l+1}) + \operatorname{Ker} t_M^{l+1}$$

= $R.V + t_M(\operatorname{Im} t_M^i) + \operatorname{Ker} t_M^{l+1} = R.V + \operatorname{Im} t_M^{i+1} + \operatorname{Ker} t_M^{l+1}.$

Thus we are done.

(2) Use induction on i to show $t_M^i(V) \cap \operatorname{Im} t_M^{i+1} = \{0\}$ for $0 \leq i \leq l$. The case i = 0 is clear. Assume that $t_M^i(V) \cap \operatorname{Im} t_M^{i+1} = \{0\}$ for i < l. Consider $m \in t_M^{i+1}(V) \cap \operatorname{Im} t_M^{i+2}$. Hence $m = t_M^{i+1}(v) = t^{i+2}(m')$ with $v \in V$ and $m' \in M$. Then $t_M^i(v) - t_M^{i+1}(m') \in \operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^i \subseteq \operatorname{Im} t_M^{i+1}$ (note that $i + 1 \leq l$). Hence $t_M^i(v) \in \operatorname{Im} t_M^{i+1} \cap t_M^i(V)$. By induction we have $t_M^i(v) = 0$ and thus m = 0. Hence we get $t_M^{i+1}(V) \cap \operatorname{Im} t_M^{i+2} = \{0\}$.

(3) First note that each element in R can be written as $\sum_{i=0}^{l} c_i t^i + t^{l+1} a$ for some $c_i \in U$ and $a \in R$, and note that the subset $U \subseteq R$ is closed under multiplication and V is closed under actions by elements in U. From these facts one infers that any element m' in M' may be written as $m' = \sum_{i=0}^{l} t_M^i(v_i) + t_M^{l+1}(m)$ for some $v_i \in V$ and $m \in M$. Consider $m' \in M' \cap \operatorname{Ker} t_M$. Since $\operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^l$, we have $m' \in \operatorname{Im} t_M^l$. This forces that $v_0 \in V \cap \operatorname{Im} t_M$ and thus by (2) we have $v_0 = 0$. Hence we have $m' = \sum_{i=1}^{l} t_M^i(v_i) + t_M^{l+1}(m)$ and use the same argument we get $t_M^1(v_1) = 0$ and then by induction we deduce that $t_M^i(v_i) = 0$ for all $0 \leq i \leq l-1$. Thus $m' = t_M^l(v_l) + t_M^{l+1}(m)$. Since $t_M(m') = 0$, we get $v_l + t_M(m) \in \operatorname{Ker} t_M^{l+1}$, and this forces $v_l \in V \cap (\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1}) = \{0\}$. Hence $m' = t_M^{l+1}(m)$, and this shows (3).

(4) It suffices to show that $M' \cap \operatorname{Ker} t_M \subseteq t_M^l(M' \cap \operatorname{Ker} t_M^{l+1})$. By (3), we have $M' \cap \operatorname{Ker} t_M \subseteq t_M^{l+1}(M) = t_M^{l+1}(M' + \operatorname{Ker} t_M^{l+1}) = t_M^{l+1}(M')$ while the first equality uses (1). Consider $m' \in M' \cap \operatorname{Ker} t_M$. Thus $m' = t_M^{l+1}(m)$ for some $m \in M'$. Note that $t_M(m') = 0$, and this forces $t_M(m) \in M' \cap \operatorname{Ker} t_M^{l+1}$. Hence $m' \in t_M^l(M' \cap \operatorname{Ker} t_M^{l+1})$. We are done. \Box

Now we are in the position to show the local version of our main theorem. Recall that a local Dedekind domain is nothing but a DVR.

Proposition 1 Let R be a DVR with maximal ideal $\mathfrak{m} = (t)$. Then the set of R-modules $\{R/\mathfrak{m}^n, E(R/\mathfrak{m}) \mid n \geq 1\}$ is a complete set of pairwise non-isomorphic indecomposable torsion R-modules.

