
Journal of Mathematical Research & Exposition

May, 2011, Vol. 31, No. 3, pp. 393–401

DOI:10.3770/j.issn:1000-341X.2011.03.002

Http://jmre.dlut.edu.cn

On the Optimal Controller for LTV Measurement
Feedback Control Problem

Ting GONG, Yu Feng LU∗

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract In this paper, we consider the measurement feedback control problem for discrete lin-

ear time-varying systems within the framework of nest algebra consisting of causal and bounded

linear operators. Based on the inner-outer factorization of operators, we reduce the control

problem to a distance from a certain operator to a special subspace of a nest algebra and show

the existence of the optimal LTV controller in two different ways: one via the characteristic of

the subspace in question directly, the other via the duality theory. The latter also gives a new

formula for computing the optimal cost.
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1. Introduction

Analysis of control problems for linear time-varying (LTV) systems has received more and

more considerable attention in recent years (take [1–4] for example), because one can often

recover the results of the time-invariant problems as special cases of the more general time-

varying problem [5, 6]. Here, the measurement feedback control, the problem which is at the

heart of control theory [7], is considered in the time-varying setting. Many methods have been

developed to solve this problem in other different cases such as [7–10] and references therein,

but only a few papers concern with the time-varying case. The description of the measurement

feedback control problem was first introduced in [11]. In [12], Feintuch and Markus used inner-

outer factorization in respect of the nest algebra of lower triangular bounded linear operators to

construct isometric and co-isometric operators and transferred this time-varying linear control

problem into a 4-block problem of the type discussed in [13].

In this paper, we mainly concern with the existence of the LTV optimal controller for the

time-varying measurement feedback control problem. On the basis of the factorization given

by Feintuch and Markus, we reduce this control problem to a distance from a specific operator

to a special subspace of a nest algebra and show the existence of the optimal controller in two
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different ways. The first one is via the weak closeness of the operator subspace in question

directly. An analogous method has ever been used in [3] and [14] to guarantee the attainment of

the solution for the Nehari formula. The second one is via the Banach duality theory, a technique

which was used by Zames and Owen in [15, 16] to characterize the solutions of some H∞ control

problems and generalized by Djouadi to the TV control problems defined in the context of nest

algebra [1, 4, 17]. Our approach used here is inspired by the work mentioned above. We give

the structure of a preannihilator for the special subspace consisting of 2 × 2 operator matrices

we need so that the duality theory can be used to solve the TV measurement feedback control

problem. Moreover, a new formula for computing the optimal cost is obtained.

The paper is organized as follows. In Section 2, we give some basic definitions and notations.

The TV measurement feedback control problem is formulated in Section 3. In Section 4, the

existence of the optimal controller is obtained in two ways. A new formula for the optimal

performance is also given . In Section 5, we give the conclusion.

2. Preliminaries

We first recall some basic concepts and standard notations from [1, 13, 18] used in what

follows.

If X , Y are Banach spaces, B(X, Y ) denotes the space of all the bounded linear operators

from X to Y . A ∈ B(X, Y ) is endowed with the induced operator norm

‖A‖ := sup
x∈X,‖x‖≤1

‖Ax‖.

A∗ means the adjoint of operator A.

Definition 2.1 A nest is a chain N of closed subspaces of a Hilbert space H containing {0}

and H which is closed under intersection and closed span.

Definition 2.2 The nest algebra T (N ) is the set of all operators T such that TN ⊆ N for

every element N in N .

In this paper, the Hilbert sequence space

ℓ2 = {x = (x0, x1, x2, . . .) : xi ∈ C
n,

∞
∑

i=0

‖xi‖
2 < +∞}

is chosen to be our input-output space. The corresponding nest is

N = {Qnℓ2 = (I − Pn)ℓ2 : n = −1, 0, 1, . . .},

where Pn (n ≥ 0) is the standard truncation projection on ℓ2 defined as follows:

Pn(x0, x1, . . . , xn, xn+1, . . .) = (x0, x1, . . . , xn, 0, . . .).

Let P−1 = 0 and P∞ = I.

Definition 2.3 An operator A ∈ B(ℓ2, ℓ2) is called causal if it satisfies

PnA = PnAPn, ∀n ≥ 0.
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All the causal bounded linear operators on ℓ2 are denoted by Bc(ℓ
2, ℓ2) (see [1]). Obviously,

Bc(ℓ
2, ℓ2) is the required nest algebra T (N ) in this paper.

Here we also need some notions and results about Banach dual space [4, 19–21].

Definition 2.4 The collection of all bounded linear functionals on Banach space X , denoted

by X∗, is called the dual space of X . X∗ is said to be the predual space of X if

(X∗)
∗ ≃ X,

where ≃ denotes isometric isomorphism between Banach spaces.

