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Abstract In this note, we obtain some a-priori estimates for gradient of weak solutions to

a class of subelliptic quasilinear equations constructed by Hörmander’s vector fields, and then

prove local uniqueness of weak solutions. A key ingredient is the estimated about kernel on

metirc “annulus”.
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1. Introduction

Equations and systems constructed by Hörmander’s vector fields [1] have been extensively

investigated. Bony [2] studied existence and uniqueness of solutions of Dirichlet problem for

elliptic equations of the form sum-of-squares. Xu [3] considered regularity of weak solutions

for a class of quasilinear subelliptic systems. Capogna, Danielli and Garofalo [4] proved Hölder

continuity of weak solutions for equations of the form:

m
∑

i=1

X∗
i Ai(x, u, Xu) = f(x, u, Xu), (1)

where X1, X2, . . . , Xm are Hörmander’s vector fields, X∗
i denotes the formal adjoint of Xi (i =

1, 2, . . . , m), Xu = (X1u, X2u, . . . , Xmu) is sub-elliptic gradient of u, Ai(x, u, Xu), f(x, u, Xu):

Ω × R × Rm → R satisfy certain structure assumptions, Ω ⊂ Rn is a bounded open set. Sub-

sequently, Lu [5] extended the results of [4] under more general structure assumptions. In this

note, we are concerned with local uniqueness of weak solutions for (1) under following structure

conditions:
m

∑

i,j=1

Ai
Xjuξiξj ≥ γ0(|u|)|Xu|p−2|ξ|2, ∀ξ ∈ Rm, (2)
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|Ai
Xju| ≤ γ1(|u|)|Xu|p−2, (3)

|Ai, Ai
u, fXju| ≤ γ1(|u|)|Xu|p−1, (4)

|f, fu| ≤ γ1(|u|)|Xu|p (5)

with 1 < p < ∞. The functions γ0 and γ1 above are continuous in R+, γ0 is decreasing and

strictly positive, γ1 is increasing.

For describing the main result, we introduce some related knowledge.

Let X1, X2, . . . , Xm be C∞ vector fields in Rn satisfying Hörmander’s condition for hypoel-

lipticity:

rankLie[X1, X2, . . . , Xm] = n

at every point x ∈ Rn. A piecewise C1 curve γ : [0, T ] → Rn is said to be sub-unitary, if for

every ξ ∈ Rn and t ∈ [0, T ],

(γ′(t) · ξ)2 ≤

m
∑

i=1

(Xi(γ(t)) · ξ)2.

Given two points x, y ∈ Rn, the (X1, X2, . . . , Xm)-control distance between x and y is defined as

follows:

d(x, y) = inf{T > 0 | γ : [0, T ] → Rn, γ(0) = x, γ(T ) = y},

where γ is any sub-unitary curve connecting x and y. For x ∈ Rn and R > 0, let B(x, R) = {y |

d(x, y) < R} denote a ball centered at x with radius R. Then for any bounded set Ω ⊂ Rn, there

exist positive constants C, R0 and Q, such that

|B(x, tR)| ≥ CtQ |B(x, R)| (6)

for every x ∈ Ω, R ≤ R0 and 0 < t < 1. The number Q in (6) is called homogeneous dimension

relative to Ω. Let ∂B(R) denote boundary of B(x, R). Subsequently, for convenience, we shall

use short-hand notation B(x, R) ≡ B(R).

The operator L =
∑m

i=1 X∗
i Xi is called sub-elliptic Laplace operator and let Γ(x, y) denote

positive fundamental solution of L. Then familiar facts are

C
d2(x, y)

|B(x, d(x, y))|
≤ Γ(x, y) ≤ C−1 d2(x, y)

|B(x, d(x, y))|
,

|XΓ(x, y)| ≤ C
d(x, y)

|B(x, d(x, y))|
, (7)

where C denotes different positive constant [4].

