Journal of Mathematical Research & Exposition Mar., 2011, Vol. 31, No. 2, pp. 366–370 DOI:10.3770/j.issn:1000-341X.2011.02.022 Http://jmre.dlut.edu.cn

Adjacent Vertex Distinguishing Incidence Coloring of the Cartesian Product of Some Graphs

Qian WANG*, Shuang Liang TIAN

Department of Mathematics and Computer Science, Northwest University for Nationalities, Gansu 730030, P. R. China

Abstract An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors. We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path, a path and a wheel, a path and a fan, and a path and a star.

Keywords Cartesian product; incidence coloring; adjacent vertex distinguishing incidence coloring; adjacent vertex distinguishing incidence chromatic number.

Document code A MR(2010) Subject Classification 05C15 Chinese Library Classification 0157.5

1. Introduction

All graphs in this paper are simple, connected and undirected. We use V(G) and E(G) to denote the set of vertices and the set of edges of a graph G, respectively. And we denote the maximum degree of G by $\Delta(G)$. The undefined terminology can be found in [1].

Let G be a graph of order n. For any vertex $u \in V(G)$, N(u) denotes the set of all vertices adjacent to vertex u. Obviously, d(u) is equal to |N(u)|.

Let $I(G) = \{(v, e) \in V(G) \times E(G) \mid v \text{ is incident with } e\}$ be the set of incidences of G. Two incidences (v, e) and (w, f) are said to be adjacent if one of the following holds: (1) v = w; (2) e = f; (3) the edge vw equals e or f. $I_v = \{(v, vu) \mid u \in N(v)\}$ and $A_v = \{(u, uv) \mid u \in N(v)\}$ are called the close-incidence set and far-incidence set of v, respectively.

Definition 1.1 ([2]) An incidence coloring of G is a mapping σ from I(G) to a color set C such that any two adjacent incidences have different images. If $\sigma: I(G) \to C$ is an incidence coloring of G and |C| = k, k is a positive integer, then we say that G is k-incidence colorable and σ is a k-incidence coloring of G; The minimum value of k such that G is k-incidence colorable is called the incidence chromatic number of G, and denoted by $\chi_i(G)$.

Definition 1.2 ([3]) Let $Q_u = I_u \cup A_u$ and let σ be a k-incidence coloring of a graph G

Received April 10, 2009; Accepted April 26, 2010

Supported by the State Ethnic Affairs Commission of China (Grant No. 08XB07).

* Corresponding author

E-mail address: jswq@xbmu.edu.cn (Q. WANG); jstsl@xbmu.edu.cn (S. L. TIAN)

with color set C. S(u) denotes the set of colors assigned to Q_u (with respect to σ). If for any $uv \in E(G)$, $S(u) \neq S(v)$, then σ is called a k-adjacent vertex distinguishing incidence coloring of G. And $\chi_{ai}(G) = \min\{k \mid \text{there exists a } k\text{-adjacent vertex distinguishing incident coloring of } G\}$ is called the adjacent vertex distinguishing incidence chromatic number of G. An adjacent vertex distinguishing incidence coloring f of G using k colors is denoted by k-AVDIC. And let $\overline{S}(u) = C \setminus S(u)$.

Definition 1.3 ([3]) The Cartesian product of simple graphs G and H is the simple graph $G \times H$ with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v') if and only if either u = u' and $vv' \in E(H)$ or v = v' and $uu' \in E(G)$.

Adjacent strong edge coloring, adjacent vertex distinguishing total coloring and vertex distinguishing edge coloring of the Cartesian product of some special graphs were studied in [4–6], respectively. In this paper, we will investigate adjacent vertex distinguishing incidence coloring of the Cartesian product of some graphs.

The following lemma will be used.

Lemma 1.1 ([3]) Let C_n be a cycle of order n, where n is at least 3. Then

$$\chi_{ai}(C_n) = \begin{cases} 4, & \text{if } n \ge 3 \text{ and } n \ne 5, \\ 5, & \text{if } n = 5. \end{cases}$$

Lemma 1.2 ([3]) Let G be a graph of order at least 3. If there exist the adjacent vertices of maximum degree in G, then $\chi_{ai}(G) \ge \Delta(G) + 2$.

Lemma 1.3 ([3]) For any graph G, $\chi_{ai}(G) \ge \chi_i(G) \ge \Delta(G) + 1$.

