Orthogonality of Generalized (θ, ϕ) -Derivations on Ideals

Cheng Cheng SUN, Jing MA, Li Zhi LANG*

Department of Mathematics, Jilin University, Jilin 130012, P. R. China

Abstract In this paper, necessary and sufficient conditions concerning the orthogonality and the composition of a couple of generalized (θ, ϕ) -derivations on a nonzero ideal of a semiprime ring are presented. These results are generalizations of several results of Brešar and Vukman, which are related to a theorem of Posner on the product of two derivations on a prime ring.

Keywords orthogonal; generalized (θ, ϕ) -derivation; semiprime ring.

Document code A MR(2000) Subject Classification 16N60; 16W25 Chinese Library Classification 0153.3

1. Introduction

Let R denote an associative ring. Recall that R is prime if xRy = 0, $x, y \in R$, implies x = 0or y = 0, and R is semiprime if xRx = 0, $x \in R$, implies x = 0. A ring R is 2-torsion free if for any $x \in R$, 2x = 0 implies x = 0.

An additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) for all $x, y \in R$. An addition mapping $D: R \to R$ is called a generalized derivation if there is a derivation d of R such that D(xy) = D(x)y + xd(y) for all $x, y \in R$. Let θ, ϕ be endomorphisms of R. An additive mapping $d: R \to R$ is called a (θ, ϕ) -derivation if $d(xy) = d(x)\theta(y) + \phi(x)d(y)$ for all $x, y \in R$. Motivated by the definition of (θ, ϕ) -derivation, the notion of generalized derivation was extended. Let θ, ϕ be endomorphisms of R. An addition mapping $D: R \to R$ is called a generalized (θ, ϕ) -derivation if there is a (θ, ϕ) -derivation d of R such that $D(xy) = D(x)\theta(y) + \phi(x)d(y)$ holds for all $x, y \in R$. Two mappings $f, g: R \to R$ are called orthogonal on R if

$$f(x)Rg(y) = 0 = g(y)Rf(x), \quad x, y \in R.$$

In [1], Brešar and Vukman introduced the notion of orthogonality for a pair of derivations (d, g) of a semiprime ring, and they gave several necessary and sufficient conditions for d, g to be orthogonal on a semiprime ring. In [2], Argaç, Nakajima and Albaş introduced the notion of orthogonality for a pair of generalized derivations (D, d), (G, g) of a semiprime ring and gave several necessary and sufficient conditions for (D, d), (G, g) to be orthogonal on a semiprime ring.

* Corresponding author

Received March 25, 2009; Accepted January 26, 2010

E-mail address: sunchengcheng1985@163.com (C. C. SUN); mj@email.jlu.edu.cn (J. MA); langlizhi100@163.com (L. Z. LANG)

In 2007, Albaş extended the results of Brešar and Vukman to orthogonal generalized derivations on a nonzero ideal of a semiprime ring [3]. Also, in 2007, Gölbaşi and Aydin presented some results cencerning the orthogonality of (θ, ϕ) -derivations and generalized (θ, ϕ) -derivations on a semiprime ring in [4]. Several authors have investigated other properties of prime or semiprime rings with generalized (θ, ϕ) -derivations, see [5, 6].

Motivated by [3] and [4], in this paper we extend these results [2] to orthogonal generalized (θ, ϕ) -derivations on a nonzero ideal of a semiprime ring.

Throughout this paper, R will denote a 2-torsion free semiprime ring, θ and ϕ are automorphisms of R, (D, d) and (G, g) are generalized (θ, ϕ) -derivations of R with associated (θ, ϕ) -derivations d and g such that

$$G\theta = \theta G, \quad G\phi = \phi G, \quad D\theta = \theta D, \quad D\phi = \phi D,$$

$$g\theta = \theta g, \quad g\phi = \phi g, \quad d\theta = \theta d, \quad d\phi = \phi d.$$
(1)

2. Preliminaries

To prove our main results, we need the following lemmas from [4] and [8]. We present them here for convenience.

Lemma 2.1 ([7, Lemma 1]) Let R be a 2-torsion free semiprime ring with a nonzero ideal I. Then for any $a, b \in R$ the following conditions are equivalent:

- (i) axb = 0 for all $x \in I$.
- (ii) bxa = 0 for all $x \in I$.
- (iii) axb + bxa = 0 for all $x \in I$.

