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Abstract This paper is devoted to constructing an authentication code with arbitration using

subspaces of vector spaces over finite fields. Moreover, if we choose the encoding rules of the

transmitter and the decoding rules of the receiver according to a uniform probability distribution,

then some parameters and the probabilities of successful attacks are computed.
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1. Introduction

Let (S, ET , ER, M) be four non-empty finite sets and f : S × ET → M and g : M × ER −→

S ∪ {reject} be two maps. The six-tuple (S, ET , ER, M, f, g) is called an authentication code

with arbitration if it satisfies the following conditions:

(i) f and g are surjective;

(ii) For any m ∈ M and eT ∈ ET , if there exists s in S such that f(s, eT ) = m, then s is

uniquely determined by the given m and eT ;

(iii) If eT ∈ ET and eR ∈ ER are mutually relative (i.e., s ∈ S encoded by eT can be

interpreted to itself by eR), then f(s, eT ) = m implies g(m, eR) = s, where m ∈ M .

In an authentication code with arbitration (S, ET , ER, M, f, g), if f(s, eT ) = m, then we say

that m is obtained by eT encoding s and that eT is contained in m; and if g(m, eR) = s, we say

that eR is contained in m. The sets S, M , ET , ER are called the set of source states, the set

of messages, the set of encoding rules of transmitter and the set of decoding rules of receiver,

respectively. The cardinals |S|, |M |, |ET |, |ER| are called parameters of this code.

The concept of authentication codes with arbitration was introduced by Simmons [1] to

provide protection against deceptions from both outsiders (opponent) and insiders (transmitter

and receiver). Sometimes, an authentication code with arbitration is simply called an A2-model

and it includes a fourth person, called the arbiter. The arbiter is assumed to be honest and he
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has access to all information, including eT and eR, but does not take part in any communication

activities on the channel. His only task is to resolve possible disputes between the transmitter

and the receiver whenever such occur.

It is well known that every authentication code with arbitration has the following five types

of cheating attacks:

I, impersonation by the opponent. The opponent sends a message to the receiver and succeeds

if this message is accepted by the receiver as authentic.

S, substitution by the opponent. The opponent observes a message that is transmitted and

replaces this message with another. The opponent is successful if this other message is accepted

by the receiver as authentic.

T , impersonation by the transmitter. The transmitter sends a message to the receiver and

then denies having sent it. The transmitter succeeds if this message is accepted by the receiver

as authentic and if this message is not one of the messages that the transmitter could have

generated due to his encoding rule.

R0, impersonation by the receiver. The receiver claims to have received a message from the

transmitter. The receiver succeeds if this message could have been generated by the transmitter

due to his encoding rule.

R1, substitution by the receiver. The receiver receives a message from the transmitter, but

claims to have received another message. The receiver succeeds if this other message could have

been generated by the transmitter due to his encoding rule.

For the above five possible deceptions, we denote the probability of success in each attack by

PI , PS , PT , PR0 , PR1 , respectively.

Recently, some authentication codes based on geometry of the classical groups [2, 3, 5, 7]

and normal form of matrices [4] over finite fields were constructed. In this paper, the vector

spaces over finite fields will be applied to construct an authentication code with arbitration and

moreover, its parameters and the serval probabilities of successful attacks are computed.

2. Matrix representations of vector spaces over finite fields

In this section we will recall some results for matrix representations of vector spaces over

finite fields.

Definition 2.1 Let Fq be a finite field and V be an n-dimensional vector space over Fq. Suppose

a1, a2, . . . , an is a basis of V , P is a subspace of V , P = L(b1, b2, . . . , bt) and A = (aij)t×n, where














b1

b2

...

bt















= A















a1

a2

...

an















.

Then A is called a matrix representation of P on the basis a1, a2, . . . , an. Clearly, b1, b2, . . . , bt

is a basis of P if and only if rank(A) = t.
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Theorem 2.2 ([5]) Let A, B be t × n and t1 × n matrices respectively (t ≤ t1 ≤ n). Then the

space represented by A is a subspace of the space represented by B if and only if there exists a

t× t1 matrix Q such that A = QB.

Corollary 2.3 ([5]) Let A, B be t × n matrices. Then the spaces represented by A and B

respectively are the same if and only if there exists an invertible matrix Q in GLt(Fq) such that

A = QB.

