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Abstract In this paper, we consider the problem of detecting for structural changes in the au-

toregressive processes including AR(p) process. In performing a test, we employ the conventional

residual CUSUM of squares test (RCUSQ) statistic. The RCUSQ test is based on the subsam-

pling method introduced by Jach and Kokoszka [J. Methodology and Computing in Applied

Probability 25(2004)]. It is shown that under regularity conditions, the asymptotic distribution

of the test statistic is the function of a standard Brownian bridge. Simulation results as to AR(1)

process and an example of real data analysis are provided for illustration.
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1. Introduction

The problem of testing for structural changes in statistical models has been an important

issue among both theoreticians and practitioners. Research into this problem originally began

with iid sample; for a review of earlier work, see [3, 4, 9–11, 19, 20, 23]. Subsequently, the issue

became very popular in the time series context since series often suffer from structural changes.

Particularly, econometric time series exhibit changes in their underlying model because a myriad

of political and economic factors can cause the relationships among economic variables to change

over time. For references, see [1, 7, 13, 14, 16, 17, 24] and the papers cited therein.

Recently, Lee et al. [22] extended the CUSUM test to a more general case, motivated by the

conjecture: given a parameter of interest and its consistent estimator, under what conditions

can the estimator be utilized to detect a change in that parameter. The result of Lee et al. [22]

indicates that the CUSUM test performs well for a broad class of stationary processes including

linear processes.
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In this article, we focus on the residual CUSUM of squares test (RCUSQ) based on the sub-

sampling methodology [2, 6] in stochastic processes, which can conventionally discard correlation

effects and enhance the performance of the test. Particularly, special attention is paid to the

linear autoregressive (LAR) time series since they accommodate important linear time series

models, such as the autoregressive processes AR(p), which have been central to the analysis

of data with linear characteristics [5, 8, 18]. Hence, the objective of this paper is to derive the

asymptotic distribution of RCUSQ test and extend the theory of Jach and Kokoszka [2] to test

for structural changes in AR(p) process at some unknown date.

The organization of this paper is as follows. In Section 2, we present the regular conditions

under which the RCUSQ test statistic converges weakly to the function of a standard Brownian

bridge. In Section 3, as an illustration we consider the structural changes problem in AR(p)

process. Simulation results related to AR(1) process and an empirical application are reported

in Section 4. We provide brief concluding remarks in Section 5.

2. Assumptions and models

We consider the following models:

yt = µ + ξt,

ξt = α1ξt−1 + α2ξt−2 + · · · + αpξt−p + εt, (1)

where p is a finite positive integer and {ξt} is an AR(p) process. Assume the innovations processes

{εt} satisfy Eεt = 0 and Eε2
t = σ2.

Denoting by θ = (µ, α1, . . . , αp, σ) the parameter vector in (1), we test the null hypothesis,

H0 : y1, . . . , yT is a sample for some θ,

against the change-point alternative

H1 : ∃ θ, θ∗, satisfying θ 6= θ∗,

and such that the sample y1, . . . , yT has the form

yt =

{

µ + ξt, ξt = α1ξt−1 + α2ξt−2 + · · · + αpξt−p + εt, t ≤ k∗;

µ∗ + ξt, ξt = α∗
1ξt−1 + α∗

2ξt−2 + · · · + α∗
pξt−p + ε∗t , t > k∗,

where k∗ = [Tτ∗], 0 < τ∗ < 1 is unknown and fixed.

We state the assumptions which are needed to prove asymptotic validity of our approach.

Assumption 2.1 Assume the innovations processes {εt} are independent identical distribution

and satisfy E|εt|4+δ < ∞, where δ > 0.

Assumption 2.2 {ηt, εt} is strong mixing.

Assumption 2.3 All the roots of 1 − α1z − α2z
2 − · · · − αpz

p = 0 lie out of the unit circle.

Remark 2.1 Assumptions 2.1 and 2.2 are basic conditions to derive the asymptotic distribution
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of RCUSQ test. The last Assumption can guarantee process {ξt} be stationary, viz., ξt =
∑∞

j=0 ϕjεt−j. Beveridge and Nelson [21] decomposed T−1
∑T

t=1 ξt = T−1ϕ(1)
∑T

t=1 εt + op(1),

where ϕ(1) =
∑∞

j=0 ϕj < ∞, which shows that the rate of convergence for T−1
∑T

t=1 ξt and

T−1
∑T

t=1 εt are the same.

