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1. Introduction

Let G be a simple graph with vertex set {v1, va,...,v,}. Let A(G) be the adjacency matrix of
G and D(G) = diag(d(v1),d(ve),...,d(v,)) be the diagonal matrix of vertex degrees of G, where
d(v;) is the degree of v;. Then the Laplacian matrix L(G) of G is L(G) = D(G) — A(G). Tt is
well-known that L(G) is real symmetric and positive semi-definite. It follows that its eigenvalues
are nonnegative real numbers. The largest eigenvalue of L(G) is called the Laplacian spectral
radius of G, denoted by u(G).

To classify and order graphs by their eigenvalues is an interesting problem proposed by
Cvekovié [1]. Especially for some types of trees, many results on this problem have been obtained.
Zhang determined the tree with the largest Laplacian spectral radius in the set of trees with
fixed order and independence number [2]. Hong and Zhang determined the tree with the largest
Laplacian spectral radius in the set of trees with fixed order and pendant vertex number [3].
Let T'(n,i) be the set of trees with order n and matching number i. According to the largest
Laplacian spectral radius, the first eight trees in T'(2i,4) were determined in [4-7].

The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix of G. Let p(G)
denote the spectral radius of Q(G). If G is connected, then Q(G) is non-negative and irreducible,
and by the Perron-Frobenius theorem of non-negative matrices, p(G) has multiplicity one and
there exists a unique positive unit eigenvector corresponding to p(G). We shall refer to such an

eigenvector as the Perron vector of G. Throughout, let in(G) be the matching number of a graph
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G, dia(G) be the diameter of G and & be the coordinate corresponding to the vertex w in the

Perron vector x of G. Now we give some results used in this paper.

Lemma 1.1 ([8]) Let G be a simple graph. Then Q(G) and L(G) have the same spectrum if
and only if G is a bipartite graph.

Lemma 1.2 ([9]) Let A(G) be the maximum degree of a simple connected graph G with at
least two vertices. Then p(G) > A(G) + 1, with equality if and only if G is a star.

Lemma 1.3 ([10]) Let u be a vertex of a connected graph G with at least two vertices. Suppose
that P = vive - -- v and S = ujusg - - - u; are two new disjoint paths. Let G}CJ denote the graph
obtained from G, P and S by joining u to v; with an edge and joining u to u; with another edge.
If k > 142, then p(Gy ;) < p(Gy_141)- The procedure from Gy ; to Gy, is called the first

edge transformation of graph, 1.e.t. for short.

Lemma 1.4 ([10]) Let vu be an edge of a connected graph G with d(v) > 2 and d(u) > 2.
Suppose that P = vivg - -- v and S = ujug---u; are two new disjoint paths. Let Gi,l denote
the graph obtained from G, P and S by joining v to vy with an edge and joining u to u; with
another edge. If k > 1 + 2, then p(Gi)l) < p(G%_LH_l). The procedure from Gi)l to G%—l,lﬂ is
called the second edge transformation of graph, 2.e.t. for short.

Lemma 1.5 ([3]) Let u and v be two vertices of a connected graph G. Let v1,va,...,vp(# u)

be some vertices being adjacent to v but not adjacent to u in G. If x¢ > z¥ then
p(G) < p(G — {vv1,vva, ..., vvp} + {uvy, uve, ..., uvp}).

The procedure from G to G — {vvy,vva,...,vvp} + {uv1,uve, ..., uvy} is called the third edge

S WL
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transformation of graph, 3.e.t. for short.

G(r,k,1) F(r,m;k,l;p,q;8,t)
Figure 1 Two special trees

Let G(r, k,1) and F(r,m;k,1;p, q; s,t) be the two trees shown in Figure 1. Write

T) . =G(,i—2,n—2i+1), T2, = G(2,i —2,n — 2i),
T3, =G(1,i—1,0), T}, = F(1,0,0,15i — 4,n — 2i + 1;0,0),
T3, = F(1,0;0,0;i — 3,n — 2i;0,0), TS, = F(1,1;i—4,n — 2i +1;0,0;0,0),

T7,=G(3,i—2,n—2i— 1), T8, = F(1,0;0,2;4 — 4,n — 2i;0,0),
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Tgﬂ- = F(1,0;1,1;¢ — 5,n — 2: + 1;0,0), Tég = F(2,0;i—4,n—2i;0,1;0,0),
T,%ll =F(1,1;0,1;¢ —5,n—2:+1,0,1).

