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Abstract Necessary and sufficient conditions are obtained for the incompleteness and the

minimality of the exponential system E(Λ, M) = {zleλnz : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .} in

the Banach space E2[σ] consisting of some analytic functions in a half strip. If the incompleteness

holds, each function in the closure of the linear span of exponential system E(Λ, M) can be

extended to an analytic function represented by a Taylor-Dirichlet series. Moreover, by the

conformal mapping ζ = φ(z) = ez, the similar results hold for the incompleteness and the

minimality of the power function system F (Λ, M) = {(log ζ)lζλn : l = 0, 1, . . . , mn − 1; n =

1, 2, . . .} in the Banach space F 2[σ] consisting of some analytic functions in a sector.
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1. Introduction

Following, e.g., [1] and [2], a system E = {en : n = 1, 2, . . .} of elements of a Banach space

X is called to be (i) incomplete in X if spanE 6= X ; (ii) minimal in X if for all n = 1, 2, . . . ,

en 6∈ span(E − {en}), where spanE is the linear span of the system E and spanE is the closure

of spanE in X . The incompleteness of the system E in X is equivalent to the existence of a

non-trivial functional f in the dual Banach space X∗ of X which annihilates the system E, i.e.,

f(en) = 0, n = 1, 2, . . . . The minimality of the system E in X is equivalent to the existence of a

system of conjugate functionals {fn : n = 1, 2, . . .} in X∗, i.e., fn(em) = δnm(Kronneker delta,

i.e., δnn = 1, while δnm = 0 for n 6= m). The system {fn} is also called a biorthogonal system of

the system E.

Let Λ = {λn : n = 1, 2, . . .} be a sequence of distinct complex numbers in the open right

half-plane C0 = {z ∈ C : Rez > 0}, and M = {mn : n = 1, 2, . . .} be a sequence of positive

integers. With these sequences Λ and M , we associate the complex exponential system

E(Λ, M) = {zleλnz : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .}.
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Let Ds,τ be the half strip {z ∈ C : |Imz| < s, Rez < τ}, γs,τ be a boundary of Ds,τ traced

around in the positive direction with respect to Ds,τ . When 0 < σ < ∞, let Dσ = Dσ,0,

D∗
σ = C \ (Dσ ∪ γσ), γσ = γσ,0. When 1 ≤ p < ∞, denote by Ep[σ] and Ep

∗ [σ] the sets consisting

of all functions f analytic in Dσ and D∗
σ, respectively, such that

sup{İp(s, τ, f) : 0 < s < σ, τ < 0} < ∞ and sup{İp(s, τ, f) : s > σ, τ > 0} < ∞,

respectively. Here, İp(s, τ, f) = (
∫

γs,τ
|f(z)|p|dz|) 1

p . By Lemma 5 in [3], E(Λ, M) is a subset

of E2[σ], and if we define a norm on each of the sets E2[σ] and E2
∗ [σ] by the equality ||f || =

(
∫

γσ
|f(t)|2|dt|) 1

2 , then the sets E2[σ] and E2
∗ [σ] become Banach spaces.

As in [4], we are interested in the incompleteness and the minimality of E(Λ, M) in Banach

space E2[σ]. Our main conclusions are as follows:

Theorem 1 Suppose that Λ = {λn = |λn|eiϕn : n = 1, 2, . . .} is a sequence of distinct complex

numbers in C0, and M = {mn : n = 1, 2, . . .} is a sequence of positive integers, then

E(Λ, M) = {zleλnz : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .}

is incomplete in E2[σ] if and only if
∑

|λn|≤1

Reλn < ∞ (1)

and

lim sup
r→∞

(S(r) − σ

π
log r) < ∞ (2)

are satisfied, where

S(r) =
∑

1<|λn|≤r

mn(
1

|λn|
− |λn|

r2
) cosϕn. (3)

Remark 1 Theorem 1 was proved by Vinnitskii in [3] when mn ≡ 1.