For Ω ⊂ Rn, u ∈ C1
0 (Ω), x ∈ Ω, it is well known that [4]

u(x) =

∫

Ω

XΓ(x, y) · Xu(y)dy. (8)

Let k be a positive integer and p > 1. We define the non-isotropic Sobolev space by

Sk,p(Ω) = {u ∈ Lp(Ω)|Xαu ∈ Lp(Ω), ∀|α| ≤ k},

where Xα = Xα1

1 Xα2

2 · · ·Xαm
m , α is a multi-index: α = (α1, α2, . . . , αm), αi (i = 1, 2, . . . , m) are

nonnegative integers. S
k,p
0 (Ω) denotes the closure of C∞

0 (Ω) in Sk,p(Ω). The space

S
k,p
loc (Ω) = {u : Ω → R|ηu ∈ Sk,p(Ω), ∀η ∈ C∞

0 (Ω)}
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is called the local non-isotropic Sobolev space. For 0 < α < 1,

Γα(Ω) = {u ∈ L∞(Ω)| sup
ξ,η∈Ω,ξ 6=η

|u(ξ) − u(η)|

dα(ξ, η)
< +∞}

is the Folland-Stein space (or Hölder space) with the norm:

‖u‖Γα(Ω) = ‖u‖L∞(Ω) + sup
ξ,η∈Ω,ξ 6=η

|u(ξ) − u(η)|

dα(ξ, η)
.

For 0 < λ < 1, 1 ≤ p < ∞, Morrey space Mp,λ(Ω) is the space of functions f ∈ L
p
loc(Ω) satisfying

1

|B(r) ∩ Ω|

∫

B(r)∩Ω

|f(x)|
p
dx < Crp(λ−1)

for every x ∈ Ω and 0 < r < min{R0, diam(Ω)}, where R0 is as (6). Let Campanato space

Lp,λ(Ω) be the space of functions f ∈ L
p
loc(Ω) satisfying

1

|B(r) ∩ Ω|

∫

B(r)∩Ω

∣

∣f(x) − fB(r)

∣

∣

p
dx < Crpλ

for every x ∈ Ω and 0 < r < min{R0, diam(Ω)}, where fB(r) = 1
|B(r)|

∫

B(r)
f(x)dx is the average

over the ball B(r) of the function f . For ball B(r), we have Lp,λ(B(r)) ⊂ Γλ
loc(B(r)) (see [6]).

u ∈ S
1,p
loc (Ω) is called a local weak solution of equation (1), if for any ϕ ∈ S

1,p
0 (Ω),

∫

Ω

~A(x, u, Xu) · Xϕdx =

∫

Ω

f(x, u, Xu)ϕdx. (9)

Let

~A(x, u, Xu) = (A1(x, u, Xu), A2(x, u, Xu), . . . , Am(x, u, Xu)).

From (2), (4), we get

m
∑

i=1

(Ai(x, u, Xu)− Ai(x, u, 0))Xi(u) =

m
∑

i,j=1

∫ 1

0

Ai
Xju(x, u, tXu)XjuXi(u)dt

≥ γ0

∫ 1

0

|tXu|p−2|Xu|2dt =
γ0

p − 1
|Xu|p,

i.e.,

~A(x, u, Xu) · Xu ≥
γ0

p − 1
|Xu|p = γ

′

0|Xu|p. (10)

Similarly, from (3), (4), we have

| ~A(x, u, Xu)| ≤
γ1

p − 1
|Xu|p−1 = γ

′

1|Xu|p−1. (11)

Our main result is the following:

Theorem 1 Suppose that X∗
i = −Xi (i = 1, . . . , m), u1, u2 are local bounded weak solutions of

(1) under structure conditions (2)–(5), and u1 = u2 on ∂B(r) for sufficiently small r > 0. Then

u1 = u2 on B(r).

The proof of Theorem 1 is based on estimates of fundamental solutions of L and some

sub-elliptic estimates of weak solutions. We note that local uniqueness of weak solutions for

quasi-linear elliptic equations in Euclidean space was studied in [7]. A main tool there is polar
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coordinates in Euclidean space. We know that polar coordinates in Heisenberg group and any

Carnot group are established in [8] and [9], respectively. Unlike that, there is no “polar coordi-

nate” in the setting of general Hörmander vector fields, which are not vector fields in any Carnot

algebra. To avoid the difficulty, we establish desired estimates by cutting the kernel on metric

“annulus”.

With regard to research of Dirichlet problems of linear sub-elliptic equations, maximum

principle implies global uniqueness of weak solutions [2, 3]. In general, for quasi-linear and

nonlinear equations, uniqueness of weak solutions cannot be derived from maximum principles

directly [10]. So, in this note, we use some subelliptic estimates to obtain local uniqueness of

weak solutions for equations (1).