For n > 2i+1, [4,7] have shown that T, ; and T} ; are the first two trees in 7'(n,4) with the
largest Laplacian spectral radius, respectively. In this paper, we will determine the third to sixth
trees in T'(2i + 1,¢) and the third to fifth trees in T'(n, ) for n > 2i + 2 by the largest Laplacian

spectral radius, namely we obtain the following main results.

Theorem 1.6 Let i > 6.

(1) Ifn = 2i+1, then in T(n,i), T3, T, ;, Ty ; and T3 ; are the four trees with the third
largest value to the sixth largest value of Laplacian spectral radius, respectively.

(2) Ifn > 2i+2, then in T(n,i), T,y ;, Tj2 ; and TS ; are the three trees with the third largest
value to the fifth largest value of Laplacian spectral radius, respectively.

Where (T3 ;) = (i + 3 + Vi2 = 2i+5), w(Tn,), (T3 ,), u(TS,) are the largest roots of
following three equations, respectively.

AT — (n — i+ 10)A° + (10n — 10i + 36)\° — (36n — 35i + 56)\* + (57n — 50i + 30)\*
—(39n — 25i — 8)A* + (11n — 3i — 8)A —n = 0.
A6 — (n— i+ 8)A% + (8n — 8i + 22)A* — (22n — 214 + 23)A> + (24n — 195 + 4)\?
—(9n —3i —4)A+n = 0.
AN — (n =i+ 9N+ (In — 9i + 28)A* — (28n — 274 + 32)\% + (34n — 28i)\?
—(12n — 3i — 16)\ +n = 0.

2. Some lemmas

Write 0(k,1) = A2 — kA +1, 6(k, 1) = 0(3,1)0(k +1 + 3,k +2) — kf(2,1). By an elementary
calculation, we obtain the characteristic polynomials of signless Laplacian matrices of G(r, k, ()
and F(r,m;k,l;p, q;s,t) as follows:

S(G(r k, 1) = (A= 1)"72(0(3,1)" 1 g(r, k. 1),
G(F(ryms b, L p,g; s,t)) = (A = 1) F RIS (3, 1)) 420573 £ mis b, 1 p, g 5, 1),

where

glr k1) =0(r+2,1)[0(3,1)0(k +1+ 2,k +1) — k6(2,1)] — 6(2,1)6(3,1),
flrym;k,l;p,q;8,t) =60(r+2,1)8(m + 2,1)6(k,1)d(p, q)0(s,t)—
O(r +2,1)0(m + 2,1)0(2,1)6%(3,1)[6 (k, 1) + 6(s,1)]—
0(2,1)6(3,1)3(p, q)[0(r + 2,1)8(k, 1) + 0(m + 2,1)6(s, t) — 0(2,1)0(3, 1)]+
0%(2,1)0°(3, 1)[0(r +2,1) + O(m + 2,1)].

Lemma 2.1 Let: > 6.
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(1) When n > 2i+2, p(T?,) > p(T3,) > p(TS,) > p(T3 ), j > T.

n,i

(2) Whenn =2i+1, p(T3;) > p(T3,) > p(T3;) > p(T5,) > p(T} ), § = 8.
Proof For j =3,4,5,6, by Lemma 1.2, we have p(TfH) > A(Tfm) +1=mn-—1. Let
e = VA =1 —2)F(\2 =3\ 1)

(1) By using 2.e.t, T, ; can be transformed into T}, ;. Again by applying l.e.t, T} ; can be

transformed into T2 ;. So by Lemmas 1.4 and 1.3, we have p(T; ;) > p(T}2 ;) > p(T7 ;).
For j =7,8,9,10,11, according to ¢(F(r,m; k,l;p,q;s,t)) and ¢(G(r, k,1)), by a calculation,

