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Abstract Let M and N be nonzero subspaces of a Hilbert space H, and PM and PN denote the

orthogonal projections on M and N , respectively. In this note, an exact representation of the

angle and the minimum gap of M and N is obtained. In addition, we study relations between

the angle, the minimum gap of two subspaces M and N , and the reduced minimum modulus of

(I − PN )PM.
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1. Introduction

Throughout this note, a subspace is a closed linear manifold of a separable Hilbert space

H with inner product and norm denoted by 〈x, y〉 and ‖x‖ =
√

〈x, x〉, respectively. If M is a

subspace of H, the orthogonal complement of M is denoted by M⊥ and the orthogonal projection

on M is denoted by PM. In recent years, the variety of quantities involving two subspaces have

been studied by a number of researchers in the wide literatures [2–11]. In this note, using the

technique of block-operators, some results about minimum gap and the angle between two closed

subspaces of a Hilbert space are improved which are obtained by Deng in [3] and other results

concerning two subspaces of a Hilbert space are obtained. The angle [6, 7, 9] between M and N

is an angle in [0, π
2 ] whose cosine is defined by

c(M,N ) = sup{|〈x〉y| : x ∈ M∩ (M∩N )⊥, y ∈ N ∩ (M∩N )⊥ and ‖x‖ = ‖y‖ = 1}. (1)

By this formula c(M,N ) is defined only when M is not a subspace of N and N is not a subspace

of M. If M ⊆ N or N ⊆ M, we let c(M,N ) = 0. The minimal angle [7] between M and N is

an angle in [0, π
2 ] whose cosine is defined by

c0(M,N ) = sup{|〈x〉y| : x ∈ M, y ∈ N and ‖x‖ = ‖y‖ = 1}. (2)
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Recall that the minimum gap γ(M,N ) between two closed subspaces M and N of a Hilbert

space has been defined [3, 9] by

γ(M,N ) = inf
x∈M,x/∈N

dist(x,N )

dist(x,M∩N )
. (3)

By this formula γ(M,N ) is defined only when M is not a subspace of N . If M ⊆ N , we set

γ(M,N ) = 1. Obviously, γ(M,N ) = 1, if N ⊆ M.

Before proving the main results in this paper, let us introduce some notations and terminology

which are used in the later. The set of all bounded linear operators on H is denoted by B(H). For

an operator A ∈ B(H), the adjoint, the range, the null-space and the spectrum of A are denoted

by A∗, R(A), N (A) and σ(A), respectively. An operator A ∈ B(H) is said to be self-adjoint

if A = A∗. An operator A ∈ B(H) is said to be positive if (Ax, x) ≥ 0 for x ∈ H. If A is a

positive operator, the unique square root of A is denoted by A
1

2 . An operator A is said to be a

contraction (strict contraction) if ‖ A ‖≤ 1 (‖ A ‖< 1). The reduced minimum modulus γ(A) of

A ∈ B(H) (see [1, 9]) is defined by

γ(A) =

{

inf{‖Ax‖ : dist(x,N (A)) = 1}, A 6= 0;

0, A = 0.

It is well known that for A 6= 0, R(A) is closed if and only if γ(A) > 0.

2. Main results

Lemma 1 ([4, 8]) Let M and N be two closed subspaces of H. If PM and PN denote the

orthogonal projections on M and N , respectively, then PM and PN have the operator matrices

PM = I1 ⊕ I2 ⊕ 0I3 ⊕ 0I4 ⊕ I5 ⊕ 0I6 (4)

and

PN = I1 ⊕ 0I2 ⊕ I3 ⊕ 0I4 ⊕

(

Q Q
1

2 (I5 − Q)
1

2 D

D∗Q
1

2 (I5 − Q)
1

2 D∗(I5 − Q)D

)

(5)

with respect to the space decomposition H =
⊕6

i=1 Hi, respectively, where H1 = M ∩ N ,

H2 = M∩N⊥, H3 = M⊥∩N , H4 = M⊥∩N⊥, H5 = M⊖(H1⊕H2) and H6 = H⊖(
⊕5

j=1 Hj),

Q is a positive contraction on H5, 0 and 1 are not eigenvalues of Q, and D is a unitary from H6

onto H5. Ii is the identity on Hi, i = 1, . . . , 5.