Corollary 2.4 ([5]) Let the matrix Ak×n represent k-dimensional vector space P and Bk1×n

represent k1-dimensional vector space Q. If P ∩ Q = {0}, then the matrix
(

A
B

)

represents the

vector space P ⊕ Q.

Theorem 2.5 Let P be a k-dimensional vector space with a basis a1, . . . , ak and P ⊂ N , where

N is an n-dimensional vector space. Extend a1, a2, . . . , ak to a basis a1, . . . , ak, ak+1, . . . , an of

N , then V is a complementary subspace of P if and only if V has the matrix representation of the

form (A(n−k)×k, In−k), where A(n−k)×k is uniquely determined by the complementary subspace

of P .

Proof Assume that (A(n−k)×k, In−k) represents the vector space V , and
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A(n−k)×k In−k
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,

then c1, c2, . . . , cn−k is a basis of V , and dim V = n − k. If x ∈ V ∩ P , then

x =

n−k
∑

i=1

(li)(ci) = m1a1 + · · · + mkak +

n−k
∑

i=1

(li)(ak+i) ∈ P.

This means that

li = 0 (1 ≤ i ≤ n − k), V ∩ P = {0},

and V is a complementary subspace of P .

If V is a complementary subspace of P , then V has the matrix representation of the form

(A(n−k)×k, In−k) (see the Proof of Lemma 3 in [5]).

Next we prove the uniqueness of A(n−k)×k. If (A, I) and (A1, I) represent the same comple-

mentary subspace V of P , then there exists an invertible matrix D such that (A, I) = D(A1, I) =

(DA1, D). Consequently, D = I and A = A1. 2

Theorem 2.6 ([6]) Let N(t, n) be the number of t-dimensional subspace of n-dimensional vec-

tor space V and N(k, t; n) be the number of k-dimensional subspace contained in t-dimensional

vector space of V . Then N(t, n) =
∏

n

i=n−t+1(q
i−1)

∏

t

i=1(qi−1)
and N(k, t; n) = N(k, t).
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3. Construction of an authentication code with arbitration

Let Fq be a finite field with q elements, where q is a power of a prime and n is a positive

integer. Let F
(n)
q be the n-dimensional vector space over Fq. Suppose t and t0 are two positive

integers (0 < 2t < t0 < n − 1), P1 is a fixed (t0 + 1)-dimensional subspace of F
(n)
q , and P0,

contained in P1, is a fixed t0-dimensional subspace. We define the following sets:

S := {s | s ⊂ P0, dim s = t},

M := {m | m ⊂ F(n)
q , m ∩ P0 ∈ S, dimm = n − t0 + t},

ET := {eT | eT is a complementary subspace of P0 in F(n)
q },

ER := {eR | eR is a complementary subspace of P1 in F(n)
q }.

For all s ∈ S, eT ∈ ET , we define the map

f : S × ET −→ M, f(s, eT ) = s + eT ,

where m ∈ M , eR ∈ ER, and the map g : M × ER −→ S ∪ {reject} is defined by

g(m, eR) =

{

s, eR ⊂ m, s = m ∩ P0;

reject, otherwise.

Theorem 3.1 The construction yields an authentication code with arbitration.

Proof (i) For all m ∈ M , suppose s = m ∩ P0 and eT is a complementary subspace of s in m,

then m = s + eT . Since dimm = n − t0 + t, dim eT = n − t0, and eT ∩ P0 = {0}, eT ∈ ET , and

f is surjective.

For all s ∈ S, eR ∈ ER, there exists eT in ET , such that eR ⊂ eT . Denote m = s + eT , then

m ∩ P0 = s, and dim m = t + n − t0. Therefore, m ∈ M and g is surjective.

(ii) For all m ∈ M , if there exist s1 and s2, such that f(s1, eT ) = f(s2, eT ) = m, then

m = s1 + eT = s2 + eT and m ∩ P0 = (s1 + eT ) ∩ P0 = (s2 + eT ) ∩ P0. Consequently, s1 = s2.