S(T3 ) — $(T8 ) = a;{[(i — 6)6(3,2) + (n — 20)0(3, 1)]\") + ¢},
where

(2,-2), o) = 4X3 — 19X% 4 28\ — 16;

a7 = &,0, 909) =0(2,-2
ag = &,0, @él) =6(2,-1
JEPNC)

), ol = 4A3 — 19X% + 28\ — 13;
ag = &10, <Pg(;1 , = 4)% — 11\ + 6;
a0 = &o,1. Pig = 0(3,1)0(3, —1) — A, {2 = (A = 1)[X*0(6,7) +136(2, 1) — 4];

13
an = Eua, 01y = M3, 1)0(4,2) = 0(1,0), @17 = (A = 2)[X*0(6,8) + 6M0(, 1) — 1]

When X > p(TgZ-)7 since a;, gogl) and cp§2) are positive, we have

O(T3 ) — 6(T3,) > a;pl? > 0.
This implies that p(TS,) > p(T7,), j = 7,8,9,10,11.
(2) From ¢(G(r, k1)) and ¢(F(r,m; k,l;p, q; s,t)), we get

(T3 = AN =3X+1)"710(i +3,2i+ 1), ¢(Ty,;) =AA—1)(A* =3X+ 1) w(N),

where p(T3 ;) is the largest positive root of (i +3,2i+ 1), p(T; ;) is the largest positive root of
w(A) and

W) =[A%0(8,15) +3X2(2A = 7) + (i + 3)(A —4) + 2i(i — 1) — 1]0(i + 3,2i + 1)+
[(i — 6)(i* + 20 + 8) + 45](\ — 2) +i(i — 6) + 3(i — 2).

For A > p(T3 ), we have w(X) > 0, i.e., ¢(T;;) > 0. This implies that p(T5 ;) > p(T};,). In the

similar way to (1), we can show the other inequalities. O
Lemma 2.2 Let r #0, k # 0 and max{r —k — 1,1} < j <r. Then
p(G(T7 ku l)) < p(G(T - ju ka l +.7))

The procedure from G(r,k,l) to G(r — j, k,l + j) is called the fourth edge transformation of
graph, 4.e.t. for short.

Proof By calculation, we have

g(Takvl) _g(T_jakvl+j) :]/\2[(k+l+j_T)9(371) +k]
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By Lemma 1.2, we have p(G(r — j,k,l+ j)) > 3. So for A > p(G(r — j,k, 1+ j)), 6(3,1) > 0. Tt
follows that g(r,k,1) > g(r — j,k,1 + j), namely ¢(G(r,k,1)) > ¢(G(r — j,k,l + j)). Thus the
required result holds. O
Lemma 2.3 (1) Let r # 0 and max{r —k—1—1,1} < j <r. Then

p(E(r,m; k,1;p, q; 5,)) < p(F(r — j,m; k.1 + jip, ¢; 5,1)).

The procedure from F(r,m;k,l;p,q; s,t) to F(r — j,m;k,l + j;p,q; s,t) is called the fifth edge
transformation of graph, 5.e.t. for short.
(2) Let p+q#0,1#0 and k+1> 2. Then

p(F(1, 1k, l:p, g5 5,t) < p(F (1,150, 1;p+ k, g + (1= 1); 5, 1)).
The procedure from F(1,1;k,1;p,q;s,t) to F(1,1;0,1;p+ k,q+ (I — 1); s,t) is called the sixth

edge transformation of graph, 6.e.t. for short.

