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1. Introduction

Trigonometric sums have important applications in classical analysis, such as integer valued

problems by Byrne and Smith [2], Dedekind sums by Gessel [6] and Zagier [8], the matrix spec-

trum by Calogero [3, §2.4.5.3] as well as trigonometric approximation and interpolation in Kress

[7, §8.2]. Berndt and Yeap [1] have employed the Cauchy residue theorem to treat the trigono-

metric reciprocity; Chu [5] and Wang [9] have established many closed formulae of trigonometric

sums. The purpose of this paper is to investigate some parametric trigonometric sums. The

main theorem will be shown in the second section, where the Cauchy residue theorem will be

employed to evaluate a contour integral with the integrand and contour being properly devised.

As applications, several interesting examples will be illustrated in the last section, including

those due to Chu [4] and Wang [9].

2. Contour integration

Theorem 1 Let P (θ) be a polynomial of degree < 2n in cos θ. Then for a real parameter y,

there holds the following trigonometric sum identity:

2n−1
∑

k=0

sin(y + kπ
n

)P (y + kπ
n

)

cos(y + kπ
n

) − cos θ
=

2n sin 2nyP (θ)

cos 2ny − cos 2nθ
.

Proof First, we suppose 0 < y < π/n and 0 < θ < 2π. Let C = CR denote the positively

oriented indented rectangle with vertices at (±iR) and (2π ± iR) where R is a real number. For

the complex function defined by

f(α) =
2n sin 2ny sinαP (α)

(

cos 2nα − cos 2ny
)(

cosα − cos θ
) ,
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consider the following contour integral

1

2πi

∮

C

f(α)dα. (1)

It is not hard to see that f(α) has 4n+2 simple poles inside C which can be explicitly displayed

as {θ,2π − θ} and {y + kπ
n

, 2π − y − kπ
n
} with k = 0, 1, . . . , 2n − 1.

For {α = θ} and {α = 2π − θ}, it is routine to compute the corresponding residues

Res
α=θ

f(α) = lim
α→θ

α − θ

cosα − cos θ

2n sin 2ny sin αP (α)

cos 2nα − cos 2ny
=

2n sin 2nyP (θ)

cos 2ny − cos 2nθ
;

Res
α=2π−θ

f(α) = lim
α→2π−θ

α − 2π + θ

cosα − cos θ

2n sin 2ny sin αP (α)

cos 2nα − cos 2ny

=
2n sin 2nyP (2π − θ)

cos 2ny − cos 2n(2π − θ)
=

2n sin 2nyP (θ)

cos 2ny − cos 2nθ
.

When α = y + kπ
n

and α = 2π − y − kπ
n

with k = 0, 1, . . . , 2n − 1, we can show that

Res
α=y+ kπ

n

f(α) = lim
α→y+ kπ

n

α − y − kπ
n

(

cos 2nα − cos 2ny
)

2n sin 2ny sin αP (α)
(

cosα − cos θ
)

= −
sin(y + kπ

n
)P (y + kπ

n
)

cos(y + kπ
n

) − cos θ
;

Res
α=2π−y− kπ

n

f(α) = lim
α→2π−y− kπ

n

α − 2π + y + kπ
n

cos 2nα − cos 2ny

2n sin 2ny sin αP (α)

cosα − cos θ

= −
sin 2ny sin (2π − y − kπ

n
)P (2π − y − kπ

n
)

sin 2n(2π − y − kπ
n

)
{

cos(2π − y − kπ
n

) − cos θ
}

= −
sin(y + kπ

n
)P (y + kπ

n
)

cos(y + kπ
n

) − cos θ
.

We are now in position to evaluate the integral displayed in (1). Since f(α) has period 2π, the

integral on the two opposite vertical sides of C vanishes. Therefore, we only consider the integral

on the two horizontal sides of C. Recalling the Euler formulae

sin α =
eiα − e−iα

2i
, cosα =

eiα + e−iα

2

and keeping in mind that P (θ) is a polynomial of degree < 2n in cos θ, we may consider

P (α) sin α as a formal polynomial consisting of terms emiα with |m |≤ 2n and the coefficients of

e±2niα different from zero. For the same reason, we can also consider the trigonometric function

(cos 2nα−cos 2ny)(cosα−cos θ) as a formal polynomial consisting of terms emiα with |m |≤ 2n+1

and the coefficients of e±(2n+1)iα different from zero.

Therefore, f(α) is a proper fraction in eiα. Writing α = λ + iµ with λ and µ being real, we

have no difficulty in verifying that

lim
µ→±∞

f(α) = 0,

which implies consequently

1

2πi

∮

C

f(α)dα =
1

2πi

∫ y−ε

y+2π−ε

0dλ +
1

2πi

∫ y+2π−ε

y−ε

0dλ = 0.

According to the residue theorem, this completes the proof of Theorem 1. The conditions 0 <
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y < π/n and 0 < θ < π can be removed in view of the periodicity of f(α) and the analytic

continuation, even though they have been assumed at the beginning of the proof. 2

Performing the replacement y → y + π/2n in Theorem 1, we get another trigonometric sum

identity.

