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Abstract Let G be a finite group. Fix a prime divisor p of |G| and a Sylow p-subgroup P

of G, let d be the smallest generator number of P and Md(P ) denote a family of maximal

subgroups P1, P2, . . . , Pd of P satisfying
⋂

d

i=1
Pi = Φ(P ), the Frattini subgroup of P . In this

paper, we shall investigate the influence of s-conditional permutability of the members of some

fixed Md(P ) on the structure of finite groups. Some new results are obtained and some known

results are generalized.
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1. Introduction

Recall that a subgroup H of a group G is said to be permutable with a subgroup T of G if

HT = TH . A subgroup H of a group G is called a permutable subgroup [1] (or quasinormal

subgroup) [11] of G if H permutes with all subgroups of G. As a development, recently, Guo,

Shum and Skiba [3–6] introduced the concept of X-permutable subgroup and X-semipermutable

subgroup: Let X be a nonempty subset of G. A subgroup H is said to be X-permutable in G

if for every subgroup T of G, there exists some x ∈ X such that HT x = T xH . A subgroup

H is said to be X-semipermutable in G if it is X-permutable with every subgroup T1 of some

supplement T of H in G. Later on, the following concepts were aslo introduced: A subgroup

H is said to be s-conditionally permutable in G (see [8]) if for every Sylow subgroup T , there

exists an element x ∈ G such that HT x = T xH . A subgroup H is said to be SS-quasinormal

[10] in G if there is a supplement B of H to G such that H permutes with every Sylow subgroup
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of B. Obviously, for any primary subgroup P of G, if P is SS-quasinormal in G, then P is

s-condictionally permutable, but the converse is not true. By using the above ideas, a series of

interesting results have been obtained [3–6, 8, 10].

The purpose of this paper is to go further into the influence of s-condictionally permutable

subgroups on the structure of finite groups. Some new results are obtained and some known

results are generalized.

Throughout this paper, all groups considered are finite and G denotes a group. The termi-

nology and notations are standard, as in [2] and [7].

2. Preliminaries

In this section, we give the related concepts and some basic results which are needed in this

paper.

Definition 2.1 ([9]) Let d be the smallest generator number of a p-group P and Md(P ) =

{P1, . . . , Pd} be a set of maximal subgroups of P such that
⋂d

i=1 Pi = Φ(P ).

Such subset Md(P ) is not unique for a fixed P in general [9].

Recall that a class F of groups is called a formation if F is closed under taking homorphic

images and subdirect products. A formation F is called saturated if it contains every group

G with G/Φ(G) ∈ F. It is well known that the class of all supersoluble groups is a saturated

formation.

Lemma 2.1 ([8, Lemma 2.1]) Let H be an s-conditionally permutable subgroup of G. Then:

1) If H 6 K E G, then H is s-conditionally permutable in K.

2) If N � G, then HN/N is s-conditionally permutable in G/N .

3) Hg is s-conditionally permutable in G for each element g of G.

The following result is well known.

Lemma 2.2 Suppose that P is a Sylow subgroup of G. If P � �G, then P � G.

Lemma 2.3 ([7, IV Theorem 4.7]) If P is a Sylow p-subgroup of a group G for some p ∈ π(G)

and N � G such that P ∩ N ≤ Φ(P ), then N is p-nilpotent.

Lemma 2.4 ([2, Theorem 1.8.17]) Let N be a non-trivial normal subgroup of a group G. If

N
⋂

Φ(G) = 1, then the Fitting subgroup F (N) of N is a direct product of some abelian minimal

normal subgroups of G.

Lemma 2.5 ([7, III Lemma 3.3])

1) If N � G, U 6 G and N 6 Φ(U), then N 6 Φ(G).

2) If M � G, then Φ(M) 6 Φ(G).

3. Main results

Theorem 3.1 Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that every
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member of some fixed Md(P ) is s-conditionally permutable in G, then G is p-supersoluble.

Proof Suppose that the assertion is false and let G be a counterexample of minimal order. We

proceed with our proof as follows:

(1) Op′(G) = 1 and Φ(Op(G)) = 1

Assume that Op′(G) 6= 1. Then, obviously, POp′(G)/Op′ (G) is a Sylow p-subgroup of

G/Op′(G) and G/Op′(G) is p-soluble. Let P1 ∈ Md(P ). Since

|POp′(G)/Op′(G) : P1Op′(G)/Op′ (G)| = |POp′(G) : P1Op′(G)| = p,

P1Op′(G)/Op′(G) is a maximal subgroup of POp′(G)/Op′(G). Since P1 is s-conditionally per-

mutable in G, by Lemma 2.1, P1Op′(G)/Op′ (G) is s-conditionally permutable in G/Op′(G).