Proof (1) By calculation, we have
frymik, i, g s,t) = f(r — j,mik, L+ §ipgs s, 1) = jA(ca + ),
where
c=[(+k+1+1—rA—1]0(3,1) + kA,
a=0(m+2,1)[6(p, q)8(s, 1) — 6(2,1)6%(3,1)] — 6(2,1)6(3,1)d(p, q),
B=[0(m+2,1)5(s,t) —6(2,1)0(3,1)]6(2,1)67(3,1).
Now assume A > p(F(r—j,m;k,l+j;p,q; s,t)). Since F(0,m;0,0;p,q; s,t) and G(m,s+1,¢)

are the proper subgraphs of F(r—j,m; k,l+j;p, q; s, t), we have from Perron-Frobenius theorem
that

p(F(r —j,m; k, 1+ j;p, g; 5, 1)) > max{p(F(0,m;0,0;p, ¢; 5,1)), p(G(m, s + 1, 1))}
It follows that
f(0,m;0,0;p,q;8,t) >0, g(m,s+1,t) >0.
On the other hand, from Lemma 1.2, we have
p(F(r—j,m;k, L+ j;p,q;s,t)) > max{m + 2, 3}.
Therefore, by ¢(G(r,k,1)) and ¢(F (r,m;k,l;p, q; s,t)), we have

~ f(0,m;0,0;p,q;5,t)
o= Ty O sl s+ 1,6 + 62, 1)0(m +2,1)] > 0

Note that ¢ > —6(3,1). So we get

ca+B>-03,Na+p>603,1)[00m+2,1)d(s,t) —6(2,1)6(3,1)][0(2,1)0(3,1) — (p, q)]
=60(3,1)[g(m,s+1,t) +0(2,1)0(m + 2,1)]x
{03, D[(p+qg+ A= (p+1)]+pb(2,1)} > 0.
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It follows that
S(F(r,m;k,l;p,q;5,1)) > ¢(F(r — j,m; k, L+ jip, g; 8, 1)).

This implies the required result.
(2) By calculation, we get

fLLE Lp g s, t)— f(1,1;0,1;p4+ k, g+ (1 —1);8,t)

NP3, D[k 41— 103, 1) + 4] =9

where
Q=[8(s,t) =02, D){[(p+q— DA =1]0(3,1) + (p — DA} + 0(2,1)6%(3,1).

From Lemma 1.2, we have
p(F(1,1;0,1;p+ k, g+ (I — 1);8,t)) > max{m + 2,3}.
First, assume p 4+ ¢ > 2. For A > p(F(1,1;0,1;p+ k,q+ (I — 1);s,t)), we have

m,s+1,t) +0(2,1)0(3,1)
O(m +2,1)

{{p+q—DA=1)0(3,1) + (p— DA} + 6(2,1)6%(3,1) > 6(3,1) — A+ 6(2,1) > 0.

a&w_wznzg( >0,

These indicate that £ > 0.
Next, assume p 4+ ¢ = 1. Since (p,q) € {(1,0),(0,1)}, we get

Q= Apd(3,1) +¢0(2, V][(s +t +p)0(3,1) + 5 +1].

Therefore, for A > p(F(1,1;0,1;p+ k,q+ (I — 1); s,t)), we have Q > 0.
The above discussions indicate that for A > p(F(1,1;0,1;p+ k,q¢+ (I — 1); s,t)), we always
have Q > 0, that is

S(F(1,1;k,15p,q;5,1)) > ¢(F(1,1;0,1;p+ k, g+ (I = 1);5,1)).

This implies the required result. O

Let u be a vertex of a simple connected graph H. Suppose that two nonnegative integers k, s
satisfy H —u = kP, |JsPy |G, where G is a connected graph with at least three vertices. Then
u is called an end-branch vertex if s > 2 or k # 0. In particular, u is called a star end-branch
vertex if s > 2 and k = 0.

