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Abstract Let M and A be nonzero subspaces of a Hilbert space H, and P and Py denote the
orthogonal projections on M and N, respectively. In this note, an exact representation of the
angle and the minimum gap of M and N is obtained. In addition, we study relations between
the angle, the minimum gap of two subspaces M and N, and the reduced minimum modulus of
(I — Px)Pm.
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1. Introduction

Throughout this note, a subspace is a closed linear manifold of a separable Hilbert space
‘H with inner product and norm denoted by (z,y) and ||z| = \/{z, ), respectively. If M is a
subspace of H, the orthogonal complement of M is denoted by M+ and the orthogonal projection
on M is denoted by Pas. In recent years, the variety of quantities involving two subspaces have
been studied by a number of researchers in the wide literatures [2-11]. In this note, using the
technique of block-operators, some results about minimum gap and the angle between two closed
subspaces of a Hilbert space are improved which are obtained by Deng in [3] and other results
concerning two subspaces of a Hilbert space are obtained. The angle [6,7,9] between M and N/

x

is an angle in [0, ] whose cosine is defined by

c(M,N) =sup{|(z)y] :z e MNMNN)E,ye Nn(MON)E and [|z] = |ly]| =1}. (1)

By this formula ¢(M, N) is defined only when M is not a subspace of A and N is not a subspace
of M.IEM C N or N C M, we let ¢(M,N) = 0. The minimal angle [7] between M and N is

an angle in [0, Z] whose cosine is defined by

2
co(M,N) =sup{[(z)y| : 2 € M,y € N and |[z[| = [ly[| = 1}. (2)
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Recall that the minimum gap (M, N') between two closed subspaces M and N of a Hilbert
space has been defined [3,9] by
dist(z, N)
i _— 3
ze/\lxln,mgj\/ dist(z, M N N) 3)
By this formula y(M,N) is defined only when M is not a subspace of N. If M C N, we set
v(M,N) = 1. Obviously, y(M,N) =1, if N C M.

Before proving the main results in this paper, let us introduce some notations and terminology

W(Mv-j\/) =

which are used in the later. The set of all bounded linear operators on H is denoted by B(H). For
an operator A € B(H), the adjoint, the range, the null-space and the spectrum of A are denoted
by A*, R(A), N(A) and o(A), respectively. An operator A € B(H) is said to be self-adjoint
if A= A*. An operator A € B(H) is said to be positive if (Az,z) > 0 for z € H. If Ais a
positive operator, the unique square root of A is denoted by Az. An operator A is said to be a
contraction (strict contraction) if || A |[<1 (|| 4 ||< 1). The reduced minimum modulus y(A) of
A € B(H) (see [1,9]) is defined by

inf{||Az| : dist(z, N(A)) =1}, A#0;
1(4) =
0, A=0.
It is well known that for A # 0, R(A) is closed if and only if v(A) > 0.

2. Main results

Lemma 1 ([4,8]) Let M and N be two closed subspaces of H. If Pyq and Py denote the
orthogonal projections on M and N, respectively, then Py and Py have the operator matrices

Pu=LaLeol;a0l a0l (4)

and

()

3(Is —Q)zD
PN=11@012@13@014@< Q Qi(l5 - Q)

D*Q%(I; ~Q):  D*(Is—Q)D
with respect to the space decomposition H = @?:1 ‘H;, respectively, where H1 = M NN,
Ha = MONL, Hy = MEON, Hy = MEONL, Hs = MS(Hi&Hs) and He = HE(D_, M),
Q is a positive contraction on Hs, 0 and 1 are not eigenvalues of ), and D is a unitary from Hg
onto Hs. I; is the identity on H;, i =1,...,5.

For convenience, in the sequel, we always assume that Py and Py have the operator matrices
(4) and (5), also the zero operator on H; is denoted by 0;, i =1,...,6.

First, we give some necessary and sufficient conditions for Hs = He = {0}.

Lemma 2 Let M and N be two closed subspaces of H. The following statements are equivalent:
(a) Pa and Py commute: PpgPn = Py Pag;
(b) PmPyn = Pyom;
(c¢) Pm Py is an orthogonal projections;
(d) Pa Py is an idempotent;
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(¢) PmPnPm = PxyPmPy

(f) H=MNNSMNON+tOM-NN NN ML
(g M=MnNNSMNON*L.