Proposition 2 Let P (θ) be a polynomial of degree < 2n in cos θ. Then for a real parameter y,

there holds the following trigonometric sum identity:

2n−1
∑

k=0

sin(y + 1+2kπ
2n

)P (y + 1+2kπ
2n

)

cos(y + 1+2kπ
2n

) − cos θ
=

2n sin 2nyP (θ)

cos 2ny + cos 2nθ
.

Observe that sinnθ/sin θ is a polynomial of degree n−1 in cos θ. Specifying P (θ) = Q(θ) sin nθ

sin θ sin ny

in Theorem 1 and Proposition 2, we can deduce the following two trigonometric formulae.

Proposition 3 Let Q(θ) be a polynomial of degree ≤ n in cos θ. Then for a real parameter y,

there holds the following trigonometric sum identity:

2n−1
∑

k=0

(−1)kQ(y + kπ
n

)

cos(y + kπ
n

) − cos θ
=

4n sin nθ cosny Q(θ)

sin θ (cos 2ny − cos 2nθ)
,

2n−1
∑

k=0

(−1)kQ(y + (1+2k)π
2n

)

cos (y + (1+2k)π
2n

) − cos θ
=

4n sin nθ sin ny Q(θ)

sin θ (cos 2ny + cos 2nθ)
.

Observe also that cosnθ is a polynomial of degree n in cos θ. Letting P (θ) = Q(θ) cosnθ in

Proposition 2 leads us directly to the following trigonometric formula.

Proposition 4 Let Q(θ) be a polynomial of degree < n in cos θ. Then for a real parameter y,

there holds the following trigonometric sum identity:

2n−1
∑

k=0

(−1)k
sin (y + 1+2k

2n
π)Q(y + 1+2k

2n
π)

cos θ − cos (y + 1+2k
2n

π)
=

4n cosny cosnθ Q(θ)

cos 2ny + cos 2nθ
.

3. Examples of trigonometric identities

The general results displayed in the last section imply numerous identities on trigonometric

sums, which will be exhibited in this section.

(i) Letting P (θ) = sin nθ
sin θ

in Theorem 1, we obtain

2n−1
∑

k=0

sin n(y + kπ
n

)

cos(y + kπ
n

) − cos θ
=

2nsin 2ny sin nθ

sin θ (cos 2ny − cos 2nθ)
.

According to the parity of n, we can further deduce from the last identity the following two

formulae
n−1
∑

k=0

(−1)k cos (y + kπ/n)

cos2 (y + kπ/n) − cos2 θ
=

2n sinnθ cosny

sin θ(cos 2ny − cos 2nθ)
, n-odd; (2a)

n−1
∑

k=0

(−1)k cos θ

cos2 (y + kπ/n) − cos2 θ
=

2n sinnθ cosny

sin θ(cos 2ny − cos 2nθ)
, n-even. (2b)
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(ii) Letting P (θ) = sin 2nθ
sin θ

in Theorem 1, we get

2n−1
∑

k=0

sin 2n(y + kπ
n

)

cos(y + kπ
n

) − cos θ
=

2nsin 2ny sin 2nθ

sin θ(cos 2ny − cos 2nθ)
.

Splitting the last sum into two parts according to 0 ≤ k < n and n ≤ k < 2n and then replacing

k by k + n for the second one, we find, after some simplification, the following identity:

n−1
∑

k=0

cos θ

cos2 (y + kπ/n) − cos2 θ
=

n sin 2nθ

sin θ(cos 2ny − cos 2nθ)
. (3)

(iii) Let P (θ) = cosnθ in Proposition 2. Then for even n, there holds

2n−1
∑

k=0

sin(y + 1+2k
2n

π) cos n(y + 1+2kX
2n

π)

cos(y + 1+2k
2n

π) − cos θ
=

2n sin 2ny cosnθ

cos 2ny + cos 2nθ

which is equivalent to

4n cosny cosnθ

cos 2ny + cos 2nθ
=

2n−1
∑

k=0

(−1)k sin (y + 1+2k
2n

π)

cos θ − cos (y + 1+2k
2n

π)
.

Following the same process as described in the last paragraph, we deduce from the equation just

displayed the following identity:

n−1
∑

k=0

(−1)k
sin (y + 1+2k

2n
π) cos (y + 1+2k

2n
π)

cos2 θ − cos2 (y + 1+2k
2n

π)
=

2ncosnθcosny

cos 2ny + cos 2nθ
, n-even. (4)

(iv) Letting P (θ) = sin 2nθ
sin θ

in Proposition 2, we have

n−1
∑

k=0

cos θ

cos2 θ − cos2 (y + 1+2k
2n

π)
=

n sin 2nθ

sin θ(cos 2ny + cos 2nθ)
. (5)

When y = 0, the corresponding sums displayed from (2) to (5) have appeared in Chu and

Marini [4]. There exist other formulae related to these four identities, which are not going to be

reproduced.
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