Our approach also relies on the following results.

Lemma 2.1 ([12]) If Assumption 2.1 holds, then

T 1/2(α̂i − αi) has a proper, nondegenerate limiting distribution,

where α̂i is ordinary least estimators.

Remark 2.2 The results indicate that α̂i−αi = Op(T
−1/2). Since series {εt} are not observable,

our test is based on residuals ε̂2
t instead of ε2

t , which are obtained via estimating the unknown

parameters, and these estimators play an important role to detect changes.

3. Asymptotic under the null hypothesis

In this section, we derive the asymptotic distribution of RCUSQ test under null hypothesis.

Theorem 3.1 Assume the Assumptions 2.1–2.3 hold, let

ΞT = max
q+1≤k≤T

√
T

∣

∣

∣

∑k
t=q+1 ε̂2

t
∑T

t=q+1 ε̂2
t

− k − q

T − q

∣

∣

∣
.

Then under null hypothesis,

ΞT
P−→ τ

σ2
max

0≤v≤1
|BB(v)|,

where τ2 = Eε4
t − σ4 and v = k/T . BB(v) is a standard Brownian bridge.

Remark 3.1 In practice, we replace the unknown parameters τ2 and σ2 by τ̂2 = 1
T

∑T
t=1 ε̂4

t − σ̂4

and σ̂2 = 1
T

∑T
t=1 ε̂2

t , respectively, and set q = [(log T )2]. When there are no changes, the

residuals ε̂t can behave like εt and construct the RCUSQ test. However, the test statistic is

conservative to reject null hypothesis and produces low power even for large samples. In order

to overcome the problem, we now resort to the subsampling methodology. Our goal is to develop

an approximation to the null distribution of ΞT .

To describe the idea, the steps are constructed as follows:

Step 1. Compute the residuals from the regression of yt on an intercept: ξ̂t = yt − µ̂,

µ̂ = T−1
∑T

j=1 yj , t = 1, 2, . . . , T .

Step 2. Compute the ordinary least estimator of parameters α̂1, . . . , α̂p based on ξ̂1, . . . , ξ̂T .

Step 3. Compute the estimator of innovations ε̂t = ξ̂t − α̂1ξ̂t−1 − α̂2ξ̂t−2 − · · · − α̂pξ̂t−p,

t = 1, 2, . . . , T .

Step 4. Compute the centered residuals ε0
t = ε̂t − T−1

∑T
j=1 ε̂j , 1 ≤ t ≤ T .

Step 5. Set ε1
i = ε0

i+q, i = 1, . . . , T − q. Fixed an integer b < T and construct T − b − q

processes of length b which satisfy null hypothesis. For l = 1, . . . , T − b − q, the l-th process is

defined by: y0(l) = 0, y1(l) = ε1
l , y2(l) = ε1

l+1, . . . , yb(l) = ε1
l+b−1.
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Step 6. Analogous to ΞT , we construct Ξ1
b,l based on y0(l), y1(l), . . . , yb(l). Denote by Ξ1

b(α)

the (1 − α)-th quantile of the empirical distribution of the T − b − q value Ξ1
b,l. We reject null

hypothesis if ΞT > Ξ1
b(α), because the empirical distribution of Ξ1

b,l is an approximation to the

sampling distribution of ΞT under null hypothesis.

We construct Ξ1
b,l by:

Ξ1
b,l = max

0≤v≤1

√
b
∣

∣

∣

∑l+[(b−1)v]
i=l ε12

i − v
∑l+(b−1)

i=l ε12
i

∑l+(b−1)
i=l ε12

i

∣

∣

∣
.

Denote

G̃b(x) =
1

T − b − q

T−b−q
∑

l=1

I{Ξ1
b,l ≤ x}

and

G(x) = P
( τ

σ2
max

0≤v≤1
|BB(v)| ≤ x

)

.

Theorem 3.2 Assume all the Assumptions hold, b → ∞ and b/T → 0 as T → ∞. Then for

every x > 0,

G̃b(x)
P−→ G(x).

Remark 3.3 Theorem 3.2 implies that the subsampling test has asymptotically correct size,

and its proof is in Appendix A.