(iii) If eT and eR are mutually relative, m = f(s, eT ) and eR ⊂ m, then by the definition,

we have g(m, eR) = m ∩ P0 = (s + eT ) ∩ P0 = s, hence g(m, eR) = s. 2

4. Computation of parameters and PI , PS, PT , PR0, PR1

Lemma 4.1 The cardinal number of the set S is |S| =
∏ t0

i=t0−t+1(q
i−1)

∏

t

i=1(q
i−1)

.

Proof It is easy to see |S| = N(t, t0; n) = N(t, t0) =
∏ t0

i=t0−t+1(q
i−1)

∏

t

i=1(qi−1)
. 2

Lemma 4.2 The cardinal number of set ET and ER are |ET | = qt0(n−t0) and |ER| = q(t0+1)(n−t0−1).

Proof Choose a1, a2, . . . , at0 , at0+1, . . . , an as a basis of F
(n)
q , where a1, a2, . . . , at0 is a basis of

P0 and a1, a2, . . . , at0 , at0+1 is a basis of P1. Thus by Theorem 2.5, for all eT ⊂ ET , it has

the matrix representation of the form (A(n−t0)×t0 , In−t0), whence |ET | = qt0(n−t0). Similarly,

|ER| = q(t0+1)(n−t0−1). 2
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Lemma 4.3 The cardinal number of the set M is |M | = q(n−t0)(t0−t)
∏ t0

i=t0−t+1(q
i−1)

∏

t

i=1(qi−1)
.

Proof Let m ∈ M , s = m ∩ P0 and f(s, eT ) = m. Then eT is a complementary subspace of

m ∩ P0 in m. Therefore, by Theorem 2.5, we know that the number of eT in m is qt×(n−t0),

whence |M | = |ψ||eT |

qt×(n−t0) . 2

Theorem 4.4 The parameters of the above construction are as follows:

|S| =

∏t0
i=t0−t+1(q

i − 1)
∏t

i=1(q
i − 1)

, |M | = q(n−t0)(t0−t)

∏t0
i=t0−t+1(q

i − 1)
∏t

i=1(q
i − 1)

,

|ET | = qt0(n−t0), |ER| = q(t0+1)(n−t0−1).

Lemma 4.5 eT is related to eR if and only if eR ⊂ eT .

Proof If eR ⊂ eT , then for all s ∈ S, eR ⊂ s + eT , so eT is related to eR.

If eT is related to eR, then for all s ∈ S, eR ⊂ s + eT . Choose a1, a2, . . . , at as a basis of s

and at+1, . . . , an−t0+t as a basis of eT . Since 0 < 2t < t0, there exist b1, b2, . . . , bt in P0 such that

a1, a2, . . . , at, b1, b2, . . . , bt are linear independence. Let s′ = L(b1, b2, . . . , bt). Then eR ⊂ s′ + eT .

Consequently, for all x ∈ eR, we have

x =

n−t0+t
∑

i=1

liai =

t
∑

i=1

mibi +

n−t0+t
∑

i=t+1

miai.

Furthermore, P0 ∩ eT = {0}, therefore li = mi = 0 (i = 1, 2, . . . , t), and lj = mj (j = t +

1, . . . , n − t0 + t), whence x ∈ eT , eR ⊂ eT . 2

Lemma 4.6 (i) Given an encoding rule eT , then the number of eR related to it is q(n−t0−1);

(ii) Given a decoding rule eR, then the number of eT related to it is qt0 .

Proof (i) Choose a1, a2, . . . , at0 as a basis of P0, and extend it to a basis a1, a2, . . . , at0 , at0+1 of

P1. Given an encoding rule eT with a basis βt0+1, . . . , βn, then P1 has the matrix representation

of the form

(

I 0

λ1 λ2

)

on a basis a1, a2, . . . , at0 , βt0+1, . . . , βn of F
(n)
q , and

(

I 0

0 λ2

)

is also

a matrix representation of P1. Hence at0+1 ∈ eT , extend it to a basis at0+1, at0+2, . . . , an of eT .

Consequently, a1, a2, . . . , at0+1, . . . , an is a basis of F
(n)
q .

If eT is related to eR, then eR ⊂ eT . Thus eR has the matrix representation of the form
(

0(n−t0−1)t0 , A(n−t0−1)(n−t0)

)

=
(

0(n−t0−1)t0 , C(n−t0−1)×1, Dn−t0−1

)

.