Thus, the hypothesis holds for G/Op′(G). By the choice of G, G/Op′(G) is p-supersoluble. It

follows that G is p-supersoluble, a contradiction.

Now assume that Φ(Op(G)) 6= 1. By the same way, we see that the hypothesis holds for

G/Φ(Op(G)). The minimal choice of G implies that G/Φ(Op(G)) is p-supersoluble. Since the

class of all p-supersoluble groups is a saturated formation, we obtain that G is p-supersoluble, a

contradiction.

(2) Op(G) = R1 × · · · × Rr, where Ri (i = 1, . . . , r) is a minimal normal subgroup of order

p of G.

Since G is p-soluble and Op′(G) = 1, we have Op(G) 6= 1. Let N be an arbitrary minimal

normal subgroup of G contained in Op(G). If N 6 Φ(P ), then by Lemma 2.1, we see that

the quotient group G/N satisfies the hypothesis. The minimal choice of G implies that G/N is

p-supersoluble and consequently G is p-supersouble, a contradiction. Thus N 
 Φ(P ). Since

Φ(P ) =
⋂d

i=1 Pi, where Pi ∈ Md(P ), without loss of generality, we may assume that N 
 P1. Let

N1 = N∩P1. Then |N : N1| = |N : N∩P1| = |NP1 : P1| = |P : P1| = p. Hence, N1 is a maximal

subgroup of N . Since P1 is s-conditionally permutable in G, for any q ∈ π(G) with q 6= p, there

exists a Sylow q-subgroup Q of G such that P1Q 6 G and so N1 = N ∩ P1 = N ∩ P1Q E P1Q.

It follows that Q 6 NG(N1). On the other hand, N = N ∩ P1 E P . Therefore N1 E G. But

since N is the minimal normal subgroup of G, N1 = 1 and N is a cyclic subgroup of order p.

Hence N ∩ P1 = 1. By Huppert [7, I.17.4], there exists a subgroup M of G such that G = NM

and N ∩ M = 1. Obviously, N 
 Φ(G). This induces that Op(G) ∩ Φ(G) = 1. Thus by using

Lemma 2.4, we obtain that Op(G) = R1 × · · · ×Rr, where Ri (i = 1, . . . , r) is a minimal normal

subgroup of order p of G.

(3) The final contradiction.

Since G/CG(Ri) is isomorphic with some subgroup of Aut(Ri) and |Aut(Ri)| = p − 1,

G/CG(Op(G)) = G/(∩r
i=1CG(Ri)) is p-supersoluble. On the other hand, since G is p-soluble

and Op′(G) = 1, CG(Op(G)) 6 Op(G) by [2, Theorem 1.8.18]. Thus G/Op(G) is p-supersoluble.

Now the claim (2) implies that G is p-supersoluble. The final contradiction completes the proof. 2

As immediate corollaries of Theorem 3.1, we have the following:

Corollary 3.1.1 Let G be a soluble group. If every member of some fixed Md(P ) is s-
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conditionally permutable in G, for each prime p in π(G) and a Sylow p-subgroup P of G, then

G is supersoluble.

Corollary 3.1.2 ([8, Lemma 4.1]) Let G be a p-soluble group. If every maximal subgroup of

every Sylow p-subgroup of G is s-conditionally permutable in G, then G is p-supersoluble.

Corollary 3.1.3 ([10, Theorem 1.3]) Let G be a p-soluble group and P a Sylow p-subgroup

of G. Suppose that every member of some fixed Md(P ) is SS-quasinormal in G, then G is

p-supersoluble.

Following [13], a subgroup H of a group G is said to be s-semipermutable in G if for every

prime p with (p, |H |) = 1, H permutes with every Sylow p-subgroup of G.

Corollary 3.1.4 Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that

every member of some fixed Md(P ) is s-semipermutable in G, then G is p-supersoluble.

Theorem 3.2 Let G be a p-soluble group and P a Sylow p-subgroup of G. If NG(P ) is p-

nilpotent and every member of some fixed Md(P ) is s-conditionally permutable in G, then G is

p-nilpotent.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order. Then:

(1) Op′(G) = 1.

Assume that Op′(G) 6= 1. Then POp′(G)/Op′(G) is a Sylow p-subgroup of G/Op′(G) and

by [2, Lemma 3.6.10] NG/O
p′ (G)(POp′ (G)/Op′(G)) = NG(P )Op′(G)/Op′ (G) is p-nilpotent. Let

P1 ∈ Md(P ). Obviously, P1Op′ (G) is a maximal subgroup of POp′(G). By the hypothesis,

P1 is s-condictionally permutable in G. Then by Lemma 2.1 we see that POp′(G)/Op′ (G)

is s-conditionally permutable in G/Op′(G). Thus the hypothesis holds for G/Op′(G). The

minimal choice of G implies that G/Op′(G) is p-nilpotent and consequently G is p-nilpotent, a

contradiction.