First we claim that $\operatorname{Ker} t_M \nsubseteq \bigcap_{i \ge 0} \operatorname{Im} t_M^i$. Otherwise, we show by induction that for each $n \ge 1$, $\operatorname{Ker} t_M^n \subseteq \operatorname{Im} t_M$. For this, the case n = 1 is clear. Assume that $\operatorname{Ker} t_M^n \subseteq \operatorname{Im} t_M$. Consider $m \in \operatorname{Ker} t_M^{n+1}$. Thus $t_M^n(m) \in \operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^{n+1}$. That is, there exists $y \in M$ such that $t_M^n(m) = t_M^{n+1}(y)$ and thus $m - t(y) \in \operatorname{Ker} t_M^n \subseteq \operatorname{Im} t_M$ by induction. This forces that $m \in \operatorname{Im} t_M$. This proves that $\operatorname{Ker} t_M^{n+1} \subseteq \operatorname{Im} t_M$. Now since M is a torsion module and equivalently t_M is locally-nilpotent, we have $M = \bigcup_{n \ge 1} \operatorname{Ker} t_M^n \subseteq \operatorname{Im} t_M$, that is, t_M is surjective. However this is impossible. In fact, this allows us to find a set of nonzero elements $\{e_i \mid i \ge 0\}$ in M such that $t_M(e_0) = 0$ and $t_M(e_i) = e_{i-1}$ for $i \ge 1$. However by Lemma 1 the submodule E generated by $\{e_i \mid i \ge 0\}$ is isomorphic to the injective module $E(R/\mathfrak{m})$. Hence the submodule E is a direct summand of M and this forces that $M \simeq E(R/\mathfrak{m})$. A contradiction to the choice of M.

By the claim above, we may choose $l \geq 0$ such that $\operatorname{Ker} t_M \subseteq \operatorname{Im} t_M^l$ and $\operatorname{Ker} t_M \nsubseteq \operatorname{Im} t_M^{l+1}$. Note that we may choose a subset $V \subseteq M$ satisfying the conditions in Lemma 4 : in fact, consider the quotient module $M/(\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1})$ and note that it is a semisimple module; take a decomposition $M/(\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1}) = \bigoplus_{i \in \Lambda} R \bar{v}_i$ where Λ is a set, $v_i \in M$ and $\bar{v}_i = v_i + (\operatorname{Im} t_M + \operatorname{Ker} t_M^{l+1})$ the residue class, and each component $R \bar{v}_i$ is a simple module; take

$$V := \{\sum_{i \in \Lambda} u_i . v_i \mid u_i \in U, u_i \text{'s are zero but finitely many } i \text{'s}\}$$

It is direct to see that this subset V satisfies the conditions (a) and (b).

We are now able to apply Lemma 4. By Lemma 4(3) we infer from $\operatorname{Ker} t_M \not\subseteq \operatorname{Im} t_M^{l+1}$ that M'is a proper submodule of M. Note that $M'' = \operatorname{Ker} t_{M''}^{l+1}$. We may apply Lemma 3 to M'', and we deduce that M'' is direct sum of copies of R/\mathfrak{m}^{l+1} and thus by Lemma 2 the module M'' is an injective R/\mathfrak{m}^{l+1} -module. Consider the inclusion $M'' \longrightarrow \operatorname{Ker} t_M^{l+1}$, both of which are viewed as R/\mathfrak{m}^{l+1} -modules, and therefore the inclusion map splits. Hence we have a decomposition $\operatorname{Ker} t_M^{l+1} = M'' \oplus H$ of modules. By Lemma 4(1) we get that $M = M' \oplus H$. Note that M is indecomposable and $M' \subseteq M$ is proper, we have M' = 0. By Lemma 4(1) again we infer that $M = \operatorname{Ker} t_M^{l+1}$ and by applying Lemma 3 to M we get that the indecomposable module M is isomorphic to R/\mathfrak{m}^{l+1} . This contradicts the choice of M and completes the proof. \Box

Theorem 1 follows immediately from Proposition 1 and the following well-known result.

Lemma 5 Let R be a commutative noetherian domain of Krull dimension one, $M \in R$ -Tor a torsion module. Then we have a decomposition $M = \bigoplus_{\mathfrak{m}\in Max(R)} \{x \in M \mid \mathfrak{m}^n . x = 0 \text{ for some } n \geq 0\}$ of R-modules. Assume further that R is a Dedekind domain. Then each component in the direct sum is a torsion $R_{\mathfrak{m}}$ -module.

Proof Note that every nonzero component $\{x \in M \mid \mathfrak{m}^n . x = 0 \text{ for some } n \geq 0\}$ has associated prime $\{\mathfrak{m}\}$. Thus the sum on the right hand side is a direct sum by an argument on their associated primes (say, by [7, Theorem 6.3]). Now it suffices to show that $M = \sum_{\mathfrak{m} \in \operatorname{Max}(R)} \{x \in M\}$