4. Simulation and empirical application

4.1 Simulation

In the section, we present the results of a simulation study intended to assess the performance

of the subsampling test procedures in Section 3. The independent identically distributioned

random variables {εt} are N(0, σ2). All simulations were based on 5000 replications. We report

empirical rejection frequencies of the tests with T = (500, 800, 1000) for tests run at 5% critical

value in various combinations. Since the tests are affected by a choice of b for fairly large samples,

subsample size b is considered approximately equal to anything between 15% and 20% of the

sample size T .

We consider the following models:

yt = µ + ξt, ξt = α1ξt−1 + εt.

The empirical sizes are calculated from the AR(1) model with σ = 1 and (µ, α1) = (2, 0.1),

(3, 0.1), (5, 0.1). The figures in Table 1 indicate the proportion of the number of rejections of

null hypothesis H0 under which no structural changes are assumed to occur.

However, when studying the power property of test, we consider the same model above,

allowing a change in µ, α1 and σ simultaneously. The Data Generating Processes satisfy

yt =

{

µ + ξt, ξt = α1ξt−1 + εt, t ≤ k∗;

µ∗ + ξt, ξt = α∗
1ξt−1 + ε∗t , t > k∗,
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where ε∗t are IIDN(0, (σ∗)2), k∗ = [0.5T ] (in bracket) and k∗ = [0.75T ] (out bracket), denoted

by κ = (σ∗/σ)2.

As proposed by Jach and Kokoszka [2], a finite sample correction is introduced. They reject

null hypothesis if ΞT > Ξ1
b(α − c), where c = c(T, α, b) is a function of T (sample size), α

(significance level) and b (subsample size). The following formula for c gives satisfactory result:

c =

√
bα

2
√

1.6T
.

For T = 500, 800, 1000, we consider the two cases: (i) µ∗ = 3, 5, κ = 1.2, 1.3, 1.5, α1 = 0.1

and α∗
1 = ±0.3; (ii) µ∗ = 3, 5, κ = 1.2, 1.3, 1.5, α1 = 0.1 and α∗

1 = ±0.5.

α1 T b µ = 2 µ = 3 µ = 5

0.1 500 80 0.044(0.046) 0.051(0.049) 0.047(0.046)

800 130 0.050(0.047) 0.042(0.045) 0.048(0.049)

1000 185 0.051(0.048) 0.052(0.046) 0.053(0.048)

Table 1 Empirical sizes of subsampling test

µ
∗ = 3 µ

∗ = 5

α1 α
∗

1
T b κ = 1.2 κ = 1.3 κ = 1.5 κ = 1.2 κ = 1.3 κ = 1.5

0.1 0.3 500 80 0.241(0.246) 0.448(0.453) 0.833(0.826) 0.273(0.266) 0.472(0.467) 0.867(0.872)

800 130 0.377(0.373) 0.667(0.653) 0.962(0.958) 0.395(0.401) 0.694(0.692) 0.971(0.975)

1000 185 0.437(0.434) 0.751(0.749) 0.989(0.994) 0.458(0.466) 0.776(0.773) 1.000(1.000)

0.1 -0.3 500 80 0.237(0.238) 0.443(0.452) 0.827(0.833) 0.285(0.278) 0.477(0.481) 0.874(0.885)

800 130 0.384(0.378) 0.658(0.661) 0.955(0.968) 0.397(0.398) 0.690(0.687) 0.966(0.968)

1000 185 0.432(0.428) 0.754(0.755) 0.991(0.997) 0.462(0.453) 0.784(0.779) 0.999(1.000)

Table 2 Empirical powers of subsampling test

µ
∗ = 3 µ

∗ = 5

α1 α
∗

1
T b κ = 1.2 κ = 1.3 κ = 1.5 κ = 1.2 κ = 1.3 κ = 1.5

0.1 0.5 500 80 0.191(0.182) 0.378(0.386) 0.765(0.766) 0.221(0.226) 0.394(0.402) 0.783(0.778)

800 130 0.337(0.324) 0.622(0.633) 0.947(0.951) 0.357(0.351) 0.647(0.652) 0.974(0.978)

1000 185 0.397(0.408) 0.714(0.709) 0.980(0.974) 0.425(0.436) 0.735(0.742) 0.998(1.000)

0.1 -0.5 500 80 0.183(0.188) 0.403(0.406) 0.763(0.775) 0.235(0.228) 0.404(0.426) 0.796(0.786)