Moreover, if one of the three conditions is fulfilled and l(I) = 0, then ab = ba.

Lemma 2.2 ([7, Lemma 3]) Let R be a semiprime ring with a nonzero ideal I. Suppose that the additive mappings F and H of R satisfy F(x)IH(x) = 0 for all $x \in I$, then F(x)IH(y) = 0 for all $x, y \in I$.

Lemma 2.3 ([4, Theorem 1]) Let R be a 2-torsion free semiprime ring. The (θ, ϕ) -derivations d and g of R satisfying (1) are orthogonal if and only if one of the following conditions holds:

- (i) dg = 0.
- (*ii*) gd = 0.
- (iii) dg + gd = 0.
- (iv) d(x)g(x) = 0 for all $x \in R$.
- (v) dg is a (θ^2, ϕ^2) -derivation of R.

Lemma 2.4 ([4, Lemma 4]) Let R be a 2-torsion free semiprime ring. If the generalized (θ, ϕ) -derivations (D, d) and (G, g) of R satisfying (1) are orthogonal, then

(i) D(x)G(y) = G(x)D(y) = 0 for all $x, y \in R$.

(ii) d and G are orthogonal and d(x)G(y) = G(y)d(x) = 0 for all $x, y \in R$.

(iii) g and D are orthogonal and g(x)D(y) = D(y)g(x) = 0 for all $x, y \in R$.

Orthogonality of generalized (θ, ϕ) -derivations on ideals

(iv) d and g are orthogonal.

(v) dG = Gd = 0, gD = Dg = 0 and DG = GD = 0.

Note that for an ideal I of R, the left and right annihilators of I in R coincide, and $I \cap r(I) = 0$ $(I \cap l(I) = 0)$, where l(I) and r(I) denote the left annihilator and the right annihilator of I, respectively. The following simple fact is also useful.

Lemma 2.5 Let R be a 2-torsion free semiprime ring with a nonzero ideal I. If r(I) = 0 or l(I) = 0, then for any automorphism θ of R we have $r(\theta(I)) = l(\theta(I)) = 0$.

3. Main results

To prove our main result we need the following lemma.

Lemma 3.1 Let R be a 2-torsion free semiprime ring, I a nonzero ideal such that l(I) = 0 and (D, d) and (G, g) generalized (θ, ϕ) -derivations of R satisfying (1). If

$$D(x)G(y) = G(x)D(y) = 0$$
⁽²⁾

for all $x, y \in I$, then (D, d) and (G, g) are orthogonal.

Proof Replacing y by ry in (2), where $r \in R$, we get

$$0 = D(x)G(yr) = D(x)(G(y)\theta(r) + \phi(y)g(r)) = D(x)\phi(y)g(r)$$

$$0 = G(x)D(yr) = G(x)(D(y)\theta(r) + \phi(y)d(r)) = G(x)\phi(y)d(r)$$

for all $x, y \in I, r \in R$. Using Lemmas 2.1 and 2.5, we obtain

$$D(x)g(r) = g(r)D(x) = d(r)G(x) = G(x)d(r) = 0$$
(3)

for all $x \in I$, $r \in R$. Substituting xs for x in g(r)D(x) = 0, where $s \in R$, gives

$$0 = g(r)D(xs) = g(r)\phi(x)d(s), \quad x \in I, \ r, s \in R.$$

By Lemmas 2.1 and 2.5 this gives g(r)d(s) = d(s)g(r) = 0 for all $r, s \in \mathbb{R}$. Thus d and g are orthogonal by Lemma 2.3. The orthogonality of d and g and (3) imply that

$$0 = D(sx)g(y) = D(s)\theta(x)g(y), \quad 0 = G(sx)d(y) = G(s)\theta(x)d(y), 0 = g(r)D(sy) = g(r)D(s)\theta(y), \quad 0 = d(r)G(sy) = d(r)G(s)\theta(y)$$
(4)

for all $x, y \in I$ and $s, t \in R$. Replacing x, y by rx, sy in (2), respectively, where $r, s \in R$, and applying (4), we get