Theorem 2 Suppose that Λ = {λn = |λn|eiϕn : n = 1, 2, . . .} is a sequence of complex numbers

in C0, and M = {mn : n = 1, 2, . . .} is a sequence of positive integers, satisfying

Θ(Λ) = sup{|ϕn| : n = 1, 2, . . .} <
π

2
, (4)

δ(Λ) = inf{|λn+1| − |λn| : n = 0, 1, 2, . . . ; λ0 = 0} > 0, (5)

and

K(M) = sup{mn : n = 1, 2, . . .} < ∞. (6)

If S(r)− σ
π

log r is bounded on (1,∞), then E(Λ, M) = {zleλnz : l = 0, 1, . . . , mn−1; n = 1, 2, . . .}
is incomplete and minimal in E2[σ], and each function f ∈ spanE(Λ, M) can be extended to an

analytic function f̃(z) represented by a Taylor-Dirichlet series

f̃(z) =

∞
∑

n=1

mn−1
∑

k=0

an,kzkeλnz, z ∈ D(B), (7)

where D(B) = {z = reiθ : r cos(|π−θ|+Θ(Λ)) > B}, and B is a positive constant only dependent

on Λ, M and σ.
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Remark 2 If (4)–(6) hold, S(r) − λ(r) is bounded on (1,∞), here

λ(r) =











∑

|λn|≤r

mn cosϕn

|λn|
, if r ≥ |λ1|;

0 , otherwise.

By the conformal mapping ζ = φ(z) = ez, each half strip Ds,τ (0 < s < π) is mapped to

the sector Ds,τ = {ζ = reiθ : 0 < r < eτ , |θ| < s < π} = φ(Ds,τ ), κs,τ = φ(γs,τ ) is a boundary

of Ds,τ traced around in the positive direction with respect to Ds,τ , κσ = κσ,0, and Dσ = Dσ,0.

Denote by F p[σ] the linear space of functions F analytic in Dσ such that

sup{J̇p(s, τ, F ) : 0 < s < σ, τ < 0} < ∞,

where J̇p(s, τ, F ) = (
∫

γs,τ
|J(z)|p|dz|) 1

p .

The conformal mapping ζ = φ(z) transforms Dσ onto Dσ, and
∫

κs,τ

|F (ζ)|p|dζ| =

∫

γs,τ

|F (φ(z))|p|φ′(z)|dz,

then the mapping L : F (ζ) −→ f(z) = |F (φ(z))||φ′(z)| 1p defines an isomorphism between F p[σ]

and Ep[σ]. Define a norm in F 2[σ] by the equality ‖F‖ = (
∫

κσ
|F (t)|p|dt|) 1

2 , then F 2[σ] is a

Banach space.

Suppose that Λ′ = {λ′
n = |λ′

n|eiϕ′

n : n = 1, 2, . . .} is a sequence of distinct complex numbers

in C− 1

2

= {z ∈ C : Rez > − 1
2}, then the incompleteness and the minimality of F (Λ′, M) =

{(log ζ)lζλ′

n : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .} in F 2[σ] are equivalent to the ones of E(Λ, M) =

{zleλnz : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .} in E2[σ], where Λ = Λ′ + 1
2 = {λ′

n + 1
2 : n = 1, 2, . . .}

is a sequence of distinct complex numbers in C0.

Corollary 1 Suppose that Λ′ = {λ′
n = |λ′

n|eiϕ′

n : n = 1, 2, . . .} is a sequence of distinct

complex numbers in C− 1

2

and M = {mn : n = 1, 2, . . .} is a sequence of positive integers, then

F (Λ′, M) = {(log ζ)lζλ′

n : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .} is incomplete in F 2[σ] if and only if

Λ′ satisfies
∑

|λn|≤1

mnReλn < ∞

and

lim
r→∞

(S(r) − σ

π
log r) < ∞,

where λn = |λn|eiϕn = λ′
n + 1

2 , and S(r) is defined by (3).

Corollary 2 Suppose that Λ′ = {λ′
n = |λ′

n|eiϕ′

n : n = 1, 2, . . .} is a sequence of complex numbers

in C− 1

2

and M = {mn : n = 1, 2, . . .} is a sequence of positive integers such that the sequence

Λ = Λ′ + 1
2 = {λn = |λn|eiϕn = λ′

n + 1
2 : n = 1, 2, . . .} and M satisfy (4)–(6). If S(r) − σ

π
log r

is bounded on (1,∞), then F (Λ′, M) = {(log ζ)lζλ′

n : l = 0, 1, . . . , mn − 1; n = 1, 2, . . .} is

incomplete, minimal in F 2[σ], and each function F ∈ spanF (Λ′, M) can be extended to an
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analytic function F̃ (ζ) represented by weighted lacunary power series

F̃ (ζ) =

∞
∑

n=1

mn−1
∑

k=0

an,k(log ζ)kζλ′

n , ζ ∈ D(B),

where D(B) = {ζ ∈ C : cosΘ(Λ) log |ζ| + sin Θ(Λ)| arg ζ| + B < 0}, and B is a positive constant

only dependent on Λ, M and σ.