800 130 0.324(0.327) 0.616(0.621) 0.942(0.936) 0.343(0.338) 0.653(0.657) 0.971(0.974)

1000 185 0.402(0.405) 0.722(0.725) 0.983(0.986) 0.418(0.427) 0.756(0.758) 1.000(0.999)

Table 3 Empirical powers of subsampling test

We now discuss the main conclusions that can be drawn from our simulation. (1) Tables 1–3

indicate that, as might be anticipated, the subsampling test produces good sizes and the powers

increase as T increases. (2) The discrepancy in powers between k∗ = [0.5T ] and k∗ = [0.75T ]

where the structural changes occur is trivial. (3) Tables 2–3 also show that if µ, α and σ change

simultaneously, the powers can increase gradually as κ increases. Especially κ = 2, the empirical

powers can reach 1. However, the conditions can vary for µ∗ and α∗. (i) In the case of a change



84 H. JIN, Z. TIAN and Y. F. YANG

in α, the discrepancy between α∗ = 0.3 and α∗ = −0.3 is trivial and this phenomenon also holds

for α∗ = ±0.5. It indicates that the powers seem to be slightly less reliable on α whether or not

the autoregressive parameter α is positive. The factor may be that the RCUSQ test is sensitive

to σ. To illustrate, for the α = 0.3 and α = −0.3 case (Table 2), the subsampling tests have

empirical powers of (0.241,0.237) for T = 500 and κ = 1.2 . Whereas α = 0.3, for the κ = 1.3

and κ = 1.5 case, the empirical powers can reach (0.448,0.883) for T = 500. (ii) In the case of a

change in µ, the powers of the subsampling test can increase as the difference between µ and µ∗

increases. In a word, the simulation evidence is strongly in favors of using our approach to the

detection of changes for AR(p) parameters.

4.2 Empirical application

In this section, we analyze a group of series of daily stock price on financial assets, which

contains a commercial series with SLDC (SHANGHAI LUJIAZUI FINANCE & TRADE ZONE

DEVELOPMENT CO.,LTD). The stock price are observed from March 1, 2000 until June 20,

2002 with samples of T = 540 observations.

For tests the null of no structural changes is rejected in favour of H1 at the 5% significance

level. We consider b = 0.15T = 81 and find the value directly computed from the RSUCQ test

statistic ΞT = 3.182 is larger than Ξ1
b = 1.871. Hence, the results give an interesting result that,

for the series of SLDC, the considered period includes a structural break (k̂∗ = 328) caused by

corporate restructuring on July 22, 2001 (k∗ = 330). For these series we consider two consecutive

sample of 540 observations, i.e. SLDC1 denotes the first 328 observations for the SLDC series,

while SLDC2 denotes the subsequent 122 observation for that series. What the following figures

show accords with the conclusion that the series of SLDC indeed contains structural changes in

the whole samples.

The original data of SLDC1 appears to follow the models with V ar(εt) = 0.27:

yt = 11.2 + ξt, ξt = 0.7ξt−1 + εt.

While the original data of SLDC2 follows the other models with V ar(ε∗t ) = 1.62:

yt = 8.6 + ξt, ξt = 0.9ξt−1 + ε∗t .

0 100 200 300 400 500
7

8

9

10

11

12

13

0 100 200 300 400 500
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Figure 1 The original data of SLDC Figure 2 The first order difference data of SLDC
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5. Conclusion

In this paper, the RCUSQ test for structural changes in autoregressive processes including

AR(p) is proposed. We derive the asymptotic distribution of the RCUSQ test that is the func-

tion of a standard Brownian bridges. However, the test statistic is conservative to reject null

hypothesis and produces low powers even for large samples. To overcome the problem, we adopt

an approach based on subsampling which is a variation on the subsampling methodology of Jach

and Kokoszka [2]. As most nonparametric methods, our procedure also depends on a choice of

“bandwidth parameter”, in our case, the subsample size b. In conclusion, the RCUSQ test based

on subsampling constitutes a functional tool for detecting structural changes for AR(p) process.

Appendix A : Mathematical Proofs

Throughout the section we use the notation introduced in Sections 2 and 3. We now present

a number of technical lemmas which will be needed in the proof.