2. Some lemmas and proof of main result

The following lemma was inspired by [7] and its proof is essentially similar to one in Euclidean

space case. For completeness, we write the proof with necessary changes.

Lemma 2 If u is a local bounded weak solution of (1), then for sufficiently small r > 0, we have
∫

B(r)

|Xu|pdx ≤ CrQ+p(α−1), (12)

where B(2r) ⊂ Ω, α is the Hölder exponent of u (local Hölder continuity of u is infered from

[4, 5].)

Proof Let Eb,2r = {x ∈ B(2r) | u(x) > b}. Taking test function

ϕ(x) = ηp max{u(x) − b, 0}

in (9), where η ∈ C∞
0 (B(2r)), η ≥ 0, we have

∫

Eb,2r

( ~A · Xu)ηpdx + p

∫

Eb,2r

( ~A · Xη)ηp−1(u − b)dx =

∫

Eb,2r

f(u − b)ηpdx. (13)

From (5), (10), (11) and Young’s inequality, we estimate the terms in (13), respectively, and get
∫

Eb,2r

( ~A · Xu)ηpdx ≥ γ′
0

∫

Eb,2r

|Xu|pηpdx;

p
∣

∣

∣

∫

Eb,2r

( ~A · Xη)ηp−1(u − b)dx
∣

∣

∣
≤ γ

′

1p

∫

Eb,2r

|Xu|p−1|Xη|ηp−1|u − b|dx

≤ ǫpγ′
1

∫

Eb,2r

|Xu|pηpdx + Cε,ppγ′
1

∫

Eb,2r

|(u − b)Xη|pdx;

∣

∣

∣

∫

Eb,2r

f(u − b)ηpdx
∣

∣

∣
≤ γ1

∫

Eb,2r

|Xu|pηp|u − b|dx.

Since u is local Hölder continuous [4, 5], we can take sufficiently small r > 0 such that b =

min{u(x) | x ∈ B(2r)} and maxB(2r) |u − b| ≤
γ′

0

4γ1

. Choosing ε <
γ′

0

4pγ′

1

, and combining previous

estimates with (13), we obtain
∫

B(2r)

|Xu|pηpdx ≤ C

∫

B(2r)

|(u − b)Xη|pdx.
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Now let η(x) ∈ C∞
0 (B(2r)) satisfy η = 1 (x ∈ B(r)), 0 ≤ η ≤ 1 (x ∈ B(2r)), |Xη| ≤ C

r
. By

Hölder continuity of u, inequality (12) follows.

Remark 3 Inequality (12) implies Xu ∈ Mp,α(B(r)). By Poincaré inequality [5], we have

u ∈ Lp,α(B(r)). Hence, if u is a local bounded weak solution of (1), then u ∈ Γα
loc(Ω) if and only

if u satisfies (12).

The following two lemmas rely on estimates on metric “annulus”.

Lemma 4 If u is a local bounded weak solution of (1), then for sufficiently small r > 0, we have
∫

B(r)

d(x, y)−Q+p− αp

2 |Xu|pdx ≤ Cr
αp

2 ,

where B(r) = B(y, r) ⊂ B(y, 2r) ⊂ Ω, α is the Hölder exponent of u.

Proof If −Q + p − αp
2 < 0, using Lemma 2, for sufficiently small r > 0, we obtain

∫

B(r)

d(x, y)−Q+p− αp
2 |Xu|pdx ≤

∞
∑

k=0

∫

B(2−kr)\B(2−k−1r)

d(x, y)−Q+p− αp
2 |Xu|pdx

≤

∞
∑

k=0

∫

B(2−kr)

(2−k−1r)−Q+p− αp

2 |Xu|pdx ≤ C

∞
∑

k=0

(2−k−1r)−Q+p− αp

2 (2−kr)Q+αp−p

= C

∞
∑

k=0

(2−k)
αp
2 2Q+ αp

2
−pr

αp
2 ≤ Cr

αp
2 .

If −Q + p − αp
2 ≥ 0, for sufficiently small r > 0, we get

∫

B(r)

d(x, y)−Q+p− αp
2 |Xu|pdx ≤

∞
∑

k=0

∫

B(2−kr)\B(2−k−1r)

d(x, y)−Q+p− αp
2 |Xu|pdx

≤

∞
∑

k=0

∫

B(2−kr)

(2−kr)−Q+p− αp

2 |Xu|pdx ≤ C

∞
∑

k=0

(2−kr)−Q+p− αp

2 (2−kr)Q+αp−p

= C

∞
∑

k=0

(2−k)
αp
2 r

αp
2 ≤ Cr

αp
2 .