$$0 = D(rx)G(sy) = D(r)\theta(x)G(s)\theta(y) + \phi(r)d(x)\phi(s)g(y),$$

$$0 = G(rx)D(sy) = G(r)\theta(x)D(s)\theta(y) + \phi(r)g(x)\phi(s)d(y)$$

for all $x, y \in I$, $r, s \in R$. Then Lemma 2.5 and the orthogonality of d and g yield

$$D(r)\theta(x)G(s) = G(r)\theta(x)D(s) = 0, \quad x \in I, \ r, s \in R.$$

Since

$$D(r)\theta(I)RG(s) \subseteq D(r)\theta(I)G(s) = 0, \ G(r)\theta(I)RD(s) \subseteq G(r)\theta(I)D(s) = 0,$$

it follows from Lemma 2.1 that D(r)RG(s) = G(r)RD(s) = 0 for all $r, s \in R$, as desired. \Box Now we are ready to prove our main results.

Theorem 3.1 Let R be a 2-torsion free semiprime ring, I a nonzero ideal such that l(I) = 0 and (D, d) and (G, g) generalized (θ, ϕ) -derivations of R satisfying (1). Then the following conditions are equivalent:

- (i) (D,d) and (G,g) are orthogonal.
- (ii) For all $x, y \in I$, the following relations hold:
- (a) D(x)G(y) + G(x)D(y) = 0,
- (b) d(x)G(y) + g(x)D(y) = 0.
- (iii) D(x)G(y) = d(x)G(y) = 0 for all $x, y \in I$.
- (iv) D(x)G(y) = 0 for all $x, y \in I$ and dG = dg = 0 on I.

(v) (DG, dg) is a generalized (θ^2, ϕ^2) -derivation from I to R and D(x)G(y) = 0 for all $x, y \in I$.

Proof (i) \Rightarrow (ii), (iii) and (iv) are clear from Lemmas 2.3 and 2.4.

(iii) \Rightarrow (i). By D(x)G(y) = d(x)G(y) = 0, we get

$$0 = D(rx)G(y) = D(r)\theta(x)G(y), \text{ for all } x, y \in I, r \in R.$$

Lemmas 2.1 and 2.5 yield D(r)G(x) = G(x)D(r) = 0, $x \in I$, $r \in R$. Thus from Lemma 3.1, we obtain (i).

(ii) \Rightarrow (iii). From (a) and (b), we get

$$0 = D(xz)G(x) + G(xz)D(x) = D(x)\theta(z)G(x) + G(x)\theta(z)D(x)$$

for all $x, z \in I$. Thus $D(x)\theta(I)G(x) = 0$ by Lemmas 2.1 and 2.5. Then by Lemmas 2.2 and 2.5, We obtain $D(x)\theta(I)G(y) = 0$ and

$$D(x)G(y) = D(x)\theta(I)G(y) = 0, \quad x, y \in I.$$

Hence

$$0 = D(xz)G(y) = \phi(x)d(z)G(y)$$

for all $x, y, z \in I$. Now Lemma 2.5 gives d(x)G(y) = 0 for all $x, y \in I$.

(iv) \Rightarrow (v). Replacing y by yr in D(x)G(y) = 0, where $r \in R$, we obtain

$$0 = D(x)G(yr) = D(x)\phi(y)g(r)$$

for all $x, y \in I, r \in R$. Then

$$D(x)g(r) = g(r)D(x) = 0, \quad x \in I, \ r \in R,$$

by Lemmas 2.1 and 2.5. Replacing x by xs in g(r)D(x) = 0, where $s \in R$, we get that d(s)g(r) = 0for all $r, s \in R$ by Lemmas 2.1 and 2.5. By Lemma 2.3, d and g are orthogonal. Substituting sx for x in D(x)g(r) = 0 we see that $D(s)\theta(x)g(r) = 0$. Thus Lemmas 2.1 and 2.5 give

$$D(s)g(r) = 0 \tag{5}$$

Orthogonality of generalized (θ, ϕ) -derivations on ideals

for all $r, s \in R$. Since $dG(x) = dg(y) = 0, x, y \in I$, we have

$$0 = dG(xy) = d(G(x)\theta(y) + \phi(x)g(y)) = G\phi(x)d\theta(y) + d\phi(x)g\theta(y)$$

for all $x, y \in I$. Then the orthogonality of d and g implies

$$G\phi(x)d\theta(y) = 0. \tag{6}$$

Thus using (5) and (6), we obtain

$$DG(xy) = DG(x)\theta^{2}(y) + G\phi(x)d\theta(y) + D\phi(x)g\theta(y) + \phi^{2}(x)dg(y)$$
$$= DG(x)\theta^{2}(y) + \phi^{2}(x)dg(y)$$

for all $x, y \in I$.