2. Main results

Theorem 2.1 Let P_n and P_m be two paths of order n and m, respectively, where $n \ge m \ge 2$. Then

$$\chi_{ai}(P_n \times P_m) = \begin{cases} 4, & \text{if } m = n = 2; \\ 6, & \text{if } m \ge 3 \text{ and } n \ge 4; \\ 5, & \text{otherwise.} \end{cases}$$

Proof Let $\{u_1, u_2, \ldots, u_n\}$ be vertex set of P_n and $\{u'_1, u'_2, \ldots, u'_m\}$ be vertex set of P_m . Let $v_{ij} = (u_i, u'_j)$. We consider the following four cases separately.

Case 1 Suppose m = n = 2. Obviously, $P_2 \times P_2 \cong C_4$. By Lemma 1.1, $\chi_{ai}(C_4) = 4$.

Case 2 Suppose $m \ge 3$ and $n \ge 4$. Obviously, there exist the adjacent vertices of maximum degree in $P_n \times P_m$. By Lemma 1.2, $\chi_{ai}(P_n \times P_m) \ge \Delta(P_n \times P_m) + 2 = 6$. We now only need to give a 6-AVDIC of $P_n \times P_m$.

We construct a mapping f from $I(P_n \times P_m)$ to $\{0, 1, 2, 3, 4, 5\}$ as follows:

$$f(A_{v_{ij}}) = (2i + j - 3) \pmod{6}, \ i = 1, 2, \dots, n, \ j = 1, 2, \dots, m.$$

It is easy to see that f is an incidence coloring of $P_n \times P_m$. For convenience, we use the matrix $B = (b_{ij})_{n \times m}$ to describe the incidence coloring f of $P_n \times P_m$, where $b_{ij} = f(A_{v_{ij}})$ denotes the color which is received by the far-incidence set of vertex v_{ij} , and all b_{ij} are taken modulo 6.

$$B = \begin{pmatrix} 0 & 1 & 2 & \cdots & m-2 & m-1 \\ 2 & 3 & 4 & \cdots & m & m+1 \\ 4 & 5 & 6 & \cdots & m+2 & m+3 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 2n-4 & 2n-3 & 2n-2 & \cdots & 2n+m-6 & 2n+m-5 \\ 2n-2 & 2n-1 & 2n & \cdots & 2n+m-4 & 2n+m-3 \end{pmatrix}$$

From the matrix $B = (b_{ij})_{n \times m}$, it is clear that f is adjacent vertex distinguishing. Hence f is a 6-AVDIC of $P_n \times P_m$ and thus $\chi_{ai}(P_n \times P_m) = 6$.

Case 3 Suppose m = n = 3. It is clear that $\chi_{ai}(P_3 \times P_3) \ge \Delta(P_3 \times P_3) + 1 = 5$. We now only need to give a 5-AVDIC of $P_3 \times P_3$.

We construct a mapping f from $I(P_3 \times P_3)$ to $\{0, 1, 2, 3, 4\}$ as follows:

$$f(A_{v_{ij}}) = (2i + j - 3) \pmod{5}, \quad i, j = 1, 2, 3.$$

Similarly, we use the matrix $B' = (b'_{ij})_{3\times 3}$ to describe the incidence coloring f of $P_3 \times P_3$. The matrix B' is similar to B in case 1, however, all b'_{ij} are taken modulo 5.

It is easy to see that f is a 5-AVDIC of $P_3 \times P_3$ and thus $\chi_{ai}(P_3 \times P_3) = 5$.

Case 4 Suppose m = 2 and $n \ge 3$. It is clear that $\chi_{ai}(P_n \times P_2) \ge \Delta(P_n \times P_2) + 2 = 5$. We now only need to give a 5-AVDIC of $P_n \times P_2$.

In the same way as in Case 3, we construct a mapping f from $I(P_n \times P_2)$ to $\{0, 1, 2, 3, 4\}$ as follows:

$$f(A_{v_{ij}}) = (2i + j - 3) \pmod{5}, \quad i = 1, 2, \dots, n, \ j = 1, 2.$$

Similarly, we use the matrix $B'' = (b''_{ij})_{n \times 2}$ to describe the incidence coloring f of $P_n \times P_2$. The matrix B'' is similar to B in Case 1, however, all b''_{ij} are taken modulo 5.

It is easy to see that f is a 5-AVDIC of $P_n \times P_2$ and thus $\chi_{ai}(P_n \times P_2) = 5$.