So, the conclusion is proved. 2

Lemma 5 For 1 < p < 2, if u is a local bounded weak solution of (1), then for sufficiently small

r > 0, η ∈ C∞
0 (B(r)), we have

∫

B(r)

|Xu(x)|pη2(x)dx ≤ Crα

∫

B(r)

|Xu(x)|p−2|Xη(x)|2dx,

where B(2r) ⊂ Ω, α is the Hölder exponent of u.

Proof From (7),(8) and Hölder’s inequality, one obtains
∫

B(r)

|Xu(x)|pη2(x)dx =

∫

B(r)

|Xu(x)|p
(

∫

B(r)

|Xη(y)||XΓ(x, y)|dy
)2

dx

≤ C

∫

B(r)

|Xu(x)|p
(

∫

B(r)

|Xη(y)|

dQ−1(x, y)
dy

)2

dx
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≤ C

∫

B(r)

|Xu(x)|p
(

∫

B(r)

|Xη(y)|2

|Xu(y)|2−pdQ−p+ αp
2 (x, y)

dy
)

(

∫

B(r)

|Xu(y)|2−p

dQ+p− αp

2
−2(x, y)

dy
)

dx. (14)

If Q − αp
2p−2 > 0, we have

∫

B(r)

d(x, y)−Q+ αp

2p−2 dx ≤

∞
∑

k=0

∫

B(2−kr)\B(2−k−1r)

d(x, y)−Q+ αp

2p−2 dx

≤

∞
∑

k=0

∫

B(2−kr)

(2−k−1r)−Q+ αp

2p−2 dx ≤ C

∞
∑

k=0

(2−k−1r)−Q+ αp

2p−2 (2−kr)Q

= C

∞
∑

k=0

(2−k)
αp

2p−2 2Q− αp

2p−2 r
αp

2p−2 ≤ Cr
αp

2p−2 . (15)

If Q − αp
2p−2 ≤ 0, we get

∫

B(r)

d(x, y)−Q+ αp

2p−2 dx ≤

∞
∑

k=0

∫

B(2−kr)\B(2−k−1r)

d(x, y)−Q+ αp

2p−2 dx

≤

∞
∑

k=0

∫

B(2−kr)

(2−kr)−Q+ αp

2p−2 dx ≤ C

∞
∑

k=0

(2−kr)−Q+ αp

2p−2 (2−kr)Q

= C

∞
∑

k=0

(2−k)
αp

2p−2 r
αp

2p−2 ≤ Cr
αp

2p−2 . (16)

On account of (15) and (16), for sufficiently small r > 0, Lemma 4 and Hölder’s inequality imply
∫

B(r)

|Xu(y)|2−p

dQ+p− αp

2
−2(x, y)

dy ≤ C
(

∫

B(r)

|Xu(y)|p

dQ−p+ αp

2 (x, y)
dy

)

2−p

p
(

∫

B(r)

1

dQ− αp

2p−2 (x, y)
dy

)

2p−2

p

≤ Cr2α− αp

2 . (17)

Hence, by virtue of (17), Lemma 4 and Fubini’s theorem, we estimate (14), and get
∫

B(r)

|Xu(x)|pη2(x)dx ≤ Cr2α− αp

2

∫

B(r)

|Xu(x)|p
(

∫

B(r)

|Xη(y)|2|Xu(y)|p−2

dQ−p+ αp

2 (x, y)
dy

)

dx

= Cr2α− αp

2

∫

B(r)

|Xη(y)|2|Xu(y)|p−2

∫

B(r)

|Xu(x)|p

dQ−p+ αp

2 (x, y)
dxdy

≤ Cr2α

∫

B(r)

|Xη(y)|2|Xu(y)|p−2dy ≤ Crα

∫

B(r)

|Xη(y)|2|Xu(y)|p−2dy.

Lemma 6 For p ≥ 2, if u is a local bounded weak solution of (1), then for sufficiently small

r > 0 and η ∈ C∞
0 (B(r)), we have

∫

B(r)

|Xu(x)|pη2(x)dx ≤ Crα

∫

B(r)

|Xu(x)|p−2|Xη(x)|2dx,

where B(2r) ⊂ Ω, α is the Hölder exponent.