Proof of Theorem 3.1 Observe that

ΞT = max
q+1≤k≤T

√
T

∣

∣

∣

∑k
t=q+1 ε̂2

t
∑T

t=q+1 ε̂2
t

− k − q

T − q

∣

∣

∣

= max
0≤v≤1

1√
T
|
∑[Tv]

t=q+1 ε̂2
t − [Tv]−q

T−q

∑T
t=q+1 ε̂2

t |
1
T

∑T
t=q+1 ε̂2

t

.

Split ε̂2
t into ε2

t +
∑5

i=1 Vi,T

ξ̂t = ξt + (µ − µ̂) = εt + (µ − µ̂) + α1ξt−1 + · · · + αpξt−p,

ε̂2
t = (ξ̂t − α̂1ξ̂t−1 − · · · − α̂pξ̂t−p)

2

= ε2
t + (µ − µ̂)2 + W 2

T + 2εt(µ − µ̂) + 2WT εt + 2WT (µ − µ̂) = ε2
t +

5
∑

i=1

Vi,T ,

where WT =
∑p

k=1 αkξt−k − ∑p
k=1 α̂k ξ̂t−k and µ̂ = T−1

∑T
t=1 yt.

We first want to claim that

Ri,T =:
1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

Vi,T − [Tv] − q

T − q

T
∑

t=q+1

Vi,T

∣

∣

∣
= op(1), i = 1, 2, . . . , 5. (2)

By the invariance principle for strong mixing processes [15] and Assumption 2.2, we have

1√
T

max
1≤k≤T

∣

∣

∣

[Tv]
∑

t=q+1

ξtεt − v

T
∑

t=q+1

ξtεt

∣

∣

∣
= Op(1). (3)

First, we handle with R1,T and R3,T . By Assumption 2.3

ξ̂t − ξt = µ̂ − µ =
1

T

T
∑

t=1

ξt = ϕ(1)
1

T

T
∑

t=1

εt + op(1) = Op(T
−1/2), (4)
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which implies that

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

V1,T − [Tv] − q

T − q

T
∑

t=q+1

V1,T

∣

∣

∣
≤ 2

1√
T

∣

∣

∣

T
∑

t=q+1

(µ − µ̂)2
∣

∣

∣
= Op(T

−1/2) = op(1)

and

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

V3,T −
[Tv] − q

T − q

T
∑

t=q+1

V3,T

∣

∣

∣
≤ 2

1√
T
|µ−µ̂| max

0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

εt

∣

∣

∣
= Op(T

−1/2) = op(1).

Note that

WT =

p
∑

k=1

αkξt−k −
p

∑

k=1

α̂k ξ̂t−k

=

p
∑

k=1

(αk − α̂k)ξt−k +

p
∑

k=1

α̂k(ξt−k − ξ̂t−k) = W1,T + W2,T .

To show R4,T = op(1), it suffices to prove

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

εtWi,T − [Tv]− q

T − q

T
∑

t=q+1

εtWi,T

∣

∣

∣
= op(1), i = 1, 2. (5)

By Lemma 2.1, (3) and (4), we have

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

εtW1,T − [Tv] − q

T − q

T
∑

t=q+1

εtW1,T

∣

∣

∣

=
1√
T

max
0≤v≤1

∣

∣

∣

p
∑

k=1

(αk − α̂k)
(

[Tv]
∑

t=q+1

εtξt−k − [Tv] − q

T − q

T
∑

t=q+1

εtξt−k

)
∣

∣

∣

= Op(T
−1/2 · p) = op(1),

and

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

εtW2,T − [Tv]− q

T − q

T
∑

t=q+1

εtW2,T

∣

∣

∣

=
1√
T

max
0≤v≤1

∣

∣

∣

p
∑

k=1

α̂k

(

[Tv]
∑

t=q+1

εt(ξt−k − ξ̂t−k) − [Tv] − q

T − q

T
∑

t=q+1

εt(ξt−k − ξ̂t−k)
)∣

∣

∣

=
1√
T

max
0≤v≤1

∣

∣

∣

p
∑

k=1

αk

∣

∣

∣
+ op(1) = Op(T

−1/2 · p) = op(1).

The proof of R5,T = op(1) is essentially the same as R4,T = op(1) and omitted for brevity.