For convenience, in the sequel, we always assume that PM and PN have the operator matrices

(4) and (5), also the zero operator on Hi is denoted by 0Ii, i = 1, . . . , 6.

First, we give some necessary and sufficient conditions for H5 = H6 = {0}.

Lemma 2 Let M and N be two closed subspaces of H. The following statements are equivalent:

(a) PM and PN commute: PMPN = PNPM;

(b) PMPN = PN∩M;

(c) PMPN is an orthogonal projections;

(d) PMPN is an idempotent;
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(e) PMPNPM = PNPMPN ;

(f) H = M∩N ⊕M∩N⊥ ⊕M⊥ ∩ N ⊕N⊥ ∩M⊥;

(g) M = M∩N ⊕M∩N⊥.

Proof Since ‖PMPN ‖ ≤ 1, it is clear that (c)⇐⇒(d).

(c)=⇒(f). By Lemma 1, PM and PN have the operator matrices (4) and (5). It is easy to

calculate that

PMPN = I1 ⊕ 0I2 ⊕ 0I3 ⊕ 0I4 ⊕

(

Q Q
1

2 (I5 − Q)
1

2 D

0 0

)

and

(PMPN )2 = I1 ⊕ 0I2 ⊕ 0I3 ⊕ 0I4 ⊕

(

Q2 Q
3

2 (I5 − Q)
1

2 D

0 0

)

.

Therefore, if H5 6= {0}, then Q2 = Q, so σ(Q) = {0, 1}, hence 0 and 1 are eigenvalues of Q. It

is a contradiction to Lemma 1, so H5 = {0}, then H6 = {0}. Thus H = M∩N ⊕M∩N⊥ ⊕

M⊥ ∩ N ⊕N⊥ ∩M⊥.

(e)=⇒(f). By a similar calculation as above, we have PMPNPM = PNPMPN which implies

H5 = H6 = {0}.

It is obvious that (f)=⇒ (g) =⇒(a)⇐⇒(b)⇐⇒(c). 2

The following lemma was obtained in [1].

Lemma 3 ([1]) Let T ∈ B(H). Then

γ(T ) = γ(T ∗) = (inf{σ(TT ∗) \ {0}})
1

2 = (inf{σ(T ∗T ) \ {0}})
1

2 .

From above lemmas, we give the specific representation of γ(PMPN ).

Theorem 4 Let M and N be nonzero subspaces of H. Then

γ(PMPN ) =











1, if PMPN is a nonzero orthogonal projection;

0, if PMPN = 0;

(1 − ‖I5 − Q‖)
1

2 , if PMPN is not an orthogonal projection .

Proof If PMPN is not an orthogonal projection, then H5 6= {0} and H6 6= {0}. It follows from

Lemma 1 that

PMPN (PMPN )∗ = I1 ⊕ 0I2 ⊕ I3 ⊕ 0I4 ⊕

(

Q 0

0 0

)

.

Since 0 is not an eigenvalue of Q, 0 is not an isolated point of σ(Q). Hence by Lemma 2,

γ(PMPN ) = (inf{σ(Q) \ {0}})
1

2 = (inf{σ(Q)})
1

2 . Thus

γ(PMPN ) = inf{λ ∈ C : λ ∈ σ(Q)}
1

2

= (1 − sup{λ ∈ C : λ ∈ σ(I5 − Q)})
1

2 = (1 − ‖I5 − Q‖)
1

2 . 2

It is well-known that

sup{σ(T )} = lim
n→∞

‖(T n)‖
1

n ,
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and if T is invertible, then

lim
k→∞

γ(T k)
1

k = inf{σ(T )}.

Similarly, we have following conclusion for T = PMPN .

Theorem 5 Let T 6= 0 be product of two orthogonal projections. Then

lim
k→∞

γ(T k)
1

k = inf{σ(T ) \ {0}}.

Proof If T is an orthogonal projection, then limk→∞ γ(T k)
1

k = 1, the conclusion is clear.

If T is not an orthogonal projection, then let T = PMPN , where PM and PN have the

operator matrices (4) and (5). By Lemma 1, H5 6= {0} and H6 6= {0}. It is easy to calculate that

(PMPN )k = I1 ⊕ 0I2 ⊕ I3 ⊕ 0I4 ⊕

(

Qk Q
2k−1

2 (I5 − Q)
1

2 D

0 0

)

and

(PMPN )k((PMPN )∗)k = I1 ⊕ 0I2 ⊕ I3 ⊕ 0I4 ⊕

(

Q2k−1 0

0 0

)

.