Definition 2.5 For a subspace M of X , the annihilator of M in X∗ is defined by

M⊥ := {φ ∈ X∗ : φ(x) = 0, ∀x ∈ M}.

A subspace ⊥M of X∗ is called the preannihilator of M if (⊥M)⊥ ≃ M .

When a predual and preannihilator exist, we have the following standard result of Banach

space duality theory [1, 19].

Proposition 2.1 X is a Banach space with its predual space X∗.
⊥M ⊂ X∗ is the preannihilator

of the subspace M ⊂ X . x is an element of X . Then we have

dist(x, M) = inf
m∈M

‖x − m‖ = min
m∈M

‖x − m‖ = sup
y∈⊥M,‖y‖≤1

| 〈x, y〉 |,

where 〈·, ·〉 denotes the duality product.

The last proposition will be crucial for us to solve the shortest distance problem raised in the

LTV measurement feedback control.

3. Problem formulation

Consider the feedback arrangement shown in Figure 1,

L N

M R

w

u

s

t

v
+

K
y

Figure 1 LTV measurement feedback control configuration

where L, M , N , R are known operators in Bc(ℓ
2, ℓ2) satisfying the equation

[

s

t

]

=

[

L N

M R

][

w

u

]

.
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All the signals are from ℓ2 (that is, they are of finite energy), where w can be considered as the

process noise, v the measurement noise that corrupts the output signal t, u the control output

used to influence the dynamic behavior of the plant and s the regulated output.

The original LTV measurement feedback control problem stated in [11, 12] is to find

γopt = inf{‖TK‖ : K being stabilizing LTV controller}

with

TK =

[

L + NK(I − RK)−1M NK(I − RK)−1

K(I − RK)−1M K(I − RK)−1

]

,

the transfer matrix from

[

w

v

]

to

[

s

u

]

. By using the Youla parametrization theorem in [13],

we can relate the Youla parameter Q := K(I − RK)−1 to the controller K uniquely. Then the

above problem is equivalent to finding

γopt = inf{‖TQ‖ : Q ∈ B⌋(ℓ
∈, ℓ∈)},

where

TQ =

[

L + NQM NQ

QM Q

]

=

[

L 0

0 0

]

+

[

N

I

]

Q
[

M I

]

.

The following lemmas state the special inner-outer factorizations first used by Feintuch (see

Lemmas 1 and 5, Theorems 2 and 5 in [12]). They are also of importance for us to reduce the

TV control problem to a special distance formula.

Lemma 3.1 For M ∈ Bc(ℓ
2, ℓ2), there exist B, W1, W2 ∈ Bc(ℓ

2, ℓ2) with the following properties:

(1) W1W
∗
1 + W2W

∗
2 = I;

(2) For each n, B∗Pnℓ2 = Ran B∗ ∩ Pnℓ2;

(3) If RB∗ is the orthogonal projection on RanB∗, then for each n, RB∗Pn = PnRB∗ ;

(4)
[

M I

]

= B
[

W1 W2

]

;

(5) B is invertible in Bc(ℓ
2, ℓ2).

The dual result to Lemma 3.1 is the following.

Lemma 3.2 For any N ∈ Bc(ℓ
2, ℓ2), there exist A, V1, V2 ∈ Bc(ℓ

2, ℓ2) satisfying:

(1) V ∗
1 V1 + V ∗

2 V2 = I;

(2) AQnℓ2 = RanA ∩ Qnℓ2, ∀n;

(3) RAQn = QnRA, for each n;

(4)

[

N

I

]

=

[

V1

V2

]

A;

(5) A is invertible in Bc(ℓ
2, ℓ2).

Thus,

TQ =

[

L 0

0 0

]

+

[

N

I

]

Q
[

M I

]

=

[

L 0

0 0

]

+

[

V1

V2

]

AQB
[

W1 W2

]

.
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The invertibility of operators A, B guarantees the bijection of the map

Bc(ℓ
2, ℓ2) −→ ABc(ℓ

2, ℓ2)B.

By absorbing the invertible operators into the free parameter Q, we can get

γopt = inf{‖TQ‖ : Q ∈ B⌋(ℓ
∈, ℓ∈)}

= inf{‖

[

L 0

0 0

]

+

[

V1

V2

]

Q
[

W1 W2

]

‖ : Q ∈ Bc(ℓ
2, ℓ2)}.

We transfer the measurement feedback control problem to a distance between the operator
[

L 0

0 0

]

∈ B(ℓ2 × ℓ2, ℓ2 × ℓ2) and a special subspace

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

of the

nest algebra Bc(ℓ
2 × ℓ2, ℓ2 × ℓ2) determined by the projection

[

Qn 0

0 Qn

]

, that is,

γopt = dist(

[

L 0

0 0

]

,

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

).