(2) Op(G) = R1 × · · · × Rr, where Ri (i = 1, . . . , r) is a minimal normal subgroup of G of

order p (see the proof (2) of Theorem 3.1).

(3) The final contradiction.

Since G/CG(Ri) is an abelian group of exponent p − 1, P 6
⋂r

i=1 CG(Ri) = CG(Op(G)) by

(2). Moreover, by (1) and [2, Theorem 1.8.18], CG(Op(G)) 6 Op(G). Hence P = Op(G) and

therefore G = NG(P ) is p-nilpotent. The final contradiction completes the proof. 2

Corollary 3.2.1 Let p be a prime dividing the order of G and H a p-soluble normal subgroup

of G such that G/H is p-nilpotent. Suppose that P is a Sylow p-subgroup of H . If NG(P ) is p-

nilpotent and every member in Md(P ) is s-conditionally permutable in G, then G is p-nilpotent.

Proof Since NH(P ) 6 NG(P ), NH(P ) is p-nilpotent. By Lemma 2.1(1), every member in

Md(P ) is s-conditionally permutable in H . Hence by Theorem 3.2, H is p-nilpotent. Let N be

the normal Hall p′-subgroup of H . Then N E G. We claim that G/N (with repect to H/N)

satisfies the hypothesis of the corollary. In fact, H/N E G/N , (G/N)/(H/N) ∼= G/N is p-
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nilpotent and NG/N (NP/N) = NG(P )N/N is p-nilpotent. Let P1N/N be a maximal subgroup

of PN/N , where P1 ∈ Md(P ). Since P1 is s-conditionally permutable in G, P1N/N is s-

conditionally permutable in G/N by Lemma 2.1. Hence our claim holds. If N 6= 1, then G/N is

p-nilpotent by induction. It follows that G is p-nilpotent. If N = 1, then H = P is a p-group.

In this case, G = NG(P ) is p-nilpotent. This completes the proof. 2

Theorem 3.3 Let F be a saturated formation containing the class U of all supersoluble groups.

A group G ∈ F if and only if there exists a soluble normal Hall subgroup H of G such that

G/H ∈ F and for every Sylow subgroup P of H , every member of Md(P ) is s-conditionally

permutable in G.

Proof The necessity is obvious. We only need to prove the sufficiency. Suppose that the

assertion is false and let G be a counterexample of minimal order. Let q be the largest prime

divisor of |H | and Q be a sylow q-subgroup of H . Then:

(1) Q � G.

By Lemma 2.1(1), every member of Md(P ) is s-conditionally permutable in H . Hence by

Corollary 3.1.1, H is supersoluble. Then, since q is the largest prime divisor of |H |, Q�H . Since

Q char H � G, Q � G.

(2) Φ(Q) = 1.

Since Q � G, Φ(Q) ⊆ Φ(G). Obviously, G/Φ(Q) satisfies the hypothesis. If Φ(Q) 6= 1, then

G/Φ(Q) ∈ F. Then, since F is a saturated formation, we have G ∈ F, a contradiction. Therefore

Φ(Q) = 1.

(3) Every minimal normal subgroup of G contained in Q is of order q.

Let N be an arbitrary minimal normal subgroup of G contained in Q. Since N 
 Φ(Q), we

can, without loss of generality, assume that N 
 Q1, where Q1 ∈ Md(Q). Let N1 = N
⋂

Q1.

Then |N : N1| = |N : N
⋂

Q1| = |NQ1 : Q1| = |Q : Q1| = q. Hence N1 is the maximal subgroup

of N and so N1 E N . Since Q1 is s-conditionally permutable in G, for any p ∈ π(G) with p 6= q,

there exists a Sylow p-subgroup P of G such that Q1P 6 G. Thus, N1 = N ∩ Q1 6 N ∩Q1P E

Q1P . It follows that Q1 6 NG(N1) and P 6 NG(N1). Consequently, Q = NQ1 6 NG(N1).

Since H is the Hall subgroup of G by hypothesis, Q is also a Sylow q-subgroup of G. This shows

that N1 E G and so N1 = 1. Hence N is a cyclic subgroup of prime order q. It is easy to see

that N * Φ(G) and so Q ∩ Φ(G) = 1. Therefore, by Lemma 2.4, Q = R1 × · · · × Rr, where

Ri (i = 1, . . . , r) is the minimal normal subgroup of G of order q.

(4) The final contradiction.