Thus

γ((PMPN )k) = inf{σ(Q2k−1) \ {0}}
1

2

= (inf{σ(Q)2k−1 \ {0}})
1

2 ( by Spectra Mapping Theorem)

= (inf{σ(Q)2k−1})
1

2 ( since 0 is not an eigenvalues of Q2k−1)

= (inf{σ(Q)})
2k−1

2 .

Hence limk→∞ γ(T k)
1

k = inf{σ(Q)}. It is easy to see that

σ(Q) ⊆ σ(T ) = σ(PMPN ) ⊆ {1, 0} ∪ σ(Q),

so inf{σ(T ) \ {0}} = inf{σ(Q) \ {0}} = inf{σ(Q)}. Therefore,

lim
k→∞

γ(T k)
1

k = inf{σ(T ) \ {0}}. 2

In Lemma 2.10 of [7], the following results were obtained. To make this work complete, we

include a proof.

Lemma 6 Let M and N be nonzero subspaces of H. Then

c0(M,N ) = ‖PMPN ‖ = ‖PMPNPM‖
1

2 ,

and

c(M,N ) = ‖PMPNP(M∩N )⊥‖.

Proof

c0(M,N ) = sup{|〈x〉y| : x ∈ M, y ∈ N and ‖x‖ = ‖y‖ = 1}

= sup{|〈PMx, PN y〉| : x, y ∈ H and ‖x‖ = ‖y‖ = 1}

= sup{|〈x, PMPN y〉| : x, y ∈ H and ‖x‖ = ‖y‖ = 1}
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= ‖PMPN ‖.

c(M,N ) = c0(M∩ (M∩N )⊥,N ∩ (M∩N )⊥)

= ‖PM∩(M∩N )⊥PN∩(M∩N )⊥‖

= ‖PMP(M∩N )⊥PNP(M∩N )⊥‖

= ‖PMPNP(M∩N )⊥‖. 2

The following is an extension of Theorem 4 in [3].

Corollary 7 Let M and N be nonzero subspaces of H. Then

c(M,N ) =

{

0, if PMPN is an orthogonal projection;

‖Q‖
1

2 , if PMPN is not an orthogonal projection,

and

c0(M,N ) =











1, if M∩N 6= {0} or PMPN is a nonzero orthogonal projection;

0, if PMPN = 0;

‖Q‖
1

2 , otherwise .

Proof From Lemmas 6 and 2, it is easy to see that if PMPN is an orthogonal projection, then

c(M,N ) = 0. If PMPN is not an orthogonal projection, then H5 6= 0 and H6 6= 0. Note that

P(M∩N )⊥ = 0I1 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ I5 ⊕ I6, so

c(M,N ) = ‖PMPNP(M∩N )⊥‖ = ‖PMPNP(M∩N )⊥PNPM‖
1

2 = ‖Q‖
1

2 .

From the relation of c(M,N ) and c0(M,N ), the expression of c0(M,N ) is clear. 2

The following theorem is one of our main results.

Theorem 8 Let M and N be nonzero subspaces of H. Then

(a) If M ⊆ N , then γ(PN⊥PM) = c(M,N ) = 0.

(b) If M * N , then γ2(PN⊥PM) + c2(M,N ) = 1.

Proof (a) is clear.

(b) Case 1. If PMPN is an orthogonal projection, then PN⊥PM is a nonzero orthogonal

projection, so γ(PN⊥PM) = 1 and c(M,N ) = 0, by Lemma 7.

Case 2. If PMPN is not an orthogonal projection, it follows from Lemma 2 that H5 6= {0},

then H6 6= {0}. By Lemma 1, it is easy to calculate that

PN⊥PM = 0I1 ⊕ I2 ⊕ 0I3 ⊕ 0I4 ⊕

(

1 − Q 0

D∗(I5 − Q)
1

2 Q
1

2 0

)

and

PN⊥PM(PN⊥PM)∗ = 0I1 ⊕ I2 ⊕ 0I3 ⊕ 0I4 ⊕

(

1 − Q 0

0 0

)

.