2. Proof of Theorems

Denote by Hp
σ the space consisting of all functions f analytic in C0 satisfying ‖f‖ :=

sup{(
∫∞

0
|f(reiθ)|pe−pσr| sin θ|dr)

1

p : |θ| < π
2 } < ∞, and H(Λ, M) the class consisting of all

functions f 6≡ 0 analytic in C0 and having zeros of orders mn at the points λn. Hereafter we

denote a positive constant by A, not necessarily the same at each occurrence. In order to prove

our conclusions, we need the following lemmas.

Lemma 1 Suppose that Λ = {λn = |λn|eiϕn : n = 1, 2, . . .} is a sequence of complex numbers

in C0 and M = {mn : n = 1, 2, . . .} is a sequence of positive integers satisfying (4)–(6), then the

function

G(z) =
∞
∏

n=1

(1 − z/λn

1 + z/λn

)mn

exp
(mnz

λn

+
mnz

λn

)

(8)

is analytic in the closed right half plane C0 = {z ∈ C : Rez ≥ 0}, and satisfies the following

inequalities

|G(z)| ≤ exp{2xλ(r) + Ax} (9)

for all z ∈ C0, and

|G(z)| ≥ exp{2xλ(r) − Ax} (10)

for all z ∈ C(Λ, δ0), where r = |z|, 4δ0 = δ(Λ) and C(Λ, δ0) = {z ∈ C0 : |z − λn| ≥ δ0, n =

1, 2, . . .}.

Remark 3 When Θ(Λ) = 0, mn ≡ 1, G(z) is Fuch’s function [5].

Lemma 2 ([3]) Each continuous linear functional Φ on E2[σ] is associated with a unique function

g ∈ E2
∗ [σ] such that the value 〈Φ, f〉 of the functional Φ at f ∈ E2[σ] is given by the relation

〈Φ, f〉 =
∫

γσ
f(t)g(t)dt. In this case, the norm of the functional Φ is equivalent to the norm of

the function g and the space (E2[σ])∗ (strongly) dual to E2[σ] can be realized as E2
∗ [σ].

Lemma 3 ([3]) The equality

f2(z) =
1√
2π

∫ ∞

0

f1(w)e−zwdw (11)

determines a one-to-one correspondence between the functions f1 ∈ H2
σ and f2 ∈ E2

∗ [σ]. The

following duality relation is valid

f1(w) =
1√
2π i

∫

γσ

f2(z)ezwdz. (12)
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Furthermore, ‖f2‖/A ≤ ‖f1‖ ≤ 3‖f2‖.

Lemma 4 ([3]) In order that a function f ∈ H2
σ ∩H(Λ, M) exists, it is necessary and sufficient

that conditions (1) and (2) are satisfied.

Lemma 5 ([3]) If f ∈ Ep[σ], then, almost everywhere on γσ, f has angular limit values belonging

to L2[γσ] and, moreover,

1

2πi

∫

γσ

f(t)

t − z
dt =

{

f(z), z ∈ Dσ;

0, z ∈ D∗
σ.

Proof of Lemma 1 By (4)–(6),
∑∞

n=1 mn|λn|−2 < ∞, and the product (8) defines an analytic

function in C0, which has zeros of orders mn at each point λn. Let

en(z) =
∣

∣

∣

z − λn

z + λn

∣

∣

∣

2

= 1 − 4x|λn| cosϕn

|z + λn|2

and

En(z) = log
∣

∣

∣

1 − z/λn

1 + z/λn

exp
( z

λn

+
z

λn

)∣

∣

∣
= 2x

cosϕn

|λn|
+

1

2
log en(z),

where x = Rez > 0. When |λn| > 8|z|,

ln(z) = 1 − |λn|2
|λn + z|2

≤ 288

49

|z|
|λn|

,

and

1 − en(z) =
4x|λn| cosϕn

|z + λn|2
≤ min{4

7
,
A
√

xr cosϕn

|λn|
},

so

|En(z)| =
∣

∣

∣

2x cosϕn

|λn|
ln(z) − 1

2

∞
∑

k=2

1

k
(1 − en(z))k

∣

∣

∣
,

hence

|En(z)| ≤ A|x|r cosϕn

|λn|2
, x = Rez. (13)

By (4)–(6) and 0 ≤ en(z) < 1,

log |G(z)| ≤ 2x
∑

|λn|≤8r

mn cosϕn

|λn|
+ Axr

∑

|λn|>8r

mn cosϕn

|λn|2

≤ 2xλ(8r) + Axr
∑

|λn|>8r

mn cosϕn

|λn|2
≤ 2xλ(r) + Ax.

