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Abstract An adjacent vertex distinguishing incidence coloring of graph G is an incidence

coloring of G such that no pair of adjacent vertices meets the same set of colors. We obtain the

adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path

and a path, a path and a wheel, a path and a fan, and a path and a star.
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1. Introduction

All graphs in this paper are simple, connected and undirected. We use V (G) and E(G) to

denote the set of vertices and the set of edges of a graph G, respectively. And we denote the

maximum degree of G by ∆(G). The undefined terminology can be found in [1].

Let G be a graph of order n. For any vertex u ∈ V (G), N(u) denotes the set of all vertices

adjacent to vertex u. Obviously, d(u) is equal to |N(u)|.

Let I(G) = {(v, e) ∈ V (G) × E(G) | v is incident with e} be the set of incidences of G. Two

incidences (v, e) and (w, f) are said to be adjacent if one of the following holds: (1) v = w; (2)

e = f ; (3) the edge vw equals e or f . Iv = {(v, vu) | u ∈ N(v)} and Av = {(u, uv) | u ∈ N(v)}

are called the close-incidence set and far-incidence set of v, respectively.

Definition 1.1 ([2]) An incidence coloring of G is a mapping σ from I(G) to a color set C such

that any two adjacent incidences have different images. If σ: I(G) → C is an incidence coloring

of G and |C| = k, k is a positive integer, then we say that G is k-incidence colorable and σ is a

k-incidence coloring of G; The minimum value of k such that G is k-incidence colorable is called

the incidence chromatic number of G, and denoted by χi(G).

Definition 1.2 ([3]) Let Qu = Iu ∪ Au and let σ be a k-incidence coloring of a graph G
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with color set C. S(u) denotes the set of colors assigned to Qu (with respect to σ). If for any

uv ∈ E(G), S(u) 6= S(v), then σ is called a k-adjacent vertex distinguishing incidence coloring

of G. And χai(G)=min{k | there exists a k-adjacent vertex distinguishing incident coloring of

G} is called the adjacent vertex distinguishing incidence chromatic number of G. An adjacent

vertex distinguishing incidence coloring f of G using k colors is denoted by k-AVDIC. And let

S(u) = C \ S(u).

Definition 1.3 ([3]) The Cartesian product of simple graphs G and H is the simple graph

G × H with vertex set V (G) × V (H), in which (u, v) is adjacent to (u′, v′) if and only if either

u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).

Adjacent strong edge coloring, adjacent vertex distinguishing total coloring and vertex dis-

tinguishing edge coloring of the Cartesian product of some special graphs were studied in [4–6],

respectively. In this paper, we will investigate adjacent vertex distinguishing incidence coloring

of the Cartesian product of some graphs.

The following lemma will be used.

Lemma 1.1 ([3]) Let Cn be a cycle of order n, where n is at least 3. Then

χai(Cn) =

{

4, if n ≥ 3 and n 6= 5;

5, if n = 5.

Lemma 1.2 ([3]) Let G be a graph of order at least 3. If there exist the adjacent vertices of

maximum degree in G, then χai(G) ≥ ∆(G) + 2.

Lemma 1.3 ([3]) For any graph G, χai(G) ≥ χi(G) ≥ ∆(G) + 1.

2. Main results

Theorem 2.1 Let Pn and Pm be two paths of order n and m, respectively, where n ≥ m ≥ 2.

Then

χai(Pn × Pm) =











4, if m = n = 2;

6, if m ≥ 3 and n ≥ 4;

5, otherwise.

Proof Let {u1, u2, . . . , un} be vertex set of Pn and {u′

1, u
′

2, . . . , u
′

m} be vertex set of Pm. Let

vij = (ui, u
′

j). We consider the following four cases separately.

Case 1 Suppose m = n = 2. Obviously, P2 × P2
∼= C4. By Lemma 1.1, χai(C4) = 4.

Case 2 Suppose m ≥ 3 and n ≥ 4. Obviously, there exist the adjacent vertices of maximum

degree in Pn × Pm. By Lemma 1.2, χai(Pn × Pm) ≥ ∆(Pn × Pm) + 2 = 6. We now only need to

give a 6-AVDIC of Pn × Pm.