 $(v) \Rightarrow (iii)$. Since (DG, dg) and (dg, dg) are both generalized (θ^2, ϕ^2) -derivations from I to R,

$$G\phi(x)d\theta(y) + D\phi(x)g\theta(y) = 0,$$
(7)

$$g\phi(x)d\theta(y) + d\phi(x)g\theta(y) = 0 \tag{8}$$

for all $x, y \in I$. Substituting yr for y in D(x)g(y) = 0 we have

$$0 = D(x)G(yr) = D(x)\phi(y)g(r)$$

for all $x, y \in I$, $r \in R$. Thus Lemmas 2.1 and 2.5 yield D(x)g(r) = 0, in which replacing r by rs we have $D(x)\phi(r)g(s) = 0$, for all $x \in I$, $r, s \in R$. Since ϕ is an automorphism, we have

$$D(x)Rg(s) = 0, \quad r, s \in R.$$
(9)

Substituting $z\phi(x)$ for $\phi(x)$ in (7), where $z \in I$, and applying (8) and (9), we get

$$0 = G(z\phi(x))d\theta(y) + D(z\phi(x))g\theta(y) = G(z)\theta\phi(x)d\theta(y)$$

for all $x, y, z \in I$. By Lemmas 2.1 and Lemma 2.5, we get

$$d\theta(y)G(z) = 0, \quad y, z \in I.$$
(10)

Replacing $\theta(y)$ by $x\theta(y)$ in (10), we obtain

$$0 = d(x\theta(y))G(z) = (d(x)\theta^2(y) + \phi(x)d\theta(y))G(z) = d(x)\theta^2(y)G(z)$$

for all $x, y \in I$. Therefore, Lemmas 2.1 and 2.5 give d(x)G(z) = 0 for all $x, z \in I$. \Box

Notice that (D, d) and (G, g) are symmetric in Theorem 3.1. The theorem is still true if we change (iii), (iv) and (v) of Theorem 3.1 to

(iii') G(x)D(y) = g(x)D(y) = 0 for all $x, y \in I$;

(iv') G(x)D(y) = 0 for all $x, y \in I$ and gD = gd = 0 on I;

(v') (GD, gd) is a generalized (θ^2, ϕ^2) -derivation from I to R and G(x)D(y) = 0 for all $x, y \in I$.

Theorem 3.2 Let R be a 2-torsion free semiprime ring, I a nonzero ideal such that l(I) = 0 and (D, d) and (G, g) generalized (θ, ϕ) -derivations of R satisfying (1). Then the following conditions are equivalent:

- (i) (DG, dg) is a generalized (θ^2, ϕ^2) -derivation from I to R.
- (ii) (GD, gd) is a generalized (θ^2, ϕ^2) -derivation from I to R.
- (iii) D and g are orthogonal, and G and d are orthogonal.

Proof (i) \Rightarrow (iii). Since (DG, dg) and (dg, dg) are both generalized (θ^2, ϕ^2) -derivations from I to R, we have

$$G\phi(x)d\theta(y) + D\phi(x)g\theta(y) = 0, \qquad (11)$$

$$d\phi(x)g\theta(y) + g\phi(x)d\theta(y) = 0 \tag{12}$$

for all $x, y \in I$. Replacing $\phi(x)$ by $r\phi(x)$ in (12), where $r \in R$, we get

$$0 = d(r\phi(x))g\theta(y) + g(r\phi(x))d\theta(y) = d(r)\theta\phi(x)g\theta(y) + g(r)\theta\phi(x)d\theta(y)$$
(13)

for all $x, y \in I$ and $r \in R$. Substituting $s\theta(y)$ for $\theta(y)$ in (13) for any $s \in R$ yields