 $M \mid \mathfrak{m}^n . x = 0$ for some $n \ge 0$ }. Take $m \in M$ and consider the submodule N = R.m generated by m and denote by $\operatorname{Ann}(N)$ the annihilator ideal of N. Note that the quotient ring $R/\operatorname{Ann}(N)$ is artinian, since R is a domain of Krull dimension 1. By the structure theorem of artinian rings ([2, Theorem 8.7]) we have an isomorphism of rings $R/\operatorname{Ann}(N) \simeq R_1 \times \cdots \times R_s$ where each R_i is a local artinian ring with maximal ideal $\overline{\mathfrak{m}}_i = \mathfrak{m}_i/\operatorname{Ann}(N)$ for some $\mathfrak{m}_i \in \operatorname{Max}(R)$. We may view R_i as the subring $\{(a_1, \ldots, a_s) \in R_1 \times \cdots \times R_s \mid a_j = 0 \ \forall j \neq i\}$ of R. Therefore we have a decomposition of modules $N = N_1 \oplus \cdots \oplus N_s$, where each $N_i = R_i N$ is an R_i -module. Since $\overline{\mathfrak{m}}_i$ is nilpotent, we infer that $N_i \subseteq \{x \in M \mid \mathfrak{m}_i^n . x = 0 \text{ for some } n \ge 0\}$ and this forces that $N \subseteq \sum_{\mathfrak{m} \in \operatorname{Max}(R)} \{x \in M \mid \mathfrak{m}^n . x = 0 \text{ for some } n \ge 0\}$. Thus we are done with the decomposition. Note that if R is a Dedekind domain, every localization $R_{\mathfrak{m}}$ is a DVR. Then the last statement follows from the following easy observation. \Box

Corollary 1 follows from Proposition 1 and the following easy observation. Just note that in Corollary 1, the localization ring R_m is a DVR.

Lemma 6 Let R be a commutative ring with a maximal ideal \mathfrak{m} . Then we have a natural identification of categories (R, \mathfrak{m}) -Lnp = $(R_{\mathfrak{m}}, \mathfrak{m}R_{\mathfrak{m}})$ -Lnp. Assume further that $R_{\mathfrak{m}}$ is a DVR. Then we have (R, \mathfrak{m}) -Lnp = $R_{\mathfrak{m}}$ -Tor.

Proof Note that the category $R_{\mathfrak{m}}$ -Mod of $R_{\mathfrak{m}}$ -modules is identified as the subcategory of R-Mod consisting of modules on which the elements outside \mathfrak{m} act invertibly. So to show the lemma, it suffices to show that every \mathfrak{m} -locally-nilpotent module lies in $R_{\mathfrak{m}}$ -Mod. For this, let $a \notin \mathfrak{m}$ and $M \in (R, \mathfrak{m})$ -Lnp. Since \mathfrak{m} is a maximal ideal, we have $R = Ra + \mathfrak{m}$. In particular, 1 = a'a + t for some $a' \in R$ and $t \in \mathfrak{m}$. Since t acts on M locally-nilpotently, it is classical that 1 - t is invertible on M (its inverse is given by $\sum_{i\geq 0} t_M^i$). Therefore the action of a on M is invertible. For the last statement, just note that for the DVR $R_{\mathfrak{m}}$, locally-nilpotent modules coincide with torsion modules. \Box

Acknowledgement The author would like to thank Prof. Henning KRAUSE for his comments and Prof. Roger WIEGAND and Prof. Luigi SALCE for pointing out the reference [5]. He is also indebted to Prof. Yu YE and Dr. Xiaowu CHEN for their help. Thanks also go to the anonymous referee for numerous suggestions.

References

- ARNAVUT M, LUCKAS M, WIEGAND S. Indecomposable modules over one-dimensional Noetherian rings [J]. J. Pure Appl. Algebra, 2007, 208(2): 739–760.
- [2] ATIYAH M F, MACDONALD I G. Introduction to Commutative Algebra [M]. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969.
- [3] AUSLANDER M. Representation theory of Artin algebras [J]. Comm. Algebra, 1974, 1: 269–310.
- [4] HASSLER W, KARR R, KLINGLER L. et al. Indecomposable modules of large rank over Cohen-Macaulay local rings [J]. Trans. Amer. Math. Soc., 2008, 360(3): 1391–1406.
- [5] KAPLANSKY I. Infinite Abelian Groups [M]. The University of Michigan Press, Ann Arbor, Mich. 1969.
- [6] LUNSFORD M. A note on indecomposable modules over valuation rings [J]. Rend. Sem. Math. Uni. Padova, 1995, 93: 27–41.
- [7] MATSUMURA H. Commutative Ring Theory [M]. Cambridge University Press, Cambridge, 1986.
- [8] RINGEL C M, TACHIKAWA H. QF-3 rings [J]. J. Reine Angew. Math., 1974, 272: 49–72.