The proof of this theorem is completed. \Box

Theorem 2.2 Let P_n be a path of order $n \ge 2$, and let G be a star S_m , a wheel W_m or a fan F_m of order m + 1, where m is at least 5. Then

$$\chi_{ai}(P_n \times G) = \begin{cases} m+3, & \text{if } n = 2,3; \\ m+4, & \text{if } n \ge 4. \end{cases}$$

Proof Let $\{u_1, u_2, \ldots, u_n\}$ be vertex set of P_n and let $\{u'_0, u'_1, \ldots, u'_m\}$ be vertex set of G, where u'_0 is a vertex with degree m. Let $v_{ij} = (u_i, u'_j)$. We consider the following three cases separately.

Case 1 Suppose n = 2. Then there exist the adjacent vertices of maximum degree in $P_2 \times G$. By Lemma 1.2, $\chi_{ai}(P_2 \times G) \ge \Delta(P_2 \times G) + 2 = m + 3$. We now only need to give an (m+3)-AVDIC of $P_2 \times G$.

Adjacent vertex distinguishing incidence coloring of the cartesian product of some graphs

Let $C = \{a_1, a_2, a_3\} \cup \{0, 1, 2, \dots, m-1\}$ be the set of colors such that |C| = m+3. We construct a mapping f from $I(P_2 \times G)$ to C as follows:

$$f(A_{v_{10}}) = a_1, \ f(A_{v_{1j}}) = j - 1, \ j = 1, 2, \dots, m.$$

 $f(A_{v_{20}}) = a_2, \ f(A_{v_{2j}}) = j+1 \pmod{m}, \ f(A_{v_{2m}}) = a_3, \ \ j = 1, 2, \dots, m-1.$

For convenience, we use the matrix $B = (b_{ij})_{2 \times (m+1)}$ to describe the incidence coloring f of $P_2 \times G$,

where $b_{ij} = f(A_{v_{ij}})$ denotes the color which is received by the far-incidence set of vertex v_{ij} .

From the matrix $B = (b_{ij})_{2 \times (m+1)}$, obviously, f is adjacent vertex distinguishing. Hence f is an (m+3)-AVDIC of $P_2 \times G$ and thus $\chi_{ai}(P_2 \times G) = m+3$.

Case 2 Suppose n = 3. By Lemma 1.3, $\chi_{ai}(P_3 \times G) \ge \Delta(P_3 \times G) + 1 = m + 3$. We now only need to give an (m + 3)-AVDIC of $P_3 \times G$.

Let $C = \{a_1, a_2, a_3\} \cup \{0, 1, 2, \dots, m-1\}$ be a color set such that |C| = m+3. We construct a mapping f from $I(P_3 \times G)$ to C as follows:

$$f(A_{v_{i0}}) = a_i, \ f(A_{v_{ij}}) = (2i+j-3) \pmod{m}, \ i = 1, 2, 3, \ j = 1, 2, \dots, m.$$

It is easy to see that f is an incidence coloring of $P_3 \times G$. Similarly, we use the matrix $B = (b_{ij})_{3 \times (m+1)}$ to describe the incidence coloring of $P_3 \times G$,

$$B = \begin{pmatrix} a_1 & 0 & 1 & \cdots & m-5 & m-4 & m-3 & m-2 & m-1 \\ a_2 & 2 & 3 & \cdots & m-3 & m-2 & m-1 & 0 & 1 \\ a_3 & 4 & 5 & \cdots & m-1 & 0 & 1 & 2 & 3 \end{pmatrix}$$

where $b_{ij} = f(A_{v_{ij}})$ denotes the color which is received by the far-incidence set of vertex v_{ij} .

From the matrix $B = (b_{ij})_{3 \times (m+1)}$, obviously, $\overline{S}(v_{01}) = \{a_3\}$, $\overline{S}(v_{02}) = \emptyset$, $\overline{S}(v_{03}) = \{a_1\}$, and for any $j = 1, 2, \ldots, m$, $a_2 \notin S(v_{1j})$, $a_2 \in S(v_{2j})$, $a_3 \notin S(v_{2j})$, $a_3 \in S(v_{3j})$. Hence $S(v_{ij}) \neq S(v_{i+1,j})$ for any copy $P_3 \times \{u'_j\}$ of P_3 , where $j = 0, 1, 2, \ldots, m$, i = 1, 2. On the other hand, for any copy $\{u_i\} \times G$ of G, $S(v_{i0}) \neq S(v_{ij})$, and $(j + 1) \pmod{m} \in S(v_{1j})$, $(j + 2) \pmod{m} \notin S(v_{1j})$, $(j + 3) \pmod{m} \in S(v_{2j})$, $(j + 4) \pmod{m} \notin S(v_{2j})$, $(j + 1) \pmod{m} \in S(v_{3j})$, $(j + 2) \pmod{m} \notin S(v_{3j})$, where $j = 1, 2, \ldots, m$. Hence for any pair of adjacent vertices v_{ij} and v_{ik} in $\{u_i\} \times G$, $S(v_{ij}) \neq S(v_{ik})$, where i = 1, 2, 3. Consequently f is adjacent vertex distinguishing and thus $\chi_{ai}(P_3 \times G) = m + 3$.