Let G(s1,...,sk;1) be the graph obtained by joining the center of Kis, (j=1,...,k) to the
center of K7 ; with an edge, where the center of K ; is called the center of é(sl, ey 8k, 1). Let
H= fl(sl, ey Sk, lit, ..o, tp, @) be the graph obtained by joining the center u of é(sl, ey 8K 1)
to the center v of G(ty, ... ,tp; ¢) with an edge. Let

I:":ﬁ'(sgl),...,s,(cll),ll;...;sgp),...,slgi),lp;tl,...,tr,q)

be the graph obtained by joining the center of G’(sgj), cee sl(ci),lj) (j = 1,...,p) to the center
of é(tl, ...y tr,q) with an edge. Let T'(n,i,d) be the set of trees with fixed order n, matching
number ¢ and diameter d. Then each tree of T'(n,4,4) can be denoted by é(sl, ...y 8k 1); each
tree of T'(n,,5) can be denoted by H and each tree of T'(n,i,6) can be denoted by F.
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For convenience, let G j.e.t W denote the procedure that a graph G is transformed into

another graph W by using j.e.t.

Lemma 2.4 Let i >6 and T € T'(n,i,4)\{T, ;, T ;, ;2 ;}. Then p(T) < p(T3 ;).

Proof Since T'(2i,i,4)JT(2i +1,4,4) = {T21i)i, T21i+17i,T22i+1)i, T23i+1,i}7 by T & {Té)i,Tii,Tii}
we have that n > 2¢ + 2. There are nonnegative integers k,l,s; > --- > sgy1 > 1 such that

T= é(sl, .eySk+1,1). By Lemmas 2.1, 1.4, 1.5 and 2.2, we need show that T can be transformed
into G(3,i —2,n — 2i — 1) = T,/ ; by applying 2.e.t, 3.e.t and 4.e.t. Let r = Zf:ll (s; = 1)+ 1.
Then r+1=n—2k — 2.

Case 1 Let [ #0. Then k=i —2and r > 3 from T ¢ {T, ;,T7 ;}. Set j = r — 3. We have

—_— — 7
T 3et G(r k1) det G(r—j.kl+j) =T,
Case 2 Let [=0. Thenk=i—1landr >2fromn >2i+2. Set m=k—1,7 =r—2. We have
— — — . . 7
T 3et G(r,kl) 2.et Gr+1,m,l+1) det Gir+1—jm,l+1+j)=T,,.
The proof is completed. O
Lemma 2.5 Let i >6 and T € T(n,i,5)\{T}, ;,T5 ;}. Then p(T) < p(T¢ ).

Proof Write H(r;k,l;p,q) = F(r,0;k,1;p,¢;0,0). By Lemmas 2.1, 2.3(1), 1.4 or 1.5, we need

show that T' can be transformed into one of T3 ;, T}7 ; or T,\% by using 5.e.t, 2.e.t or 3.e.t. There

n,i’

are nonnegative integers k,1,p,q, 51,...,Sk+1,t1, ..., tp+1 With

spz2-2sppz it 2 2t 21

such that
~ R
T =H(s1,..,Sk+1, i t1,.. ., tpy1,q) 3.et H(r;k,l;p,q) = H',
where
k+1 pt1
in(H')zi,TzZ(sj—1)—|—Z(tj—1)—|—1, r+l+q=n-2k+p)—5.
j=1 j=1

Case 1 Letlg#0. Thenk+p=i—4>2,r+1l+q=n—2i+ 3.
Case 1.1 Let r = 1. Without loss of generality, assume a:ﬂls, < :1:5{;.
If £ # 0, then
H(rik,l;p,q) 3t H(r1,Lip+ (k—1),q+ (1 —1) =Ty .

If k = 0, then from T & {T}, ;, T ;}, we have | > 2. So

H(r;k,l;p,q) 3.et H(r;0,2p+k,q+ (1—2)) =Ty,

Case 1.2 Let r > 2. Note that k > 2 when p = 0.
If p #£ 0, write j = r — 1, then

—
H(r;k,l;p,q) 5.e.t H(r —j;k, 1+ j;p,q) Method of Case 1.1 T, or T}, ;.
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pr:()and:z:fg zxfg,writej:r—2,a:k—|—p,6:l+(q—1),then

P =7 . . 10
H(r;k,l;p,q) 3.et H(r;a,(3;0,1) 5.et H(r—j;o, 8+ 5;0,1) =T,

If p=0 and ol < oH

us Uyg ?

write j =r—l,a=k—1,0=p+ 1, then
— —_— . . — 9
H(r;k,l;p,q) 3et H(r;o,l;8,q) 5et H(r—jio,l+35;8,q) 3.et T, ;.