We construct a mapping f from I(Pn × Pm) to {0, 1, 2, 3, 4, 5} as follows:

f(Avij
) = (2i + j − 3) (mod 6), i = 1, 2, . . . , n, j = 1, 2, . . . , m.
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It is easy to see that f is an incidence coloring of Pn×Pm. For convenience, we use the matrix

B = (bij)n×m to describe the incidence coloring f of Pn × Pm, where bij = f(Avij
) denotes the

color which is received by the far-incidence set of vertex vij , and all bij are taken modulo 6.

B =























0 1 2 · · · m − 2 m − 1

2 3 4 · · · m m + 1

4 5 6 · · · m + 2 m + 3

· · · · · · · · · · · · · · · · · ·

2n − 4 2n − 3 2n − 2 · · · 2n + m − 6 2n + m − 5

2n − 2 2n − 1 2n · · · 2n + m − 4 2n + m − 3























From the matrix B = (bij)n×m, it is clear that f is adjacent vertex distinguishing. Hence f

is a 6-AVDIC of Pn × Pm and thus χai(Pn × Pm) = 6.

Case 3 Suppose m = n = 3. It is clear that χai(P3 × P3) ≥ ∆(P3 × P3) + 1 = 5. We now only

need to give a 5-AVDIC of P3 × P3.

We construct a mapping f from I(P3 × P3) to {0, 1, 2, 3, 4} as follows:

f(Avij
) = (2i + j − 3) (mod 5), i, j = 1, 2, 3.

Similarly, we use the matrix B′ = (b′ij)3×3 to describe the incidence coloring f of P3 × P3.

The matrix B′ is similar to B in case 1, however, all b′ij are taken modulo 5.

It is easy to see that f is a 5-AVDIC of P3 × P3 and thus χai(P3 × P3) = 5.

Case 4 Suppose m = 2 and n ≥ 3. It is clear that χai(Pn × P2) ≥ ∆(Pn × P2) + 2 = 5. We

now only need to give a 5-AVDIC of Pn × P2.

In the same way as in Case 3, we construct a mapping f from I(Pn × P2) to {0, 1, 2, 3, 4} as

follows:

f(Avij
) = (2i + j − 3) (mod 5), i = 1, 2, . . . , n, j = 1, 2.

Similarly, we use the matrix B′′ = (b′′ij)n×2 to describe the incidence coloring f of Pn × P2.

The matrix B
′′

is similar to B in Case 1, however, all b′′ij are taken modulo 5.

It is easy to see that f is a 5-AVDIC of Pn × P2 and thus χai(Pn × P2) = 5.

The proof of this theorem is completed. 2

Theorem 2.2 Let Pn be a path of order n ≥ 2, and let G be a star Sm, a wheel Wm or a fan

Fm of order m + 1, where m is at least 5. Then

χai(Pn × G) =

{

m + 3, if n = 2, 3;

m + 4, if n ≥ 4.

Proof Let {u1, u2, . . . , un} be vertex set of Pn and let {u′

0, u
′

1, . . . , u
′

m} be vertex set of G, where

u′

0 is a vertex with degree m. Let vij = (ui, u
′

j). We consider the following three cases separately.

Case 1 Suppose n = 2. Then there exist the adjacent vertices of maximum degree in P2×G. By

Lemma 1.2, χai(P2×G) ≥ ∆(P2 ×G)+2 = m+3. We now only need to give an (m+3)-AVDIC

of P2 × G.
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Let C = {a1, a2, a3} ∪ {0, 1, 2, . . . , m − 1} be the set of colors such that |C| = m + 3. We

construct a mapping f from I(P2 × G) to C as follows:

f(Av10
) = a1, f(Av1j

) = j − 1, j = 1, 2, . . . , m.

f(Av20
) = a2, f(Av2j

) = j + 1 (mod m), f(Av2m
) = a3, j = 1, 2, . . . , m − 1.

For convenience, we use the matrix B = (bij)2×(m+1) to describe the incidence coloring f of

P2 × G,

B =

(

a1 0 1 · · · m − 3 m − 2 m − 1

a2 2 3 · · · m − 1 0 a3

)

where bij = f(Avij
) denotes the color which is received by the far-incidence set of vertex vij .

From the matrix B = (bij)2×(m+1), obviously, f is adjacent vertex distinguishing. Hence f

is an (m + 3)-AVDIC of P2 × G and thus χai(P2 × G) = m + 3.

Case 2 Suppose n = 3. By Lemma 1.3, χai(P3 × G) ≥ ∆(P3 × G) + 1 = m + 3. We now only

need to give an (m + 3)-AVDIC of P3 × G.

