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1. Introduction

In [1, 2], small time asymptotics were obtained for the standard Ornstein-Uhlenbeck process

on classical Wiener space and general Ornstein-Uhlenbeck process with unbounded linear drifts.

Zhang [3] established the small time large deviation principle and the small time asymptotics for

diffusion processes on Hilbert spaces under the Lipschitzian condition. In this paper, we further

extend a small time large deviation principle of Zhang [3] to the case of the non-Lipschitzian

condition. For the proof of the conclusion, our idea is to construct a family of positive increasing

function (Φρ)ρ>0 on R+ so that the Gronwall inequality can be applied. In fact, this idea is also

taken in [4–6].

Let H be a separable Hilbert space and E be another separable Hilbert space such that

H is imbedded in E densely and continuously and imbedding is Hilbert-Schmidt. Let µ be a

mean zero Gaussian measure on (E,B(E)) with the reproducing kernel space H , where B(E)

denotes the Borel σ-field. The (H,E, µ) is an abstract Wiener space in the sense of Gross. More

generally, to cover solutions of stochastic evolution equations, let A be a self-adjoint operator on

H . The associated semigroup is denoted by Tt = e−tA. Define H0 = D(
√
A) with inner product

〈h1, h2〉H0
= 〈

√
Ah1,

√
Ah2〉H . In next section, we introduce the small time large deviation
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principle for diffusion processes on Hilbert spaces. Finally, the proof of main theorem is given in

Section 3.

2. A small time large deviation principle

In this section, we introduce a small time large principle for solutions of a class of stochastic

equations under the non-Lipschitzian condition. This corresponds not only to small noise but

also small drift perturbation where an unbounded operator A and unbounded drifts are involved.

Let Wt, t ≥ 0 be an E-valued Brownian motion with the reproducing Hilbert space H0

defined on some probability space (Ω,Ft, P ). Let L(2)(H0, H) denote the set of all Hilbert-

Schmidt operators from H0 into H with the Hilbert-Schmidt norm ‖ · ‖(2). Given x ∈ E, we

consider the following stochastic evolution equation

ut = x−
∫ t

0

Ausds+

∫ t

0

b(us)ds+

∫ t

0

σ(us)dWs. (1)

In general, ut, t > 0, will not belong to the domain of A and Eq.(1) is interpreted in the

following sense

ut = Ttx+

∫ t

0

T(t−s)(b(us))ds+

∫ t

0

T(t−s)σ(us)dWs.

In what follows, we assume

(I) b : E → E, σ : E → L(2)(H0, H) satisfy the non-Lipschitzian condition

|b(x) − b(y)|E ≤ c2|x− y|Er(|x − y|2E), ‖σ(x) − σ(y)‖2
(2) ≤ c1|x− y|2Er(|x − y|2E),

where r : (0, 1) → R+, is a C1-function satisfying the conditions

(i) limη→0 r(η) = +∞, ηr(η) is an increasing function and limη→0 ηr(η) = 0;

(ii) limη→0
ηr′(η)
r(η) = 0;

(iii) Define ψθ(a) =
∫ a
0

ds
sr(s)+θ , ∀a, θ ≥ 0. It follows that

ψ0(a) = +∞, lim
θ→0

θ2ψθ(a) = +∞, a > 0.

(II) |b(x)|E ≤ c2 + c3|x|E , supx ‖σ(x)‖(2) ≤M , where c1, c2, c3 and M are constants.

Similarly to the discussion of Fei [6], we can prove the existence and uniqueness of Eq. (1)

under non-Lipschitzian condition. Let ε > 0. It is easy to see that the process uεt coincides in

law with the solution of the following equation

uεt = Tεtx+ ε

∫ t

0

Tε(t−s)(b(u
ε
s))ds + ε1/2

∫ t

0

Tε(t−s)σ(uεs)dWs.

Let µxε be the law of uε· on C([0, 1] → E) by

I(f) = inf
h∈Γf

{1

2

∫ 1

0

|ḣ(t)|2H0
dt},

where

Γf = {h ∈ C([0, 1] → H0); h is absolutly continuous and such that

f(t) = x+

∫ t

0

σ(f(s))ḣ(s)ds, 0 ≤ t ≤ 1}.



144 W. Y. FEI

We state the main result in this paper.