Furthermore, eR has the matrix representation of the form
(

B(n−t0−1)(t0+1), In−t0−1

)

=
(

E(n−t0−1)t0 , F(n−t0−1)×1, In−t0−1

)

.

So there exists an invertible matrix Q, such that

Q
(

E(n−t0−1)t0 , F(n−t0−1)×1, In−t0−1

)

=
(

0(n−t0−1)t0 , C(n−t0−1)×1, Dn−t0−1

)

.

It is easy to see that E = 0, QF = C, Q = D. Obviously, eR has the matrix representation

of the form
(

0(n−t0−1)t0 , F(n−t0−1)×1, In−t0−1

)

. Since F is uniquely determined by eR, the
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number of eR related to eT is q(n−t0−1).

(ii) Given a decoding rule eR with a basis at0+2, . . . , an. Choose a1, a2, . . . , at0 , at0+1, . . . , an

as a basis of F
(n)
q , where a1, a2, . . . , at0 is a basis of P0 and a1, a2, . . . , at0 , at0+1 is a basis of P1.

Then eR has the matrix representation of the form
(

0(n−t0−1)(t0+1), In−t0−1

)

=
(

0(n−t0−1)t0 , 0(n−t0−1)×1, In−t0−1

)

.

Since eT has the matrix representation of the form

(

A(n−t0)t0 In−t0

)

=

(

B1×t0 1 0

C(n−t0−1)t0 0 In−t0−1

)

and eR ⊂ eT , there exists a matrix
(

Q1 Q2

)

such that

(

0(n−t0−1)t0 0(n−t0−1)×1 In−t0−1

)

=
(

Q1 Q2

)

(

B1×t0 1 0

C(n−t0−1)t0 0 In−t0−1

)

=
(

Q1B + Q2C Q1 Q2

)

.

It is not difficult to see that Q1 = 0, Q2 = I, C = 0. Hence eT has the matrix representation

of the form

(

B1×t0 1 0

0 0 In−t0−1

)

. Since B is uniquely determined by eT , the number of eT

related to eR is qt0 . 2

Lemma 4.7 The probability of a successful impersonation attack by the opponent is PI =
1

q(t0−t)(n−t0−1) .

Proof For any m ∈ M , let s = m ∩ P0 and m = s + eT . Choose a1, a2, . . . , at0 , at0+1 as

a basis of P1, where a1, a2, . . . , at is a basis of s and a1, a2, . . . , at0 is a basis of P0. Thus by

Theorem 4.6 (i), at0+1 ∈ eT and at0+1, at0+2, . . . , an is a basis of eT . Therefore, m has the matrix

representation of the form

(

It+1 0 0

0 0 In−t0−1

)

on the basis

a1, . . . , at, at0+1, at+1, . . . , at0 , at0+2, . . . , an

of F
(n)
q , whence eR has the matrix representation of the form
(

A(n−t0−1)(t0+1), I(n−t0−1)

)

=
(

B(n−t0−1)(t+1), C(n−t0−1)(t0−t), I(n−t0−1)

)

.

Since eR ⊂ m, there exists a matrix
(

Q1 Q2

)

such that

(

B(n−t0−1)(t+1) C(n−t0−1)(t0−t) I(n−t0−1)

)

=
(

Q1 Q2

)

(

It+1 0 0

0 0 In−t0−1

)

=
(

Q1 0 Q2

)

.

Thus Q1 = B, Q2 = I(n−t0−1), C = 0, and eR has the matrix representation of the form
(

B(n−t0−1)(t+1), 0, I(n−t0−1)

)

. So the number of eR in m is q(t+1)(n−t0−1), and

PI = max
m∈M

{the number of eR in m

|ER|

}

=
1

q(t0−t)(n−t0−1)
. 2
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Lemma 4.8 The probability of a successful substitution attack by the opponent is PS =
1

q(n−t0−1) .