Let C = {a1, a2, a3}∪ {0, 1, 2, . . . , m− 1} be a color set such that |C| = m + 3. We construct

a mapping f from I(P3 × G) to C as follows:

f(Avi0
) = ai, f(Avij

) = (2i + j − 3) (mod m), i = 1, 2, 3, j = 1, 2, . . . , m.

It is easy to see that f is an incidence coloring of P3 × G. Similarly, we use the matrix

B = (bij)3×(m+1) to describe the incidence coloring of P3 × G,

B =







a1 0 1 · · · m − 5 m − 4 m − 3 m − 2 m − 1

a2 2 3 · · · m − 3 m − 2 m − 1 0 1

a3 4 5 · · · m − 1 0 1 2 3







where bij = f(Avij
) denotes the color which is received by the far-incidence set of vertex vij .

From the matrix B = (bij)3×(m+1), obviously, S(v01) = {a3}, S(v02) = ∅, S(v03) = {a1},

and for any j = 1, 2, . . . , m, a2 6∈ S(v1j), a2 ∈ S(v2j), a3 6∈ S(v2j), a3 ∈ S(v3j). Hence

S(vij) 6= S(vi+1,j) for any copy P3 × {u′

j} of P3, where j = 0, 1, 2, . . . , m, i = 1, 2. On the

other hand, for any copy {ui} × G of G, S(vi0) 6= S(vij), and (j + 1) (mod m) ∈ S(v1j),

(j + 2) (mod m) 6∈ S(v1j), (j + 3) (mod m) ∈ S(v2j), (j + 4) (mod m) 6∈ S(v2j), (j + 1)

(mod m) ∈ S(v3j), (j + 2) (mod m) 6∈ S(v3j), where j = 1, 2, . . . , m. Hence for any pair of

adjacent vertices vij and vik in {ui} × G, S(vij) 6= S(vik), where i = 1, 2, 3. Consequently f is

adjacent vertex distinguishing and thus χai(P3 × G) = m + 3.

Case 3 Suppose n ≥ 4. Obviously, there exist the adjacent vertices of maximum degree in

Pn × G. By Lemma 1.2, χai(Pn × G) ≥ ∆(Pn × G) + 2 = m + 4. We now only need to give an

(m + 4)-AVDIC of Pn × G.

Let C = {a0, a1, a2, a3} ∪ {0, 1, 2, . . . , m − 1} be the set of colors such that |C| = m + 4.

We now construct a mapping f from I(Pn × G) to C as follows: for any i = 1, 2, . . . , n and
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j = 0, 1, . . . , m, let

f(Avi0
) = ai−1, f(Avij

) = (2i + j − 3) (mod m),

where the suffix of ai−1 is taken modulo 4.

It is easy to see that f is an incidence coloring of Pn × G. Similarly, we use the matrix

B = (bij)n×(m+1) to describe the incidence coloring of Pn × G,

B =

















a0 0 1 · · · m − 2 m − 1

a1 2 3 · · · m m + 1

a2 4 5 · · · m + 2 m + 3

· · · · · · · · · · · · · · · · · ·

an−1 2n − 2 2n− 1 · · · 2n + m − 4 2n + m − 3

















where bij = f(Avij
) denotes the color which is received by the far-incidence set of vertex vij

(here bi0 = ai−1), and the suffix of ai−1 is taken modulo 4, bij are taken modulo m, where

i = 1, 2, . . . , n, j = 1, 2, . . . , m.

From the matrix B = (bij)n×(m+1), it is clear that S(vij) 6= S(vi+1,j) for any copy Pn ×{u
′

j}

of Pn, where j = 0, 1, 2, . . . , m, i = 1, 2, . . . , n−1. On the other hand, for any copy {ui}×G of G,

S(vi0) 6= S(vij), and (2i+j−1) (mod m) ∈ S(vij), (2i+j) (mod m) /∈ S(vij), i = 1, 2, . . . , n−1,

(2n + j − 5) (mod m) ∈ S(vnj), (2n + j − 4) (mod m) /∈ S(vnj), where j = 1, 2, . . . , m. Hence

for any pair of adjacent vertices vij and vik in {ui} × G, S(vij) 6= S(vik), where i = 1, 2, . . . , n.

Consequently, f is adjacent vertex distinguishing and thus χai(Pn × G) = m + 4.

The proof of this theorem is completed. 2
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