Proof For x0 ∈ B(r), taking ϕ = (u(x) − u(x0))η
2 in (9), we obtain

∫

B(r)

~A(x, u, Xu) · (Xuη2 + (u(x) − u(x0))2ηXη)dx
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=

∫

B(r)

f(x, u, Xu)(u(x) − u(x0))η
2dx. (18)

Using (5), (10), (11), Young’s inequality and Hölder continuity of u, we can estimate the terms

in (18), and get
∫

B(r)

( ~A(x, u, Xu) · Xu)η2dx ≥ γ′
0

∫

B(r)

|Xu|pη2dx;

∣

∣

∣

∫

B(r)

~A(x, u, Xu) · (u(x) − u(x0)2ηXηdx
∣

∣

∣
≤ Cγ′

1r
α

∫

B(r)

|Xu|p−1|η||Xη|dx

≤ Cεγ′
1r

α

∫

B(r)

|Xu|p|η|2dx + Cεγ
′
1r

α

∫

B(r)

|Xu|p−2|Xη|2dx;

∣

∣

∣

∫

B(r)

f(x, u, Xu)(u(x) − u(x0))η
2dx

∣

∣

∣
≤ Cγ1r

α

∫

B(r)

|Xu|pη2dx.

Replacing these estimates into (18) leads to the conclusion.

Proof of Theorem 1 Since u1 and u2 are local bounded weak solutions of (1), for any ϕ ∈

S
1,p
0 (B(r)), we obtain
∫

B(r)

( ~A(x, u1, Xu1) − ~A(x, u2, Xu2)) · Xϕdx =

∫

B(r)

(f(x, u1, Xu1) − f(x, u2, Xu2))ϕdx. (19)

Setting ϕ = u1 − u2, we have ϕ ∈ S
1,p
0 (B(r)) and it follows

(Ak(x, u1, Xu1) − Ak(x, u2, Xu2))Xkϕ

=

∫ 1

0

Ak
u(x, tu1 + (1 − t)u2, tXu1 + (1 − t)Xu2)dtϕXkϕ+

m
∑

j=1

∫ 1

0

Ak
Xju(x, tu1 + (1 − t)u2, tXu1 + (1 − t)Xu2)dtXjϕXkϕ.

Hence from (2),(4) and Young’s inequality, we get

|( ~A(x, u1, Xu1) − ~A(x, u2, Xu2)) · Xϕ|

≥ γ0

∫ 1

0

|tXu1 + (1 − t)Xu2|
p−2dt|Xϕ|2−

γ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
p−1dt|Xϕ||ϕ|

≥ (γ0 − εγ1)

∫ 1

0

|tXu1 + (1 − t)Xu2|
p−2dt|Xϕ|2−

Cεγ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
pdt|ϕ|2. (20)

Similarly, from (4) and (5), we have

|(f(x, u1, Xu1) − f(x, u2, Xu2))ϕ|

≤
∣

∣

∣

∫ 1

0

fu(x, tu1 + (1 − t)u2, tXu1 + (1 − t)Xu2)dtϕ2
∣

∣

∣
+
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∣

∣

∣

m
∑

j=1

∫ 1

0

fXju(x, tu1 + (1 − t)u2, tXu1 + (1 − t)Xu2)dtXjϕϕ
∣

∣

∣

≤ γ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
pdt|ϕ|2+

γ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
p−1dt|Xϕ||ϕ|

≤ εγ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
p−2dt|Xϕ|2+

(Cε + 1)γ1

∫ 1

0

|tXu1 + (1 − t)Xu2|
pdt|ϕ|2.

Combining (20), (21) with (19), standard calculations show
∫

B(r)

(|Xu1| + |Xu2|)
p−2|Xϕ|2dx ≤ C

∫

B(r)

(|Xu1| + |Xu2|)
p|ϕ|2dx. (21)

For sufficiently small r, we maximize the integral on the right hand side of (22) by applying

Lemmas 5 and 6, and get
∫

B(r)

(|Xu1| + |Xu2|)
p−2|Xϕ|2dx ≤ Crα

∫

B(r)

(|Xu1| + |Xu2|)
p−2|Xϕ|2dx. (22)

For sufficiently small r satisfying Crα < 1, from (23), we have u1 = u2 on B(r).
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