Case 3 Suppose $n \ge 4$. Obviously, there exist the adjacent vertices of maximum degree in $P_n \times G$. By Lemma 1.2, $\chi_{ai}(P_n \times G) \ge \Delta(P_n \times G) + 2 = m + 4$. We now only need to give an (m + 4)-AVDIC of $P_n \times G$.

Let $C = \{a_0, a_1, a_2, a_3\} \cup \{0, 1, 2, \dots, m-1\}$ be the set of colors such that |C| = m + 4. We now construct a mapping f from $I(P_n \times G)$ to C as follows: for any $i = 1, 2, \dots, n$ and $j = 0, 1, \dots, m$, let

$$f(A_{v_{i0}}) = a_{i-1}, \ f(A_{v_{ij}}) = (2i+j-3) \pmod{m},$$

where the suffix of a_{i-1} is taken modulo 4.

It is easy to see that f is an incidence coloring of $P_n \times G$. Similarly, we use the matrix $B = (b_{ij})_{n \times (m+1)}$ to describe the incidence coloring of $P_n \times G$,

$$B = \begin{pmatrix} a_0 & 0 & 1 & \cdots & m-2 & m-1 \\ a_1 & 2 & 3 & \cdots & m & m+1 \\ a_2 & 4 & 5 & \cdots & m+2 & m+3 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1} & 2n-2 & 2n-1 & \cdots & 2n+m-4 & 2n+m-3 \end{pmatrix}$$

where $b_{ij} = f(A_{v_{ij}})$ denotes the color which is received by the far-incidence set of vertex v_{ij} (here $b_{i0} = a_{i-1}$), and the suffix of a_{i-1} is taken modulo 4, b_{ij} are taken modulo m, where i = 1, 2, ..., n, j = 1, 2, ..., m.

From the matrix $B = (b_{ij})_{n \times (m+1)}$, it is clear that $S(v_{ij}) \neq S(v_{i+1,j})$ for any copy $P_n \times \{u'_j\}$ of P_n , where $j = 0, 1, 2, \ldots, m, i = 1, 2, \ldots, n-1$. On the other hand, for any copy $\{u_i\} \times G$ of G, $S(v_{i0}) \neq S(v_{ij})$, and $(2i+j-1) \pmod{m} \in S(v_{ij}), (2i+j) \pmod{m} \notin S(v_{ij}), i = 1, 2, \ldots, n-1,$ $(2n+j-5) \pmod{m} \in S(v_{nj}), (2n+j-4) \pmod{m} \notin S(v_{nj}), \text{ where } j = 1, 2, \ldots, m.$ Hence for any pair of adjacent vertices v_{ij} and v_{ik} in $\{u_i\} \times G$, $S(v_{ij}) \neq S(v_{ik})$, where $i = 1, 2, \ldots, n$. Consequently, f is adjacent vertex distinguishing and thus $\chi_{ai}(P_n \times G) = m + 4$.

The proof of this theorem is completed. \Box

References

- BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
- [2] CHEN Dongling, LIU Xikui. The incidence chromatic number and the incidence coloring conjecture of graphs
 [J]. J. Math. Econom., 1998, 15(3): 47–51.
- Wang Yaqin. The incidence coloring and adjacent vertex distinguishing incidence coloring of graphs [D]. Shandong University of Science and Technology, Shandong, 2007.
- [4] Tian Shuangliang, Zhang Zhongfu. A note of adjacent strong edge chromatic number of product graphs [J].
 J. Lanzhou Railw. Univ. Nat. Sci., 2005, 24(3): 136–137.
- [5] TIAN Shuangliang, CHEN Ping. Adjacent vertex-distinguishing total coloring of two classes of product graphs [J]. J. Math. Res. Exposition, 2007, 27(4): 733–737. (in Chinese)
- [6] TIAN Shuangliang, CHEN Ping. On the vertex distinguishing edge coloring of some product graph [J]. J. Shandong Univ. Nat. Sci. Ed., 2006, 41(4): 53–56.