Case 2 Let l¢g =0. Then k+p =1i—3 > 3. Without loss of generality, assume k& > p. So k > 2.
If ¢ £ 0 and [ = 0, then

—_—
H(r;k,l;p,q) 2.t H(r;k—1,14+1;p,9+ 1) = Hy.

If ¢ =0 and p = 0, then from T ¢ {T}; ;, T, ;}, we have r > 2. So

_—
H(r;k,l;p,q) 2.t H(r;k—1,141;p,9+ 1) = Ho.
If g =0 and p # 0, then
_—
H(r;k,l;p,q) 2.et H(r;k—1,1+1;p,q+ 1) = Hs.

It is obvious that H; & {T,;, T3}, in(H;) =i and H; (j = 1,2,3) satisfy the assumptions
of Case 1. Therefore, the results in this case hold by the results of Case 1. O

Lemma 2.6 Let i > 6 and T € T'(n,i,6)\{T};}. Then p(T) < p(T} ;).

Proof There are nonnegative integers

such that
T = F(sgl),...,sgl),ll;...;sgp),...,slgi),lp;tl,...,tr,q).

Let u4 be the midpoint of a longest path in T
(1) Let w and v be two star end-branch vertices with a distance 2 to ug. Without loss of

generality, assume z1 > 21", Let v1,v2,...,v, be all pendant vertices at v. Set
By =T —{vvag,...,0va} + {wva, ..., wu,}.

By Lemma 1.5, we have p(T) < p(B1). To By repeat the above procedure until we get a tree
B,; such that it has at most a star end-branch vertex with a distance 2 to uy (If there is such a

vertex, then denote it by us). So we get trees T, By, ..., B, such that
in(T) = in(By) = - = in(By), p(T) < p(B1) < --- < pl(By).

(2) Let P = wjugus---uy be a longest path of B,. Let v be an end-branch vertex of B,

which is not on P and is adjacent to us. Let u4,v1,v2,...,%q,¥1,¥2,...,y3 be all adjacent
vertices of v in B,;, where all of v1, v, ...,v, are pendant vertices while all of 1,2, ...,ys have
degree 2. Let v, us, us,a1,a9,...,amn,b1, ba,...,b, be all adjacent vertices of u4 in By, where all

of ai,as,...,a, are pendant vertices while all of by, b, ...,b, are not pendant vertices.
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Case 2.1 Let a5~ > a8~ If m # 0, then set
C1 =B — {uqus, ugus, ugasg, . . ., Uglp, Ugby, . .., ush, }+
{vusz, vus, vag, ..., vam,vby, ..., vb,}.
If m = 0, then set
Cy = By, — {uqug, uqus, ugby, ..., usb, } + {vus, vus, vby, ..., vb,}.

Denote the vertex v of Cy by u4.

Case 2.2 Let 5+ < 28~ If a # 0, then set
Ci = B, — {vva, ..., 000, 0y1,...,0ys} + {wa¥2, . .., UaVq, UaY1, . . ., UsY5}-

If @ = 0, then set

Cl — Bn - {Uy17 cee 7vyﬁ} + {U4y17 cee ,U/4yﬁ}'
It is obvious that in(B,) < in(Cy), and by Lemma 1.5, we have p(B,) < p(Ci). To C;

repeat the above procedure until we obtain a tree C), such that all vertices adjacent to uy
and not on P are not end-branch vertices. So we obtain a sequence of trees B,,C1,...,C, =
F(r,1;k,l;p,q;s,t)(r > 1) such that

in(B,) < in(Ch) < - <in(Cy), p(By) < p(Ch) < -+~ < p(Cy).

(3) By applying 5.e.t, C;, can be transformed into F(1,1;k,1;p,q;s,t) = F’', where | =
I+ (r—1).