Thus by Lemma 3,

γ(PN⊥PM) = inf{σ(1 − Q) \ {0}}
1

2 = (1 − sup{λ ∈ C : λ ∈ σ(Q)})
1

2
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= (1 − ‖Q‖)
1

2 .

It follows from Corollary 7 that γ2(PN⊥PM) + c2(M,N ) = 1. 2

Consequently, we obtain some results of [2] and [7].

Corollary 9 ([7, Theorems 2.15, 2.16]) Let M and N be nonzero subspaces of H. Then

(a) c(M,N ) = c(M⊥,N⊥);

(b) If M∩N = {0} and M + N = H, then c0(M,N ) = c0(M⊥,N⊥).

Proof (a) Case 1. If M ⊆ N , then N⊥ ⊆ M⊥, so by Lemma 7, c(M,N ) = c(M⊥,N⊥) = 0.

Case 2. If M * N , then N⊥ * M⊥, by Theorem 8,

γ2(PN⊥PM) + c2(M,N ) = 1 and γ2(PMPN⊥) + c2(N⊥,M⊥) = 1.

By Lemma 3, γ(PN⊥PM) = γ(PMPN⊥), so c(M,N ) = c(N⊥,M⊥) = c(M⊥,N⊥).

(b) Since M ∩ N = {0}, it is obvious that c0(M,N ) = c(M,N ). It follows from M +

N = H that M⊥ ∩ N⊥ = {0}, so c0(M⊥,N⊥) = c(M⊥,N⊥). According to (a), c0(M,N ) =

c0(M⊥,N⊥). 2

Corollary 10 ([7, Theorem 2.13]) Let M and N be nonzero subspaces of H. Then the following

statements are equivalent:

(a) c(M,N ) < 1;

(b) M + N is closed;

(c) M⊥ + N⊥ is closed.

Proof If M ⊆ N , then the conclusion is clear. In the following proof, we assume M * N . It is

easy to see that M + N = N + PN⊥(M), where PN⊥(M) := {PN⊥y : y ∈ M}. Hence M + N

is closed if and only if R(PN⊥(M)) is closed. It is well-known that R(PN⊥(M)) is closed if and

only if γ(PN⊥PM) > 0. Therefore, it follows from Theorem 8 that (a)⇐⇒ (b). From Corollary

9, c(M,N ) < 1 ⇐⇒ c(M⊥,N⊥) < 1 ⇐⇒ M⊥ + N⊥ is closed. 2

The following result is fundamental in [7]. A technical proof has been given in [7]. Here, we

give a simple proof.

Corollary 11 ([7, Lemma 2.14]) Let M and N be nonzero subspaces of H. If c0(M,N ) < 1,

then for any closed subspace X of H which contains M + N , we have

c0(M,N ) ≤ c0(M
⊥ ∩ X,N⊥ ∩ X).

Proof For convenience, we divide proof into three steps.

Step 1. If M⊥ ∩ N⊥ ∩ X 6= {0}, then c0(M⊥ ∩ X,N⊥ ∩ X) = 1, so c0(M,N ) ≤ c0(M⊥ ∩

X,N⊥ ∩ X).

Step 2. Let X = H. Since c0(M,N ) < 1, we have M∩N = {0} and M + N is closed. If

M⊥ ∩ N⊥ 6= {0}, then c0(M⊥ ∩ X,N⊥ ∩ X) = c0(M⊥,N⊥) = 1, so c0(M,N ) ≤ c0(M⊥ ∩

X,N⊥ ∩ X).
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If M⊥ ∩ N⊥ = {0}, then M + N = H, since M + N is closed. It follows from Corollary 9

that c0(M,N ) = c0(M⊥ ∩ X,N⊥ ∩ X).

Step 3. If M⊥ ∩N⊥ ∩ X = {0}, then (M + N )⊥ ∩ X = {0}. Therefore, X = M + N , since

X ⊇ M + N and M + N is closed. It is easy to see that c0(M,N ) = c0(M∩ X,N ∩ X), then

we may replace H by X. It follows from Step 2 that c0(M,N ) ≤ c0(M⊥ ∩ X,N⊥ ∩ X). 2

The following result has been proved in [2, 7]. As an application of Theorem 8, we give an

alternative proof.