In next section, we study the distance minimization problem and the existence of the solutions

in the context of the operator algebra.

4. The existence of the LTV optimal controller

This section is divided into two parts with each part showing an approach to obtain the

existence of the optimal solution for the distance formula.

4.1 The weak closeness of the special subspace

In this subsection, we characterize the property of the subspace appearing in the distance

formula in Section 3. It is the property that ensures the attainment of an optimal controller.

We begin with a fundamental lemma from [18].

Lemma 4.1 T (N ) is a weak operator closed subalgebra of B(H).

The following lemma states the required property. The main idea of the proof is from [14].

Lemma 4.2 The subspace

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

is a weak operator closed subalgebra

of B(ℓ2 × ℓ2, ℓ2 × ℓ2).

Proof Suppose {Xα} is a net in Bc(ℓ
2, ℓ2) such that {

[

V1

V2

]

Xα

[

W1 W2

]

} converges weakly

to X , then we aim at showing that the limit X belongs to

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

.

Obviously, we can get the fact that Xα →
[

V ∗
1 V ∗

1

]

X

[

W ∗
1

W ∗
2

]

weakly from the definition
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and the property of
[

W1 W2

]

,

[

V1

V2

]

shown in Lemmas 3.1 and 3.2. By Lemma 4.1, there

is a Y in Bc(ℓ
2, ℓ2) such that

Y =
[

V ∗
1 V ∗

1

]

X

[

W ∗
1

W ∗
2

]

.

An other argument as above shows {

[

V1

V2

]

Xα

[

W1 W2

]

} →

[

V1

V2

]

Y
[

W1 W2

]

weakly.

Therefore, we get the desired result that

X =

[

V1

V2

]

Y
[

W1 W2

]

is in

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

. We now apply this lemma to show that the distance defined

in Section 3 can be achieved.

Theorem 4.1 There exists a Q0 in Bc(ℓ
2, ℓ2) such that

γopt = inf{‖

[

L 0

0 0

]

−

[

V1

V2

]

Q
[

W1 W2

]

‖ : Q ∈ Bc(ℓ
2, ℓ2)}

= ‖

[

L 0

0 0

]

−

[

V1

V2

]

Q0

[

W1 W2

]

‖.

Proof As shown in Section 3,

γopt = dist(

[

L 0

0 0

]

,

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

).

Then there exists a sequence {

[

V1

V2

]

Xn

[

W1 W2

]

} in

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

such

that

lim
n→∞

‖

[

L 0

0 0

]

−

[

V1

V2

]

Xn

[

W1 W2

]

‖ = γopt.

It follows that {

[

V1

V2

]

Xn

[

W1 W2

]

} is bounded and therefore weakly compact. Thus, there

exists a subsequence {

[

V1

V2

]

Xnk

[

W1 W2

]

} converging weakly to

[

V1

V2

]

Q0

[

W1 W2

]

∈

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

for some Q0 in Bc(ℓ
2, ℓ2). Noticing that the weak operator topol-

ogy closure of

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

equals the strong operator topology closure of

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

(see Corollary 8.2 in [22]), together with the definition of γopt
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and induced operator norm, we can get

γopt = ‖

[

L 0

0 0

]

−

[

V1

V2

]

Q0

[

W1 W2

]

‖,

showing the attaintment of the infimum.

Remark 4.1 Let Q̃0 = A−1Q0B
−1, where A, B, Q0 are defined in Lemmas 3.1, 3.2 and Theorem

4.1, respectively. Since the Youla parameter Q and the controller K determine each other

uniquely under the relationship Q = K(I − RK)−1, we can define

K0 = (I + Q̃0R)−1Q̃0 = (A + Q0B
−1R)−1Q0B

−1.

It is obvious that K0 is one of the optimal LTV controllers for the TV control problem discussed.

4.2 Duality theory for the TV control problem

For the shortest distance problem we deal with, we endow the notations appearing in Propo-

sition 2.1 with

X = B(ℓ2 × ℓ2, ℓ2 × ℓ2), x =

[

L 0

0 0

]

∈ X,

M =

[

V1

V2

]

Bc(ℓ
2, ℓ2)

[

W1 W2

]

⊂ X.

It is crucial for us to establish the existence of a predual and determine the form of the

preannihilator of subspace M .

Let C1(ℓ
2 × ℓ2, ℓ2 × ℓ2) be the space of trace class or Schatten 1-class operators acting on the

Hilbert space ℓ2 × ℓ2. We can then identify B(ℓ2 × ℓ2, ℓ2 × ℓ2) with the dual space of C1(ℓ
2 ×

ℓ2, ℓ2 × ℓ2) under the bounded linear functionals defined as follows: for A ∈ B(ℓ2 × ℓ2, ℓ2 × ℓ2),

φA(T ) = tr(A∗T ), ∀T ∈ C1(ℓ
2 × ℓ2, ℓ2 × ℓ2).