Proof Since ||[PmPy|| <1, it is clear that (c)<=(d).

(¢c)==(f). By Lemma 1, Py and Py have the operator matrices (4) and (5). It is easy to
calculate that

(I« — 02D
PMPN:11@012@013@014@<§ @ (50Q)

and

2 3 1
I5 — D
(pMPN)2:I1®OIQEBOI3@OI4®<Cg) Q2(5OQ)2 )

Therefore, if Hs # {0}, then Q2 = Q, so o(Q) = {0,1}, hence 0 and 1 are eigenvalues of Q. It
is a contradiction to Lemma 1, so Hs = {0}, then Hg = {0}. Thus H = MNN & MNN+ &
MEAN @ NEAME
(e)=(f). By a similar calculation as above, we have PpPxn Py = Py Pag Py which implies
Hs = He = {0}.
It is obvious that (f)= (¢) = (a)<=(b)<=(c). O
The following lemma was obtained in [1].
Lemma 3 ([1]) Let T € B(H). Then
« . . 1 . 1
YT) =~(T7) = (inf{o(TT*) \ {0}})2 = (inf{c(T"T) \ {0}})>.

From above lemmas, we give the specific representation of (P Py).

Theorem 4 Let M and N be nonzero subspaces of H. Then

1, if Py Py is a nonzero orthogonal projection;
Y(PmPyn) =4 0, if Py Py = 0;
(1—|Is — Q|))2, if P; Py is not an orthogonal projection .

Proof If Py Py is not an orthogonal projection, then Hs # {0} and He # {0}. It follows from
Lemma 1 that

0
PuPy(PuPN) =1 & 0L, & I; & 01, & ( %2 . ) .

Since 0 is not an eigenvalue of @, 0 is not an isolated point of o(Q). Hence by Lemma 2,
Y(PmPy) = (inf{o(Q) \ {0}})2 = (inf{o(Q)})2. Thus
Y(PpmPy) =inf{A € C: A € 0(Q)}?
=(1-supfAeC:Aea(l;—Q)}): = (15— Q|):. O

It is well-known that
. L
sup{o(T)} = lim [[(T")][,
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and if T is invertible, then
Jim (T*)* = inf{a(T)}.
Similarly, we have following conclusion for T'= Py(Pys.

Theorem 5 Let T # 0 be product of two orthogonal projections. Then
Jim ~(T*)* = inf{a(T) \ {0}}.
Proof If T is an orthogonal projection, then limy_ v(T*)* = 1, the conclusion is clear.
If T is not an orthogonal projection, then let T' = P Py, where Py and Py have the
operator matrices (4) and (5). By Lemma 1, H5 # {0} and He # {0}. It is easy to calculate that
- QD
0

k
(PUPN) =1 @01, ® Is ® 014 ® ( % @

and

2k—1 0
(PPN (PUPN) ) =1 @ 0L & I3 © 0L, @ ( @ 0 0 ) .

Thus
V(P Py)F) = inf{a(Q* 1)\ {0}}2
= (inf{o(Q)**~1\ {O}})%( by Spectra Mapping Theorem)

= (inf{o(Q)**" 1}) ('since 0 is not an eigenvalues of @Q2*~1)
Qk 1

= (f{o(@}) "=
Hence limy_, o v(T%) % = inf{o(Q)}. It is easy to see that
7(Q) € o(T) = o(PrPy) € {1,01Uo(Q),
so inf{o(T) \ {0}} = inf{o(Q) \ {0}} = inf{o(Q)}. Therefore,
Jim 3 (T)F = inf{o(T)\ {0}}. O

In Lemma 2.10 of [7], the following results were obtained. To make this work complete, we

include a proof.

Lemma 6 Let M and N be nonzero subspaces of H. Then
co(M,N) =[PPy = || PruPxPrl

and
(M, N) = [[PrmPrn Py - Il

Proof
co(M,N) = sup{[(z)y| : v € M,y € N and ||z[| = ||y|| = 1}

= sup{[(Pymx, Pxy)| : 2,y € H and |[z]| = [[y] = 1}
= sup{[(z, PmPyy)| : 2,y € H and |[z]| = [[y] = 1}
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= [[PmPy]l-
(M,N) =coMNMNNENAMAN)T)
= [Prmnmnny+ Paovion |
= |PrmPainny: Py Py 1|
= |PMPNPipinnnytll- O

The following is an extension of Theorem 4 in [3].