To complete the proof, we must verify R2,T = op(1). Note WT = W1,T + W2,T , and W 2
1,T

satisfies

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

W 2
1,T − [Tv] − q

T − q

T
∑

t=q+1

W 2
1,T

∣

∣

∣



Modified testing for structural changes in autoregressive processes 87

=
1√
T

max
0≤v≤1

∣

∣

∣

(

p
∑

k=1

αk − α̂k

)2(
[Tv]
∑

t=q+1

ξ2
t−k − [Tv] − q

T − q

T
∑

t=q+1

ξ2
t−k

)
∣

∣

∣

= Op(T
−1/2) · Op(T

−1 · p2) · Op(T
1/2) = op(1).

One also can verify the negligibility of W 2
2,T in a similar fashion to prove that of W 2

1,T .

Combining these results, we have

1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

ε̂2
t −

[Tv] − q

T − q

T
∑

t=q+1

ε̂2
t

∣

∣

∣

=
1√
T

max
0≤v≤1

∣

∣

∣

[Tv]
∑

t=q+1

ε2
t −

[Tv] − q

T − q

T
∑

t=q+1

ε2
t

∣

∣

∣
+ op(1).

Since 1√
T

∑[Tv]
t=1 (ε2

t − Eε2
t )

P−→ τW (v), v√
T

∑T
t=1(ε

2
t − Eε2

t )
P−→ v · τW (1). By Assumption

2.1, and the CMT (Continuous Mapping Theorem), we can prove

1√
T

max
0≤v≤1

∣

∣

∣

∑[Tv]
t=q+1 ε2

t
∑T

t=q+1 ε2
t

− [Tv] − q

T − q

∣

∣

∣

=

1√
T

max
0≤v≤1

∣

∣

∣

∑[Tv]
t=q+1 ε2

t − [Tv−q]
T−q

∑T
t=q+1 ε2

t

∣

∣

∣

1
T

∑T
t=q+1 ε2

t

=

1√
T

max
0≤v≤1

∣

∣

∣

∑[Tv]
t=q+1(ε

2
t − Eε2

t ) − [Tv−q]
T−q

∑T
t=q+1(ε

2
t − Eε2

t )
∣

∣

∣

1
T

∑T
t=q+1 ε2

t

P−→ τ

σ2
sup

0≤v≤1
|BB(v)| .

Finally, we want to show that σ̂2 P−→ σ2 and τ̂2 P−→ τ2 = V ar(ε2
t ) = Eε4

t − σ4. The above

proofs indicate that Vi,T satisfies

1

T − q

T
∑

t=q+1

Vi,T = op(1) and
1

T − q

T
∑

t=q+1

V 2
i,T = op(1). (6)

Thus in view of ε̂2
t = ε2

t +
∑5

i=1 Vi,T and (6), we have

1

T − q

T
∑

t=q+1

(ε̂2
t − ε2

t )
2 =

1

T − q

T
∑

t=q+1

(

5
∑

i=1

Vi,T

)2

≤ 5

T − q

T
∑

t=q+1

5
∑

i=1

V 2
i,T = op(1).

Hence

1

T

T
∑

t=1

ε̂2
t

P−→ Eε2
t = σ2. (7)

Note that

1

T − q

T
∑

t=q+1

(ε̂2
t + ε2

t )
2 =

1

T − q

T
∑

t=q+1

(ε̂2
t − ε2

t )
2 +

4

T − q

T
∑

t=q+1

ε2
t ε̂

2
t



88 H. JIN, Z. TIAN and Y. F. YANG

≤ 2

T − q

T
∑

t=q+1

(ε̂2
t − ε2

t )
2 +

8

T − q

T
∑

t=q+1

ε4
t = Op(1)

and

∣

∣

∣

1

T − q

T
∑

t=q+1

ε̂4
t −

1

T − q

T
∑

t=q+1

ε4
t

∣

∣

∣
≤

( 1

T − q

T
∑

t=q+1

(ε̂2
t − ε2

t )
2
)

1

2

( 1

T − q

T
∑

t=q+1

(ε̂2
t + ε2

t )
2
)

1

2

= op(1) · Op(1) = op(1).

We can obtain

1

T − q

T
∑

t=q+1

ε̂4
t

P−→ 1

T − q

T
∑

t=q+1

ε4
t = Eε4

1.