Corollary 12 ([2, 7]) If A and B are bounded operators on H with closed ranges, then the

following statements are equivalent:

(a) AB has closed range;

(b) c(R(B),N (A)) < 1;

(c) R(B) + N (A) is closed.

Proof If AB = 0, then the conclusion is clear. In the following proof, assume that AB 6= 0.

Since R(A) is closed, we have

A =

(

A1 0

0 0

)

: N (A)⊥ ⊕N (A) → R(A) ⊕R(A)⊥,

where A1 is invertible from N (A)⊥ onto R(A). It is easy to see that

R(AB) = R(A1PN (A)⊥PR(B)).

Since A1 is invertible, R(AB) is closed ⇐⇒ R(PN (A)⊥PR(B)) is closed ⇐⇒ γ(PN (A)⊥PR(B)) > 0

⇐⇒ c(R(B),N (A)) < 1, by Theorem 8. 2

The following theorem is our another main result which is an extension of Theorem 8 of [3].

Theorem 13 Let M and N be nonzero subspaces of H. Then

γ(M,N ) =

{

1, if PMPN is an orthogonal projection;

(1 − ‖Q‖)
1

2 , if PMPN is not an orthogonal projection.

Especially, M + N is closed if and only if γ(M,N ) > 0.

Proof If PMPN is an orthogonal projection, then H5 = H6 = 0, so

PM = I1 ⊕ I2 ⊕ 0I3 ⊕ 0I4, and PN = I1 ⊕ 0I2 ⊕ I3 ⊕ 0I4.

Case 1 If M∩N⊥ = {0}, then M ⊆ N , by the definition of γ(M,N ), we have γ(M,N ) = 1.

Case 2 If M⊥ ∩ N = {0}, then M ⊇ N , so γ(M,N ) = 1.

Case 3 If M⊥ ∩ N 6= {0} and M ∩ N⊥ 6= {0}, let x ∈ M \ N . Then x = x1 + x2, where

x1 ∈ M∩N and 0 6= x2 ∈ M∩N⊥, since PMPN is an orthogonal projection. It is easy to see

that

dist(x,N ) = inf{‖x − y‖ : y ∈ N} = inf{‖x2 − y‖ : y ∈ N} = ‖x2‖,

dist(x,M∩N ) = inf{‖x − y‖ : y ∈ M∩N} = inf{‖x2 − y‖ : y ∈ M∩N} = ‖x2‖.
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Hence γ(M,N ) = 1.

If PMPN is not an orthogonal projection, then H5 6= 0 and H6 6= 0. For a vector x ∈ M\N ,

x has the decomposition x = x1 + x2 + x5 with xi ∈ Hi, i = 1, 2, 5, then ‖x2‖2 + ‖x5‖2 6= 0, so

γ(M,N ) = inf
x∈M,x/∈N

dist(x,N )

dist(x,M∩N )
= inf

x∈M,x/∈N

√

‖x2‖2 + ‖(I5 − Q)
1

2 x5‖2

‖x2‖2 + ‖x5‖2

= inf
x∈M,x/∈N

‖(I5 − Q)
1

2 x5‖

‖x5‖
= inf

x5∈H5\{0}

‖(I5 − Q)
1

2 x5‖

‖x5‖

( note that x5 ∈ H5 implies x5 ∈ M \N )

= γ((I5 − Q)
1

2 ),

since N (I5 − Q) = {0}. It follows from Lemma 3 that

γ((I5 − Q)
1

2 ) = (inf{σ(I5 − Q) \ {0}})
1

2 = (inf{σ(I5 − Q)})
1

2

= (1 − sup{λ ∈ C : λ ∈ σ(Q)})
1

2 = (1 − ‖Q‖)
1

2 .

By Corollary 10 and Corollary 7, M + N is closed ⇐⇒ c(M,N ) < 1 ⇐⇒ ‖Q‖ < 1 ⇐⇒

γ(M,N ) > 0. 2

Combining Theorem 8 and Theorem 13, we obtain the following result.

Corollary 14 Let M and N be nonzero subspaces of H. Then

(a) If M ⊆ N , then γ(PN⊥PM) = 0 and γ(M,N ) = 1;

(b) If M * N , then γ(PN⊥PM) = γ(M,N );

(c) γ(M,N ) = γ(N⊥,M⊥).
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