$$\begin{split} 0 &= d(r)\theta\phi(x)g(s\theta(y)) + g(r)\theta\phi(x)d(s\theta(y)) \\ &= d(r)\theta\phi(x)(g(s)\theta^2(y) + \phi(s)g\theta(y)) + g(r)\theta\phi(x)(d(s)\theta^2(y) + \phi(s)d\theta(y)) \end{split}$$

for all $x, y \in I$ and $r, s \in R$. Noticing (13), we obtain

$$d(r)\theta\phi(x)\phi(s)g\theta(y) + g(r)\theta\phi(x)\phi(s)d\theta(y) = 0$$

Then

$$(d(r)\theta\phi(x)g(s) + g(r)\theta\phi(x)d(s))\theta^2(y) = 0$$
(14)

for all $x, y \in I$, $r, s \in R$. In particular, if r = s in (14), then Lemmas 2.1 and 2.5 yield

$$d(r)\theta\phi(I)g(r) = 0, \quad r \in R$$

Combining Lemmas 2.1, 2.2 and 2.5 gives d(r)g(s) = 0. Applying Lemma 2.3, we obtain that d and g are orthogonal. Replacing $\phi(x)$ by $r\phi(x)$ in (11) and applying the orthogonality of d and g, we obtain that

$$0 = D(r\phi(x))g\theta(y) + G(r\phi(x))d\theta(y) = D(r)\theta\phi(x)g\theta(y) + G(r)\theta\phi(x)d\theta(y)$$
(15)

for all $x, y \in I$, $r \in R$. Substituting $g\theta(y)\theta\phi(x)$ for $\theta\phi(x)$ in (15) and applying the orthogonality of d and g gives

$$G(r)g\theta(y)\theta\phi(x)d\theta(y) + D(r)g\theta(y)\theta\phi(x)g\theta(y) = D(r)g\theta(y)\theta\phi(x)g\theta(y)$$

for all $x, y \in I, r \in R$. Noticing

$$D(r)g\theta(y)\theta\phi(I)RD(r)g\theta(y) \subseteq D(r)g\theta(y)\theta\phi(I)g\theta(y) = 0$$

and Lemma 2.1, we have $D(r)g\theta(y)RD(r)g\theta(y) = 0$. Since R is semiprime, we have

$$D(r)g\theta(y) = 0, \quad x, y \in I, \ r \in R.$$
(16)

Replacing $\theta(y)$ by $\theta(y)s$ in (16), we get

$$0 = D(r)g(\theta(y)s) = D(r)g\theta(y)\theta(s) + D(r)\phi\theta(y)g(s) = D(r)\phi\theta(y)g(s)$$

for all $y \in I$, $r, s \in R$. Then Lemmas 2.1 and 2.5 imply g(s)D(r) = D(r)g(s) = 0. Hence

$$0 = g(ts)D(r) = g(t)\theta(s)D(r)$$

for all $r, s, t \in R$. Then g(t)RD(r) = D(r)Rg(t) = 0. Similarly,

$$G(r)d(t) = d(t)G(r) = d(t)RG(r) = G(r)Rd(t) = 0$$

for all $r, t \in R$. Hence, D and g are orthogonal, and G and d are also orthogonal.

(iii) \Rightarrow (i). By the hypothesis and Lemma 2.1, we get that G(r)d(s) = D(r)g(s) = 0, for all $r, s \in \mathbb{R}$. Hence

$$DG(xy) = DG(x)\theta^2(y) + \phi^2(x)dg(y), \quad x, y \in I.$$

Substituting rt for r in G(r)d(s) = 0, we obtain $0 = G(rt)d(s) = \phi(r)g(t)d(s)$, for all $r, s, t \in R$. Then Lemmas 2.3 and 2.5 yield dg = 0. Therefore, (DG, dg) is a generalized (θ^2, ϕ^2) -derivation from I to R.

Similarly, (ii) \Leftrightarrow (iii). \Box

Corollary 3.1 Let R be a 2-torsion free semiprime ring, I be a nonzero ideal such that l(I) = 0. If (DG, dg) is a generalized (θ^2, ϕ^2) -derivation from I to R, then (DG, dg) is a generalized (θ^2, ϕ^2) -derivation of R and dg = 0.