Proof Suppose m, m′ ∈ M where m∩P0 = s, m′∩P0 = s′, and s 6= s′. Choose a1, . . . , at0 , at0+1

as a basis of P1, where a1, a2, . . . , at is a basis of s and a1, a2, . . . , at0 is a basis of P0. Thus by

Theorem 4.7, m has the matrix representation of the form

(

It+1 0 0

0 0 In−t0−1

)

on a basis

a1, . . . , at, at0+1, at+1, . . . , at0 , at0+2, . . . , an of F
(n)
q . Since eR ⊂ m, and also by Theorem 4.7,

eR has the matrix representation of the form
(

B(n−t0−1)(t+1), 0, I(n−t0−1)

)

. Since eR ⊂

m′, extend at0+2, . . . , an to a basis b1, . . . , bt, bt+1, at0+2, . . . , an of m′, and m′ has the matrix

representation of the form

(

D(t+1)(t0+1) D1

0 In−t0−1

)

, whence

(

D 0

0 In−t0−1

)

=

(

E(n−t0−1)(t+1) Ft0−t 0

0 0 In−t0−1

)

also represents m′. Consequently, by eR ⊂ m′, there exists a matrix
(

M1 M2

)

such that

(

B(n−t0−1)(t+1) 0 I(n−t0−1)

)

=
(

M1 M2

)

(

E(n−t0−1)(t+1) Ft0−t 0

0 0 In−t0−1

)

=
(

M1E M1F M2

)

.

Therefore, M1D =
(

B, 0
)

, M2 = I(n−t0−1), and the space represented by

(

B, 0(n−t0−1)(n−t−1)

)

is a subspace of the space represented by
(

D, 0(t+1)(n−t0−1)

)

, that is to say, it is the best way

for opponent to make dim(m ∩ m′) as much as possible. Since s 6= s′, max dim(s ∩ s′) = t − 1,

and maxdim(m∩m′) = n− t0 + t− 1, which means that one column of the first t columns of B

is 0 , so the number of eR in m and m′ is at most q(n−t0−1)t, and

PS = max
m∈M

{
max
m′∈M

{the number of eRin m and m′}

the number of eR in m

}

=
1

q(n−t0−1)
. 2

Lemma 4.9 The probability of a successful impersonation attack by the transmitter is PT =
1

q(n−t0−1) .

Proof Given an encoding rule eT and m ∈ M , where m cannot be encoded by eT . Assume

that m∩P0 = s and choose a1, a2, . . . , at0 , at0+1 as a basis of P1, where a1, a2, . . . , at is a basis of

s and a1, a2, . . . , at0 is a basis of P0. Consequently, by Lemma 4.6 (i), a1, a2, . . . , at0+1, . . . , an is

a basis of F
(n)
q , and eT = L(at0+1, . . . , an), whence eR has the matrix representation of the form

(

0(n−t0−1)(t0), F(n−t0−1)×1, In−t0−1

)

=
(

0(n−t0−1)t, 0(n−t0−1)(t0−t), F(n−t0−1)×1, In−t0−1

)

.
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Since m = (m ∩ P0) ⊕ e′T , where e′T ⊂ ET , m has the matrix representation of the form
(

It 0n−t

A(n−t0)t0 In−t0

)

=

(

It 0t0−t 0n−t0

C1 C2 In−t0

)

.

Hence

(

It 0t0−t 0n−t0

0 C2 In−t0

)

=







It 0 0 0n−t0−1

0 A1 1 0

0 A2 0 In−t0−1







also represents the vector space m. Since

(

It 0t0−t 0n−t0

0 0 In−t0

)

represents the space (m∩P0)+eT ,

C2 =

(

A1

A2

)

6= 0. Otherwise m = (m ∩ P0) + eT , which is contradictory. Since eR ⊂ m, there

exists a matrix
(

Q1 Q2 Q3

)

such that
(

0(n−t0−1)t 0(n−t0−1)(t0−t) F(n−t0−1)×1 In−t0−1

)

=
(

Q1 Q2 Q3

)







It 0 0 0n−t0−1

0 A1 1 0

0 A2 0 In−t0−1







=
(

Q1 Q2A1 + Q3A2 Q2 Q3

)

.

Thus Q1 = 0, Q2 = F , Q3 = I, FA1 + A2 = 0, AT
1 FT = −AT

2 , and A1 6= 0, otherwise A2 = 0,

C2 = 0, which is contradictory. Since AT
1 is of the type (t0 − t) × 1 and FT is of the type

1 × (n − t0 − 1), every column of FT is a solution of a non-homogeneous equations. Therefore,

FT has at most one choice and the number of eR in m related to eT is at most 1, and

PT = max
eT

{

max
eT *m

{the number of eR in m related to eT }

the number of eR related to eT

}

=
1

q(n−t0−1)
. 2

Lemma 4.10 The probability of a successful impersonation attack by the receiver is PR0 = 1
qt0−t .