(4) Suppose there are nonnegative integers a,b such that F' = F(1,1;a,b;0,0;0,0). If
Fr = Tgi, then we see by T' 22 Tgﬂ- that 3.e.t or 5.e.t perform at least once. By Lemma 1.5 or
Lemma 2.3(1), we have p(T) < p(T2;). If F' 2 TF,, then in(F’) > i, or in(F') =i and b = 0.
By using 1.e.t at least once, F’ can be transformed into Tﬁ,i- From Lemmas 1.5, 2.3(1) and 1.3,
we have p(T) < p(F') < p(Ty ).

Now suppose that F’ % F(1,1;a,b;0,0;0,0) for all nonnegative integers a, b, i.e.,

)/L,

(k4+1+p+q)(s+t+p+q) #0.

According to Lemmas 2.1, 2.3(2), 1.3 or 1.4, we need show that F(1,1;k,1;p,q;s,t) can be

transformed into T); by using 6.e.t, 1.e.t or 2.e.t.

Case 4.1 Let lqt #0. Set a=k+p—+s. Then a = in(F(1,1;k,1,;p,¢;8,t)) —5>1i—5.
F(1,1;k,L;p,g; 5,1) 6.0t F(1,1;0,1;a,g+ (1 —1) + (t —1);0,1) Let TLL.

Case 4.2 Let lgt = 0.

Case 4.2.1 Let k+ s = 0. Without loss of generality, assume [ > t.
If 1 =0, then p = in(F(1,1;k,1;p,¢;8,t)) —3>i—3 > 3.

[N
F(1,1;k,l;p,q;8,t) 2.et F(1,L;k 1+ 1;p—2,g+2;s,t+ 1) = Hy.
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If I #0, then p =in(F(1,1;k,l;p,q;8,1) —4>i—4> 2.
—_—
F(1,1;kl;p,¢;8,t) 2.et F(1,1;k,l;p—1,9g+1;8,t+ 1) = Ho.

Case 4.2.2 Let k+ s # 0. Without loss of generality, assume & # 0.
Assume t # 0. Then

_—
F(1,1;kl;p,¢;8,t) 2.et F(1,1;k—1,141;p,q+ 1;s,t) = Hs.

Next assume t = 0. Let p 4+ s £ 0, for instance, p # 0.
If I = 0, then

—
F(1,1;k,l;p,g;8,t) 2.et F(1L,1;k—1,14+1;p—1,q+2;s8,t+ 1) = Hy.
If I # 0, then
RN
F(1,1k,l;p,g;8,t) 2.et F(L 1k Lp—1,g+ 138t +1) = Hs.

Next let p+s=0. By p+q+ s+t #0, we have g # 0.

If I =0, then k = in(F(1,1;k,l;p,q; 8,t)) >i—3 > 3. So
—

F(1,1;k,5;p,q;8,t) 2.et F(L,1;k—1,1+1;p,qg+ 1;s,t)

—
6.e.t F(1,1;0,1;p+ (k—1),q+1+1;s,t)
—
2.et F(1,1;0,;p+ (k—1)—1,g+ 1+ 2;s,t + 1) = He.

If I # 0, then k = in(F(1,1;k,l;p,q; 8,t)) >i—4 > 2. So

—_—
F(1,1;k,l;p,q;8,t) 6.et F(1,1;0,1;p+ k,q+ (I —1);s,t)
—_—
2.et F(1,1;0,1;p+k—1,9g+1;s,t+1) = Hr.

Obviously, H; 2 F(1,1;a,b;0,0;0,0), in(H;) > ¢ and H; (1 < j < 7) satisfy the assumptions
of Case 4.1. So the results in this case hold by the results of Case 4.1. O

Let uv be a nonpendant edge of a tree G. Let G, , be the graph obtained from G in the
following way:

1) Delete the edge uv and identify u and v;

2) Add a new pendant edge to the vertex u(=v).
The procedure from G to G, , is called an edge-growing transformation of G for the edge uwv.
By Lemma 1.5, we have p(G) < p(Gy ).

Lemma 2.7 Let p(n,i,d) = max{p(T) : T € T(n,i,d)}. Then p(n,i,d) is strictly decreasing in
d4d<d<n-1).