Proof By Theorem 3.2, D and g are orthogonal, and G and d are also orthogonal. Applying Lemma 2.1 gives G(r)d(s) = D(r)g(s) = 0. Then

$$G\phi(r)d\theta(s) + D\phi(r)g\theta(s) = 0$$

for all $r, s \in R$. Substituting rt for r in G(r)d(s) = 0, we get

$$0 = G(rt)d(s) = \phi(r)g(t)d(s)$$

for all $r, s, t \in \mathbb{R}$. Applying Lemmas 2.3 and 2.5, we obtain dg = 0. Then Lemma 2.3 gives

$$g\phi(r)d\theta(s) + d\phi(r)g\theta(s) = 0$$

for all $r, s \in R$. Hence $DG(rs) = DG(r)\theta^2(s) + \phi^2 dg(s)$ for all $r, s \in R$. \Box

Corollary 3.2 Let R be a 2-torsion free semiprime ring, I be a nonzero ideal such that l(I) = 0and (D,d) be a generalized (θ, ϕ) -derivation of R. If (D^2, d^2) is a generalized (θ^2, ϕ^2) -derivation from I to R, then d = 0.

Proof According to Corollary 3.1 and Lemma 2.3, d and d are orthogonal. Therefore, the semiprimeness of R implies that d(R) = 0. \Box

Corollary 3.3 Let R be a 2-torsion free semiprime ring, I be a nonzero ideal such that l(I) = 0and (D,d) be a generalized (θ,ϕ) -derivation of R. If D(x)D(y) = 0 for all $x, y \in I$, then D = d = 0.

Proof By the hypothesis we have

$$0 = D(x)D(yr) = D(x)\phi(y)d(r)$$

for all $x, y \in I, r \in R$. Whence

$$d(r)D(x) = 0\tag{17}$$

for all $x \in I$ and $r \in R$ by Lemmas 2.1 and 2.5. Replacing x by xs in (17), where $s \in R$, we get

$$0 = d(r)D(xs) = d(r)\phi(x)d(s)$$

for all $x \in I$, $r, s \in R$. Then from Lemmas 2.1 and 2.5 it follows d(r)d(s) = 0 for all $r, s \in R$. Applying the Lemma 2.3, we get that d and d are orthogonal. Therefore, by the semiprimeness of R, we obtain d(R) = 0. Thus

$$0 = D(rx)D(y) = D(r)\theta(x)D(y)$$

for all $x, y \in I, r \in R$. Then

$$D(r)D(y) = 0 \tag{18}$$

by Lemmas 2.1 and 2.5. Substituting sy for y in (18) and noticing that d = 0 leads to

$$0 = D(r)D(sy) = D(r)D(s)\theta(y)$$

for all $y \in I$, $r, s \in R$. Then Lemma 2.5 implies D(r)D(s) = 0. Noticing d = 0, we get

$$0 = D(rt)D(s) = D(r)\theta(t)D(s), \quad r, s, t \in \mathbb{R}.$$

Hence, we obtain D = 0 by the semiprimeness of R. \Box

References

- BREŠAR M, VUKMAN J. Orthogonal derivation and an extension of a theorem of Posner [J]. Rad. Mat., 1989, 5(2): 237–246.
- [2] ARGAÇ N, NAKAJIMA A, ALBAŞ E. On orthogonal generalized derivations of semiprime rings [J]. Turkish J. Math., 2004, 28(2): 185–194.
- [3] ALBAŞ E. On ideals and orthogonal generalized derivations of semiprime rings [J]. Math. J. Okayama Univ., 2007, 49: 53–58.
- [4] GÖLBAŞI Ö, AYDIN N. Orthogonal generalized (σ, τ)-derivations of semiprime rings [J]. Siberian Mathematical Journal, 2007, **48**: 979–983.
- [5] ASHRAF M, AL-SHAMMAKH W S M. On generalized (θ, φ)-derivation in ring [J]. Internat. T. Math. Game Theo. Algebra, 2002, 12: 295–300.
- [6] ASHRAF M, ALI A, ALI S. On lie ideals and generalized (θ, φ)-derivations in prime ring [J]. Comm. Algebra, 2004, 32: 2977–2985.
- [7] YENIGÜL, ARGAÇ N. On ideals and orthogonal derivations [J]. J. Southwest China Normal Univ., 1995, 20: 137–140.