Thus inequality (9) holds. In order to prove inequality (10), we note that

log |G(z)| ≥
∑

|λn|≤8r

mnEn(z) −
∑

|λn|>8r

mn|En(z)| = Π1 − Π2.

Inequality (13) yields Π2 = O(x) if x ≥ 0. Let n(r) =
∑

|λn|≤r mn. Then n(r) = O(r) by (4)–(6).

We consider the following two cases for Π1:

(i) z ∈ {z ∈ C(Λ, δ0) : Θ(Λ) + 2ǫ1 ≤ |θ| < π
2 };

(ii) z ∈ {z ∈ C(Λ, δ0) : |θ| < Θ(Λ) + 2ǫ1}, where z = reiθ, and 4ǫ1 = π
2 − Θ(Λ).
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In case (i), let δ1 = sin2 ǫ1. Then

|z + λn|2 ≥ 2r|λn| + 2r|λn| cos(|θ − ϕn|) = 4r|λn|(1 + δ1)

and

0 < 1 − en(z) =
4x|λn| cosϕn

|z + λn|2
≤ x

r(1 + δ1)
.

Since

log(1 − t) ≥ −t − 1 + δ1

2δ1
t2 ≥ −At, t ∈ [0,

1

1 + δ1
],

by taking t = 1 − en(z), then en(z) ≥ exp{−Ax
r
}. Moreover,

Π1 ≥ 2x
∑

|λn|≤8r

mn cosϕn

|λn|
−

∑

|λn|≤8r

1

2
mn log en(z)

≥ 2xλ(8r) − Ax

r
n(8r) ≥ 2xλ(r) − Ax.

This implies that inequality (10) holds in this case.

In case (ii), let Λk be the set {λn ∈ Λ : ∃n, s.t. mn = k}. Then Λ1, . . . , ΛK(M) are disjoint

and Λ = Λ1∪Λ2 ∪· · · ∪ΛK(M). Let Λk = {λkn
: n = 1, 2, . . .}, and nk(r) be the number of λ ≤ r

and λ ∈ Λk. When |z − λn| ≥ δ0, (4)–(6) and Stirling’s formula yield

∏

λ∈Λk,|λ|≤8r

|λ − z| ≥ δNk

0 nk(x)!(Nk − nk(x))! ≥ (
Nk

A
)Nk

and
∏

λ∈Λk,|λ|≤8r

|λ + z| ≤ (Ar)Nk ,

where Nk = nk(8r), k = 1, 2, . . . , K(M). Thus,

Π1 ≥
∑

1≤k≤K(M)

Nk(log Nk − log(Ax)) + 2x
∑

|λn|≤8r

cosϕn

|λn|

≥ xλ(r) − Ax,

and in the last inequality, we use N(log N − log a) ≥ −ae−1 for a > 0. Therefore inequality (10)

holds. 2

Proof of Theorem 1 According to Lemmas 2 and 3, similarly to the proof of Vinnitskii in [3],

the space dual to E2[σ] can be realized in the form H2
σ. In this case, the value 〈f1, f〉∗ of the

functional f1 ∈ E2[σ] is determined by the equality

〈f1, f〉∗ =

∫

γσ

f2(t)f(t)dt,

where f2 is defined by (11). In view of (12), we have

〈f1(z), zleλnz〉∗ =

∫

γσ

tleλntf2(t)dt =
√

2πif
(l)
1 (λn).

Hence, the well-known criterion of completeness implies that system E(Λ, M) is incomplete in

E2[σ] if and only if there exists a function f1 ∈ H2
σ ∩ H(Λ, M). Therefore, Theorem 1 follows
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from Lemma 4. 2

Proof of Theorem 2 Taking inequality (9) and (10) into account and properly choosing the

number M , we can see that the function

U(z) =
exp{−Mz − 2σ

π
z log z}

1 + z
G(z)

satisfies the following inequalities

|U(z)| ≤ exp{σ|y|}
|1 + z| (14)

for all z ∈ C0, and

|U(z)| ≥ exp{−Ax − σ|y|}
|1 + z| (15)

for all z ∈ C(Λ, δ0), where G(z) is defined by (8).

Let Dn = {z : |z −λn| < δ0} and An,j be the coefficients of the principal part of the Laurent

series for the function 1
U(z) in Dn − {λn}, i.e.,

1

U(z)
=

mn
∑

j=1

An,j

(z − λn)j
+ gn(z), z ∈ Dn − {λn}, (16)

where gn(z) ∈ H(Dn). Then

An,j =
1

2πi

∫

|z−λn|=δ0

(z − λn)j−1

U(z)
dz.