Corollary 7 Let M and N be nonzero subspaces of H. Then

0, if PPy is an orthogonal projection;
C(MvN) = 1 . . ..
|Qllz, if Prm Py is not an orthogonal projection,
and
1, if MNN # {0} or Pp Py is a nonzero orthogonal projection;
co(M,N)=<¢ 0, if Py Py = 0;

||Q||%, otherwise .

Proof From Lemmas 6 and 2, it is easy to see that if Py P is an orthogonal projection, then
c(M,N) = 0. If Pyp(Py is not an orthogonal projection, then Hs # 0 and Hg # 0. Note that
P(MW\/)J_ =0L L ®IsP Iy I5 P Ig, so

(M, N) = [|PrP Poieay | = I1PMPs P s Py Padl* = Q)%
From the relation of ¢(M, ') and ¢o(M,N), the expression of co(M,N) is clear. O

The following theorem is one of our main results.

Theorem 8 Let M and N be nonzero subspaces of H. Then
(a) IfMgN, then V(PNLPM):C(M,N):O.
(b) If M SZN, then ’}/2(PNLPM)+C2(M,N)=1.

Proof (a) is clear.

(b) Case 1. If PyqPy is an orthogonal projection, then Pyr1 Ppg is a nonzero orthogonal
projection, so y(Ppn+ Pym) =1 and ¢(M,N) =0, by Lemma 7.

Case 2. If PypqPy is not an orthogonal projection, it follows from Lemma 2 that H; # {0},
then Hg # {0}. By Lemma 1, it is easy to calculate that

1-Q 0
Pyi Py =00 & 1o ® 013 0L
NEEM 10RO © 4®<D*(I5—Q)§Q§ 0)

and

. 1-Q 0
PNLPM(PNJ.PM) =0 L ®0I:p0l, & 0 .

Thus by Lemma 3,

Y(PyiPp) = inf{o(1 - Q)\ {0}}2 = (1 —sup{A € C: X € 0(Q)})2
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1
=@ —el)>.

It follows from Corollary 7 that v2(Pyxi. Pyp) + (M, N) =1. O

Consequently, we obtain some results of [2] and [7].

Corollary 9 ([7, Theorems 2.15, 2.16]) Let M and N be nonzero subspaces of H. Then
(a) c(M,N)=c(M+ NT);
(b) fMNN ={0} and M +N =H, then co(M,N) = co(M*,N21).

Proof (a) Case 1. If M C N, then Nt C M*, so by Lemma 7, ¢(M,N) = ¢(M*+,N1) = 0.
Case 2. If M ¢ N, then N ¢ ML, by Theorem 8,

Y2(Ppnri Prg) + A(MUN) =1 and 42 (PpmPyri) + AN M) = 1.

By Lemma 3, ¥(Py1 Pr) = Y(Pm P ), s0 ¢(M,N) = ¢(NE, ML) = (M NL).

(b) Since M NN = {0}, it is obvious that co(M,N) = ¢(M,N). It follows from M +
N = H that MLt NN+ = {0}, so co( M+, Nt) = ¢( ML, NL). According to (a), co(M,N) =
co(ME N1, O

Corollary 10 ([7, Theorem 2.13]) Let M and N be nonzero subspaces of H. Then the following
statements are equivalent:

(a) c(M,N) <1;

(b) M+ N is closed;

(c) ML+ N2 is closed.

Proof If M C N, then the conclusion is clear. In the following proof, we assume M ¢ N It is
easy to see that M + N = N + Py (M), where Pyi (M) := {Py1y :y € M}. Hence M + N
is closed if and only if R(Pprr(M)) is closed. It is well-known that R(Py. (M)) is closed if and
only if ¥(Ppr+ Paq) > 0. Therefore, it follows from Theorem 8 that (a)<=> (b). From Corollary
9, c(M,N) <1 = (M Nt) <1 = M+ + Nt is closed. O

The following result is fundamental in [7]. A technical proof has been given in [7]. Here, we

give a simple proof.

Corollary 11 ([7, Lemma 2.14]) Let M and N be nonzero subspaces of H. If ¢co(M,N) < 1,
then for any closed subspace X of H which contains M + N, we have

co(M,N) < co M N X, Nt nX).

Proof For convenience, we divide proof into three steps.

Step 1. If M+ NN+ N X # {0}, then cg( M- N X, N+ NX) =1, 50 co(M,N) < co(MLN
X, N+ nX).