So, we have X∗ = C1(ℓ
2 × ℓ2, ℓ2 × ℓ2).

The preannihilator of Bc(ℓ
2, ℓ2) is given by [17]

S := {T ∈ C1(ℓ
2, ℓ2) : (I − Qn+1)TQn = 0, for all n}.

The following lemma describes the form of the preannihilator of M .

Lemma 4.3 Let R1 ∈ B(ℓ2, ℓ2 × ℓ2) be an isometry and R2 ∈ B(ℓ2 × ℓ2, ℓ2) be a co-isometry,

i.e., R∗
1R1 = I, R2R

∗
2 = I. Then

⊥(R1Bc(ℓ
2, ℓ2)R2) = (I − R1R

∗
1)C1(ℓ

2 × ℓ2, ℓ2 × ℓ2) + C1(ℓ
2 × ℓ2, ℓ2 × ℓ2)(I − R∗

2R2) + R1SR2

:= S0 ⊂ C1(ℓ
2 × ℓ2, ℓ2 × ℓ2).

Proof Due to the definition of the preannihilator, it suffices to show S⊥
0 = R1Bc(ℓ

2, ℓ2)R2. For

any B ∈ S⊥
0 ,

φB((I − R1R
∗
1)T1 + T2(I − R∗

2R2) + R1SR2)

= tr(B∗(I − R1R
∗
1)T1) + tr(B∗T2(I − R∗

2R2)) + tr(B∗R1SR2) = 0,
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∀T1, T2 ∈ C1(ℓ
2 × ℓ2, ℓ2 × ℓ2), ∀S ∈ S. Because of the relations C1(ℓ

2 × ℓ2, ℓ2 × ℓ2)⊥ = 0 and
⊥Bc(ℓ

2, ℓ2) = S, we have

B∗(I − R1R
∗
1) = 0, (I − R∗

2R2)B
∗ = 0, R2B

∗R1 = A∗ ∈ B∗
c (ℓ2, ℓ2),

which implies

B∗ = R∗
2R2B

∗R1R
∗
1 = R∗

2A
∗R∗

1.

By taking adjoints, we have

B = R1AR2 ∈ R1Bc(ℓ
2, ℓ2)R2.

On the other hand, if B1 = R1A1R2 ∈ R1Bc(ℓ
2, ℓ2)R2 for some A1 ∈ Bc(ℓ

2, ℓ2),

φB1
((I − R1R

∗
1)T1 + T2(I − R∗

2R2) + R1SR2)

= tr(R∗
2A

∗
1R

∗
1(I − R1R

∗
1)T1) + tr((I − R∗

2R2)R
∗
2A

∗
1R

∗
1T2) + tr(R2R

∗
2A

∗
1R

∗
1R1S)

= φA1
(S) = 0,

for any T1, T2 ∈ C1(ℓ
2 × ℓ2, ℓ2 × ℓ2), S ∈ S. Therefore, B1 ∈ S⊥

0 . The proof is completed. 2

In our case, R1 =

[

V1

V2

]

, R2 =
[

W1 W2

]

, the preannihilator of M can be computed

directly from Lemma 4.3 denoted by S0 as well.

As an application of Proposition 2.1, we give the following theorem to solve the optimal LTV

control problem and show the existence of the optimal Q0 ∈ Bc(ℓ
2, ℓ2).

Theorem 4.2 For the TV measurement feedback control problem,

γopt = min
Q∈B⌋(ℓ∈,ℓ∈)

‖

[

L 0

0 0

]

+

[

V1

V2

]

Q
[

W1 W2

]

‖

= sup
Y ∈S0,‖Y ‖≤1

|〈

[

L 0

0 0

]

, Y 〉|

= sup
Y ∈S0,‖Y ‖≤1

|tr(

(

L∗ 0

0 0

)

Y )|,

and there exists at least one optimal Q0 ∈ Bc(ℓ
2, ℓ2) achieving the minimization in the above

formula.

The proof of the theorem follows directly by taking the specific parameters in Proposition

2.1.

Remark 4.2 An optimal controller with the similar form as shown in Remark 4.1 can also be

constructed by the Youla parameter Q0 in Theorem 4.2.

5. Conclusions

In this paper, we study the LTV measurement feedback control problem in the context of

nest algebras. Two methods are proposed to solve the existence of the LTV optimal controller,

where duality theory is a more systemic approach. Moreover, the results about duality theory
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given here can also be used to solve other TV control problems of the similar form, such as the

model-matching problem proposed in [13].
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