According to inequality (15),

max{|An,j | : 1 ≤ j ≤ mn} ≤ exp{B(|λn| + 1)}, (17)

where B is a constant only dependent on Λ, M and σ. Let

Hn,k(z) = U(z)

mn−k
∑

l=1

An,k+l

k!(z − λn)l
, k = 0, 1, . . . , mn − 1; n = 1, 2, . . . .

By inequalities (14), (17) and Maximum Module Principle, we have

|Hn,k(z)| ≤ A exp{σ|y|}
|1 + z| − 2δ0

exp{B|λn|}.

Then Hn,k(z) ∈ H2
σ, and ||Hn,k||H2

σ
≤ A exp{B|λn|}. By Lemma 3, each function

hn,k(z) =
1√
2π

∫ ∞

0

Hn,k(t)e−ztdt

belongs to E2
∗ [σ] and satisfies

‖hn,k‖E2
∗
[σ] ≤ A exp{B|λn|}

and the duality relation

Hn,k(z) =
1√
2π i

∫

γσ

hn,k(t)etzdt, Re z > 0
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holds. Next we will prove that

H
(l)
n,k(λj) = δnjδkl, i.e.,

1√
2πi

∫

γσ

tleλjthn,k(t)dt = δnjδkl, (18)

where l = 0, 1, . . . , mj − 1, k = 0, 1, . . . , mn − 1; n, j = 1, 2, . . . . It is obvious that if j 6= n, then

H
(l)
n,k(λj) = 0, l = 0, 1, . . . , mj − 1. If j = n, then by (16), for z ∈ Dn and k = 0, 1, . . . , mn − 1,

n = 1, 2, . . . ,

Hn,k(z) = U(z)
(z − λn)k

k!

mn
∑

l=k+1

An,l

(z − λn)l−k

= U(z)
(z − λn)k

k!

(

1

U(z)
−

k
∑

l=1

An,l

(z − λn)l
− gn(z)

)

=
(z − λn)k

k!
+

∞
∑

l=mn

Bn,l(z − λn)l,

where Bn,l are the coefficients of the Taylor expansion of Hn,k(z) at λn. Thus (18) holds. Define

a linear functional Tn,k on E2[σ] by

Tn,k(f) =
1√
2π i

∫

γσ

hn,k(z)f(z)dz, f(z) ∈ E2[σ].

Then

‖Tn,k‖ ≤ 1√
2π

‖hn,k‖E2
∗
[σ] ≤ A exp{B|λn|} (19)

and

Tn,k(zleλjz) =
1√
2π i

∫

γσ

hn,k(z)zleλjzdz = H
(l)
n,k(λj) = δnjδkl.

Hence {Tn,k : k = 1, 2 . . . , mn; n = 1, 2, . . .} is a biorthogonal system of E(Λ, M) in (E2[σ])∗ and

E(Λ, M) is minimal in E2[σ].

If f ∈ spanE(Λ, M), there exists a sequence of exponential polynomials

Pj(z) =

j
∑

n=1

mn−1
∑

k=0

aj
n,kzkeλnz ∈ spanE(Λ, M)

such that

‖f − Pj‖E2[σ] −→ 0, j −→ ∞. (20)

Let f̃(z) be defined by (7), where an,k = Tn,k(f), D(B) = {z = reiθ : r cos(|π− θ|+ Θ(Λ)) >

B}. By (19), the function f̃(z) is an analytic function in D(B). Since 1
t−z

∈ L2[γσ], z ∈ Dσ, by

Lemma 5,

|f(z) − Pj(z)| ≤ 1

2π
‖f − Pj‖L2[γσ]‖

1

t − z
‖L2[γσ]. (21)

Note that

|ank − aj
nk| = |Tn,k(f) − Tn,k(Pj)| ≤ ‖Tn,k‖ · ‖f − Pj‖E2[σ], (22)

so for z ∈ D(B) ∩ Dσ,

|f(z) − f̃(z)| ≤|f(z) − Pj(z)| + |Pj(z) − f̃(z)|
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≤|f(z) − Pj(z)| +
j
∑

n=1

mn−1
∑

k=0

|aj
nk − ank|rkeRe(λkz)+

∞
∑

k=j+1

mn−1
∑

k=0

|ank|rkeRe(λkz).

Letting j −→ ∞, by (19)–(22), we see that f(z) = f̃(z) for each z ∈ D(B)∩Dσ. This completes

the proof of Theorem 2. 2
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