Theorem Assume that the coefficients of Eq. (1) satisfy the conditions (I) and (II).

Then µxε satisfies a large deviation principle with the rate function I(·), that is:

(1) For any closed set F ,

lim
ε→0

sup
xn→x

ε logµxn
ε (F ) ≤ − inf

f∈F
(I(f)).

(2) For any open set G,

lim
ε→0

inf
xn→x

ε logµxn
ε (G) ≥ − inf

f∈G
(I(f)).

3. The proof of the small time large deviation principle

While proceeding, we provide the several lemmas for completing the proof of the small time

large deviation principle under the non-Lipschitzian condition.

The Proof of Theorem Let νε be the law of solution vε· of the following stochastic equation

vεt = x+ ε1/2
∫ t

0

σ(vεs)dWs, t ≥ 0.

Then it is known (see, Da Prato and Zabczyk [7]) that νε satisfies a large deviation principle on

C([0, 1] → E) with the rate function I(·). Thus, by Theorem 4.2.13 in [8], it suffices to show

that the two families {µε}, {νε} of probability measures are so-called exponentially equivalent.

That is, the following proposition holds:

Proposition Assume that the coefficients of Eq. (1) satisfy the conditions (I) and (II). For any

δ > 0, we have

lim
ε→0

ε logP ( sup
0≤t≤1

|uεt − vεt |E > δ) = −∞.

Proof Let

Y εt = (Tεtx− x) + ε

∫ t

0

Tε(t−s)(b(u
ε
s))ds+ ε1/2

∫ t

0

(T(t−s) − I)σ(uεs)dWs,

Zεt = ε1/2
∫ t

0

(σ(uεs) − σ(vεs))dWs.

We have uεt − vεt = Y εt +Zεt . We need the following two lemmas for the proof of Proposition.

Lemma 1 Let δ > 0. Then

lim
ε→0

ε logP ( sup
0≤t≤1

|Y εt |E > δ) = −∞.

Proof Following the discussions of Lemmas 3.3 and 3.5 in [3], we can easily obtain the claim of

Lemma 1.

Lemma 2 Let δ > 0. Then

lim
ε→0

ε logP ( sup
0≤t≤1

|Zεt |E > δ) = −∞.
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Proof For ρ > 0, from the assumptions (i) and (ii) on r, we can introduce ξεt = |Zεt |2E and

stopping times

τε1 = inf{t > 0; |Y εt | > ρ}, τε2 = inf{t > 0; ξεt > δ2, r(ξεt ) + ξεt r
′(ξεt ) < 0},

and put τ = τε1 ∧ τε2 . By Itô formula, we deduce

ξǫt = 2ε1/2
∫ t

0

< Zεs , (σ(uεs) − σ(vεs))dWs > +

∫ t

0

εtr(σ(uεs) − σ(vεs))(σ(uεs) − σ(vεs))
∗)ds.

Let Φρ(ξ
ε
t∧τ ) = eλψρ(ξε

t∧τ ), λ > 0. Thus we have

Φ′
ρ(ξ

ε
t∧τ ) = λΦρ(ξ

ε
t∧τ )

1

ξεt∧τ r(ξ
ε
t∧τ ) + ρ

≤ λ

ρ
Φρ(ξ

ε
t∧τ ),

Φ′′
ρ(ξ

ε
t∧τ ) = λΦρ(ξ

ε
t∧τ )

1

(ξεt∧τ r(ξ
ε
t∧τ ) + ρ)2

(λ− (r(ξεt∧τ ) + ξεt∧τr
′(ξεt∧τ )))

≤ λ2Φρ(ξ
ε
t∧τ )

1

(ξεt∧τ r(ξ
ε
t∧τ ) + ρ)2

≤ λ2

ρ2
Φρ(ξ

ε
t∧τ ). (2)

From ξǫ1∧τ = δ2, we have Φ(ξε1∧τ ) = eλψρ(δ2). Since

|uεt∧τ − vεt∧τ |2E ≤ 2(|Y εt∧τ |2E + |Zεt∧τ |2E) ≤ 2(ρ2 + ξεt∧τ ) ≤ 2(ρ2 + δ2),

by the condition (I), we have

‖σ(uεt∧τ ) − σ(vεt∧τ )‖2
(2) ≤ c(|uεt∧τ − vεt∧τ |2E |r(|uεt∧τ − vεt∧τ |2E) + 1)