Proof Given a decoding rule eR with a basis at0+2, . . . , an and m ∈ M , where eR ⊂ m and

m ∩ P0 = s. Choose a1, a2, . . . , at as a basis of s, and extend it to a basis a1, a2, . . . , at0 of P0.

If we choose a1, a2, . . . , at, at0+1, . . . , an as a basis of m, then m has the matrix representation

of the form

(

It 0 0

0 0 In−t0

)

on a basis a1, a2, . . . , at0+1, . . . , an of F
(n)
q . If eT related to eR

is contained in m, then eR ⊂ eT ⊂ m, and eT has the matrix representation of the form
(

B(n−t0)t0 , In−t0

)

=
(

C(n−t0)t, D(n−t0)(t0−t), In−t0

)

. Therefore, referring to eT ⊂ m, there

exists a matrix
(

Q1 Q2

)

such that

(

C(n−t0)t D(n−t0)(t0−t) In−t0

)

=
(

Q1 Q2

)

(

It 0 0

0 0 In−t0

)

=
(

Q1 0 Q2

)

,
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whence C = Q1, D = 0, Q2 = In−t0 and eT has the matrix representation of the form
(

C(n−t0)t, 0(n−t0)(t0−t), In−t0

)

.

Furthermore, by Lemma 4.7 (ii), we know that eT has the matrix representation of the form
(

B1×t0 1 0

0 0 In−t0−1

)

. Therefore eT has the matrix representation of the form

(

E1×t 01×(t0−t) 1 0

0 0 0 In−t0−1

)

,

and the number of eT in m related to eR is qt. Finally

PR0 = max
eR

{max
m

{the number of eT in m related to eR}

the number of eT related to eR

}

=
1

qt0−t
. 2

Lemma 4.11 The probability of a successful substitution attack by the receiver is PR1 = 1
q
.

Proof Given a decoding rule eR with a basis at0+2, . . . , an. Suppose m and m′ are two messages

from different source states, m ∩ P0 = s, m′ ∩ P0 = s′ and a1, a2, . . . , at is a basis of s. Extend

it to a basis a1, a2, . . . , at0 of P0. If we choose a1, a2, . . . , at, at0+1, . . . , an as a basis of m, then

a1, a2, . . . , at0+1, . . . , an is a basis of F
(n)
q . Since eR ⊂ eT ⊂ m, and also by Lemma 4.10., we

know that eT has the matrix representation of the form
(

B1×t 01×(t0−t) 1 0

0 0 0 In−t0−1

)

=
(

E(n−t0)×t0 In−t0

)

.

Therefore, by eT ⊂ m and eT ⊂ m′, if β1, β2, . . . , βt, at0+1, . . . , an is a basis of m′, then m′ has

the matrix representation of the form

(

At×t0 0

0 In−t0

)

. Since eT ⊂ m′, there exists a matrix
(

Q1 Q2

)

such that

(

E In−t0

)

=
(

Q1 Q2

)

(

At×t0 0

0 In−t0

)

.

Hence E = Q1A, Q2 = In−t0 , and the space represented by
(

E, 0n−t0

)

is a subspace of the

space represented by
(

A, 0t×(n−t0)

)

. Since E =

(

B1×t 0

0 0

)

, whence it is the best way

for opponent to make dim(s ∩ s′) as much as possible. Consequently, from s 6= s′, we have

maxdim(s ∩ s′) = t − 1. That is to say , one column of the first t columns of B is 0, therefore

the number of eT in m and m′ related to eR is at most qt−1, whence

PR1 = max
eR,m

{
max
m′∈M

{the number of eT in m and m′ related to eR}

the number of eT in m related to eR

}

=
1

q
. 2

Theorem 4.12 The probabilities of successful attacks of the authentication code with arbitra-

tion gotten from the above construction are as follows:

PI =
1

q(t0−t)(n−t0−1)
, PS =

1

q(n−t0−1)
, PT =

1

q(n−t0−1)
, PR0 =

1

qt0−t
, PR1 =

1

q
.
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