Step 2. Let X = H. Since ¢o(M,N) < 1, we have M NN = {0} and M + N is closed. If
ML N #£ {0}, then co(M*+ N X, N+ N X) = cg(MENL) =1, 50 co( M, N) < co(M*+ N
X, N+ nX).
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If M+ NN+ = {0}, then M + N = H, since M + N is closed. It follows from Corollary 9
that co(M,N) = co(M* N X, N+ N X).

Step 3. If M+ NN+ N X = {0}, then (M +N)L N X = {0}. Therefore, X = M + N, since
X DM+ N and M+ N is closed. It is easy to see that co(M,N) = co(M N X, N N X), then
we may replace H by X. It follows from Step 2 that co(M,N) < cg(M+NX, N+t NX). O

The following result has been proved in [2,7]. As an application of Theorem 8, we give an

alternative proof.

Corollary 12 ([2,7]) If A and B are bounded operators on H with closed ranges, then the
following statements are equivalent:

(a) AB has closed range;

(b) c(R(B),N(4)) < 1;

(¢) R(B)+ N(A) is closed.

Proof If AB = 0, then the conclusion is clear. In the following proof, assume that AB # 0.

Since R(A) is closed, we have

A < f(‘)l 8 ) N (A & N(A) - R(A) & R(A)*,

where A; is invertible from N (A)L onto R(A). It is easy to see that
R(AB) = R(A1 Py(a): Pr))-

Since A; is invertible, R(AB) is closed <= R(Pyr(a)L Pr(p)) is closed <= y(Ppr(a). Pr(p)) > 0
<= ¢(R(B),N(4)) <1, by Theorem 8. O

The following theorem is our another main result which is an extension of Theorem 8 of [3].

Theorem 13 Let M and N be nonzero subspaces of H. Then

1, if Pypq Py is an orthogonal projection;

W(Mv-j\/) = {

Especially, M + N is closed if and only if v(M,N) > 0.

(1—QI)2, if PmPy is not an orthogonal projection.

Proof If Py(Py is an orthogonal projection, then Hs = Hg = 0, so
Pu=L&L®0I3d0Iy, and Py =11 & 01y ® I3 P 014.
Case 1 If M NN+ = {0}, then M C N, by the definition of v(M,N), we have v(M,N) = 1.

Case 2 If M+ NN = {0}, then M D N, so vy(M,N) = 1.

Case 3 If Mt NN # {0} and M NN+ # {0}, let z € M\ N. Then z = z1 + x2, where
1 €E MNN and 0 # x5 € M NN, since PPy is an orthogonal projection. It is easy to see
that

dist(z, N) = inf{[|lz — y|| : y € N} = inf{[|wa — ¢l : y € N} = ||,

dist(z, MNN) =inf{||lz —y|| : y e MNN} =inf{||zs —y|| : y € MNON} = ||22]|.
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Hence y(M,N) = 1.
If PyqPy is not an orthogonal projection, then Hs # 0 and Hg # 0. For a vector x € M\ N,
x has the decomposition z = x1 + z2 + 25 with x; € H;,i = 1,2, 5, then ||z2||? + ||z5]|* # 0, so

dist(z, V) 212 + || (I — @)% s||?
M,N) = inf =
i ) veM 2¢N dist(z, M NN) veM, mé/\/ lz2]|? + |5 ]|?
P 1€ T Q)3 as| _ o MU — Q)25
zeEM,xgN H.I5H x5€Hs\{0} ||I5||

( note that x5 € Hs implies z5 € M \ N)
=7((Is = Q)?),
since N (I5 — Q) = {0}. It follows from Lemma 3 that

Y((Is = Q)*F) = (inf{o(ls — Q) \ {0}})* = (inf{o(l; — Q)})*
=(1-sup{AeC:rea(@}? =(1-|QI)*

By Corollary 10 and Corollary 7, M + N is closed <= ¢(M,N) < 1 < ||Q] < 1
YM,N)>0. O

Combining Theorem 8 and Theorem 13, we obtain the following result.

Corollary 14 Let M and N be nonzero subspaces of H. Then
(a) If M C N, then ¥(Py1 Py) = 0 and y(M,N) = 1;
(b) If M & N, then v(Pp Pr) = v(M,N);
(¢) Y(MN) =~N*+, Mb).
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