≤ c(2(ρ2 + δ2)r(2(ρ2 + δ2)) + 1),

tr((Zεt∧τ ⊗ Zεt∧τ )(σ(uεt∧τ ) − σ(vεt∧τ ))(σ(uεt∧τ ) − σ(vεt ))
∗)

≤ |Zεt∧τ |2E |uεt∧τ − vεt∧τ |2E ≤ 2ξεt∧τ (ρ
2 + ξεt∧τ ) ≤ 2δ2(ρ2 + δ2). (3)

From Itô formula, it follows that

Φρ(ξ
ε
t∧τ ) =1 + 2ε1/2

∫ t∧τ

0

Φ′
ρ(ξ

ε
s) < Zεs , (σ(uεs) − σ(vεs))dWs > +

ε

∫ t∧τ

0

Φ′
ρ(ξ

ε
s)‖σ(uεs) − σ(vεs)‖2

(2)ds+

2ε

∫ t∧τ

0

Φ′′
ρ(ξ

ε
s)tr((Z

ε
s ⊗ Zεs)(σ(uεs) − σ(vεs))(σ(uεs) − σ(vεs))

∗)ds. (4)

Thus, taking the expectation for Eq.(4) together with (2) and (3), we deduce

E[Φρ(ξ
ε
t∧τ )] ≤ 1 + λ2ε(

2c(ρ2 + δ2)r(2(ρ2 + δ2)) + c

ρλ
+

4δ2(ρ2 + δ2)

ρ2
)

∫ t∧τ

0

E[Φρ(ξ
ε
s)]ds

= 1 + k(ρ)λ2ε

∫ t∧τ

0

E[Φρ(ξ
ε
s)]ds,

where

k(ρ) =
2c(ρ2 + δ2)r(2(ρ2 + δ2)) + c

ρλ
+

4δ2(ρ2 + δ2)

ρ2
.

Therefore, by the Gronwall inequality, we get

E[Φρ(ξ
ε
t∧τ )] ≤ exp (k(ρ)λ2ε).
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Consequently,

P ( sup
0≤t≤1

ξεt ≥ δ2, sup
0≤t≤1

|Y εt | ≤ ρ) exp (λψρ(δ
2)) ≤ P (τε2 ≤ 1, τε1 > 1) exp (λψρ(δ

2))

≤ E[Φρ(ξ
ε
1∧τ )] ≤ exp (k(ρ)λ2ε).

Hence, we have

P ( sup
0≤t≤1

|Zεt | ≥ δ, sup
0≤t≤1

|Y εt | ≤ ρ) ≤ exp(k(ρ)λ2ε− λψρ(δ
2)).

Taking λ = 1
ε , we get

lim sup
ε→0

ε logP ( sup
0≤t≤1

|Zεt | ≥ δ, sup
0≤t≤1

|Y εt | ≤ ρ) ≤ 4δ2(ρ2 + δ2)

ρ2
− ψρ(δ

2).

Thus, from Lemma 1 we have

lim sup
ε→0

ε logP ( sup
0≤t≤1

|Zεt | ≥ δ)

≤ (lim sup
ε→0

ε logP ( sup
0≤t≤1

|Zεt | ≥ δ, sup
0≤t≤1

|Y εt | ≤ ρ))

∨ (lim sup
ε→0

ε logP ( sup
0≤t≤1

|Y εt | > ρ)) ≤ 4δ2(ρ2 + δ2)

ρ2
− ψρ(δ

2). (5)

Since limρ→0 ψρ(δ
2) = +∞, limρ→0 ρ

2ψρ(δ
2) = +∞, we have

lim
ρ→0

(
4δ2(ρ2 + δ2)

ρ2
− ψρ(δ)) = lim

ρ→0
ψρ(δ)(

4δ2(ρ2 + δ2)

ρ2ψρ(δ2)
− 1) = −∞.

Hence, setting ρ→ 0 in (5) gives

lim sup
ε→0

ε logP ( sup
0≤t≤1

|Zεt | ≥ δ) = −∞.

Thus, the claim of Lemma 2 holds.

Finally, from Lemmas 1 and 2, we get the Proposition, and the proof of Theorem is com-

pleted. 2
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