This together with (6) shows that τ̂2 P→ τ2. Hence, we complete the proof of the theorem. 2

Before the proof of Theorem 3.2, we need introduce some important notations. Let ui = εi+q,

1 ≤ t ≤ T − q, and

Cb,l(v) =

l+[(b−1)v]
∑

i=l

u2
i , l = 1, . . . , T − b − q,

C1
b,l(v) =

l+[(b−1)v]
∑

i=l

ε12
i , l = 1, . . . , T − b − q,

Ab,l =
1

b1/2
(Cb,l(v) − vCb,l(1)) , Bb,l =

1

b
Cb,l(1), (8)

A1
b,l =

1

b1/2

(

C1
b,l(v) − vC1

b,l(1)
)

, B1
b,l =

1

b
C1

b,l(1). (9)

It is obvious that Ξ1
b,l = max0≤v≤1

|A1

b,l|
|B1

b,l
| .

Lemma A.1 If the conditions of Theorem 3.2 hold, then

ε12
t − u2

t = op(1), t = 1, . . . , T − q.

Proof Note that

ε12
t − u2

t = ε02
t+q − ε2

t+q = ε̂2
t+q − ε2

t+q + op(1).

Since ε̂2
t = ε2

t +
∑5

i=1 Vi,T , we have

V1,T = (µ − µ̂)2 = Op(T
−2) = op(1),

V3,T = 2εt(µ̂ − µ) = Op(µ̂ − µ) = Op(T
−1/2) = op(1),

V4,T = εtWT = Op(WT ),

V5,T = WT (µ − µ̂) = Op(WT ) · Op(T
−1/2),

V2,T = Op(W
2
T ).

It remains to prove Op(WT ) = op(1). By WT = W1,T + W2,T , it is easy to show that

W1,T =

p
∑

k=1

(αk − α̂k)ξt−k = Op(T
−1/2 · p) = op(1),
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W2,T =

p
∑

k=1

α̂k(ξt−k − ξ̂t−k) =

p
∑

k=1

αk(ξt−k − ξ̂t−k) + op(1) = Op(T
−1/2 · p) = op(1).

Lemma A.2 If the conditions of Theorem 3.2 hold, then

lim
T→∞

1

T − b − q

T−b−q
∑

l=1

P{Ξ1
b,l ≤ x} P−→ G(x).

Proof Using the notations introduced in (8)–(9), we define

RA
b,l = |A1

b,l| − |Ab,l|, RB
b,l = |B1

b,l| − |Bb,l|.

Observe that Ξ1
b,l ≤ x is equivalent to

|Ab,l| + RA
b,l ≤ x|Bb,l| + xRB

b,l. (10)

Notice that (10) yields for every ǫ > 0 and x > 0

P{Ξ1
b,l ≤ x} ≤ P{|Ab,l| ≤ x|Bb,l| + 2ǫ} + P{RA

b,l(v) ≤ −ǫ} + P{xRB
b,l ≥ ǫ},

and

P{Ξ1
b,l ≤ x} ≥ P{|Ab,l| ≤ x|Bb,l| − 2ǫ} − [P{RA

b,l(v) ≥ ǫ} + P{xRB
b,l ≤ −ǫ}].

Obviously, P{|Ab,l|−x|Bb,l| ≤ 2ǫ} and P{|Ab,l|−x|Bb,l| ≤ −2ǫ} have the same limits distribution

G(x), as ǫ → 0. It remains to prove that for every ǫ > 0

lim sup
T−→∞

max
1≤l≤T−b−q

P{|RA
b,l| ≥ ǫ} = 0

and that the same relation holds for xRB
b,l.

We will outline the argument for |RA
b,l| ≤ |A1

b,l − Ab,l|, and

|A1
b,l − Ab,l| =

1

b1/2

∣

∣

∣

l+[(b−1)v]
∑

i=l

(ε12
i − u2

i ) − v

l+[(b−1)]
∑

i=l

(ε12
i − u2

i )
∣

∣

∣
,

which is op(1) by Lemma A.1. Hence, we can complete the proof. 2

Lemma A.3 If the conditions of Theorem 3.2 hold, then

Var[G̃b(x)]
P−→ 0.

Proof The proof of Lemma A.3 can be immediately obtained from Jach and Kokoszka [2]. 2

Proof of Theorem 3.2 To show the G̃b(x)
p−→ G(x), it suffices to verify that EG̃b(x)

P−→ G(x)

and V ar[G̃b(x)]
p−→ 0. Thus Theorem 3.2 follows immediately from Lemmas A.2 and A.3. 2
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