Proof For 5 < d < n—1, we need prove that p(n,i,d) < p(n,i,d—1). Assume that T € T'(n,i,d)
such that p(n,i,d) = p(T). Assume that T has two star end-branch vertices u and v. Without

loss of generality, assume that 1 > 2. Let vy, vg, ... ,Up be all pendant vertices at v and let

T' =T — {vva,...,v0,} + {uve, ..., uv,}.
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Then 77 € T'(n,i,d), and by Lemma 1.5, p(T") > p(T), a contradiction to the assumption of T'.
Therefore, T has at most one star end-branch vertex. Let ujus - - - ugug+1 be a longest path of T,
where us is the unique star end-branch vertex of T if such vertex exists. Let M be a maximum

matching of T including edges ujue and ugug41.

Case 1 Suppose that there is a vertex u; (3 < j < d — 1) not saturated by M.

If u;_1 is not saturated by M, then {u;_1u;} |J M is a matching of T, a contradiction with the
maximum matching M. Therefore, u;_; is saturated by M. Let G be the tree obtained from T
by an edge-growing transformation of T for the edge uj_qu;. Then in(G) =14, d—1 < dia(G) <d
and p(T) < p(G). If dia(G) = d, then G € J(n,i,d), so

p(n,i,d) = p(T) < p(G) < p(n,i,d)
a contradiction. Therefore, dia(G) =d — 1, i.e,, G € J(n,i,d — 1). So
p(n,i,d) = p(T) < p(G) < p(n,i,d - 1).
Case 2 Suppose that each u; (j =1,2,...,d+ 1) is saturated by M.

Case 2.1 Suppose that there is a j (3 < j < d — 2) such that ujuj41 € M.
Let GG denote the tree obtained from 7" by an edge-growing transformation of T" for the edge

u;uj4+1. In the similar way to Case 1, we can prove that the results hold.

Case 2.2 Suppose that uju;r1 ¢ M for each j (3 <j <d-—2).

If there are not pendant edges at us or ug—1, without loss of generality, suppose that there
are not pendant edges at us. Then there must be a pendant path usab of length 2 at us such
that uza € M and b is not saturated by M. Let G =T — ab + ugb. Then G € T'(n,i,d). So by
Lemma 1.3, we have

p(n,i,d) = p(T) < p(G) < p(n,i,d),

a contradiction. Therefore, there are pendant edges at ug and ug—;. Without loss of generality,

assume :1053 > xgdfl. Let vi,v2,...,vp, uqg—2,uq be all adjacent vertices of ug_1, where v; is a
pendant vertex. Set
G=T —{ug_1v2,...,uq—1Vp, Ug—1uq} + {usve, ... + usvp, uzuq}.

Then in(G) =i, d — 1 < dia(G) < d, and by Lemma 1.5, we have p(T') < p(G). In the similar
way to Case 1, we have dia(G) =d — 1, i.e., G € J(n,i,d — 1). So

p(n,i,d) = p(T) < p(G) < p(n,i,d —1).

The proof is completed. O

3. Proof of Theorem 1.6

By Lemma 1.1, we only show that the results hold for the signless Laplacian spectral radius
of trees. By Lemma 2.1, for T € T(n,z)\{TfH : 1 < j <6}, we need show that p(T) < p(T} ;).
From ¢ > 6, we have dia(T") > 4.
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If dia(T) = 4, then by T ¢ {T,\ ;, T2 ;, T3 ;} and Lemma 2.4, we get p(T) < p(T3 ;).
If dia(T) = 5, then by T & {T}; ;, 752 ;} and Lemma 2.5, we get p(T) < p(T? ;).
If dia(T') = 6, then by T' ¢ {T)};} and Lemma 2.6, we get p(T) < p(T},).
If dia(T") > 7, then by Lemmas 2.6 and 2.7, we get

p(T) < p(n,i,dia(T)) < p(n,i,7) < p(n,i,6) = p(Ty ;).

The proof is completed. O
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