It is easy to see that G/Q satisfies the hypothesis. The minimal choice of G implies that

G/Q ∈ F. By (3), we see that every chief factor of G contained in Q is U-center. Since U ⊆ F,

by [2, Lemma 3.1.6 and Lemma 3.18], we obtain that G ∈ F. The final contradiction completes

the proof. 2

Theorem 3.4 Let F be a saturated formation containing the class U of all supersoluble groups.

A group G ∈ F if and only if there exists a soluble normal subgroup H of G such that G/H ∈ F
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and, for every Sylow p-subgroup P of F (H) satisfying (|G : F (H)|, p) = 1, every member of

Md(P ) is s-conditionally permutable in G.

Proof The necessity is obvious. We only need to prove the sufficiency. Suppose that the

assertion is not true and let G be a counterexample of minimal order. Let P be an arbitrary

Sylow p-subgroup of F (H). Then P char F (H) E G and so P E G. Since Φ(P ) char P E G,

Φ(P ) E G. We now proceed with our proof as follows:

(1) Φ(P ) = 1.

Assume that Φ(P ) 6= 1. Obviously, (G/Φ(P ))/(H/Φ(P )) ∼= G/H ∈ F. Let F (H/Φ(P )) =

T/Φ(P ). Then F (H) ⊆ T . On the other hand, since Φ(P ) ⊆ Φ(G), T is nilpotent by [12,

Theorem IV 3.7]. It follows that T ⊆ F (H) and so T = F (H). Since Φ(P ) =
⋂d

i=1 Pi, where Pi ∈

Md(P ), Pi/Φ(P ) is a maximal subgroup of P/Φ(P ). Obviously, Md(P/Φ(P ))={P1/Φ(P ), . . .,

Pd/Φ(P )} and (|G/Φ(P ) : F (H/Φ(P ))|, p) = (|G/Φ(P ) : F (H)/Φ(P )|, p) = (|G : F (H)|, p) =

1. Since Pi is s-conditionally permutable in G by hypothesis, by Lemma 2.1, Pi/Φ(P ) is s-

conditionally permutable in G/Φ(P ). Let Q1Φ(P )/Φ(P ) be a maximal subgroup of the Sylow

q-subgroup QΦ(P )/Φ(P ) of F (H)/Φ(P ) = F (H/Φ(P )), where q 6= p, Q is a Sylow q-subgroup

of F (H) and Q1 ∈ Mt(Q). By the hypothesis, Q1 is s-conditionally permutable in G. Hence

by Lemma 2.1, QΦ(P )/Φ(P ) = Q1Φ(P )/Φ(P ) is s-conditionally permutable in G/Φ(P ). The

minimal choice of G implies that G/Φ(P ) ∈ F. Then, since F is a saturated formation, we obtain

that G ∈ F, a contradiction.

(2) Every minimal normal subgroup of G contained in P is of order p.

Let N be an arbitrary minimal normal subgroup of G contained in P . Since Φ(P ) = 1,

N 
 Φ(P ). Without loss of generality, we may assume that N 
 P1, where P1 ∈ Md(P ).

Let N1 = N ∩ P1. Since |N : N1| = |N : N ∩ P1| = |NP1 : P1| = |P : P1| = p, N1 is

a maximal subgroup of N and so N1 E N . Since P1 is s-conditionally permutable in G, for

any q ∈ π(G) with q 6= p, there exists a Sylow q-subgroup Q such that P1Q 6 G. Hence

N1 = N ∩ P1 6 N ∩P1Q E P1Q. It follows that P1 6 NG(N1) and Q 6 NG(N1). Consequently,

P = NP1 6 NG(N1). Since (|G : F (H)|, p) = 1, P is also a Sylow p-subgroup of G. This shows

that N1 E G. Since N is a minimal normal subgroup of G, N1 = 1 and thereby N is a cyclic

subgroup of order p.

(3) The final contradiction.

By (2), we know that F (H) = R1×· · ·×Rs, where Ri (i = 1, . . . , s) is a minimal normal sub-

group of order p of G. Since G/CG(Ri) ∼= Aut(Ri), G/CG(Ri) is cyclic. Thus, G/(∩s
i=1CG(Ri)) ∈

F. Because ∩s
i=1CG(Ri) = CG(F (H)), we have G/CG(F (H)) ∈ F. Therefore, G/CH(F (H)) =

G/(H ∩CG(F (H))) ∈ F. Since F (H) is an abelian group, we know that F (H) ⊆ CH(F (H)). On

the other hand, we have CH(F (H)) ⊆ F (H) for H is soluble. Hence, F (H) = CH(F (H)). So

G/F (H) = G/CH(F (H)) ∈ F. Thus by Theorem 3.3, G ∈ F. The final contradiction completes

the proof. 2
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