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Abstract In this paper, by a scalarization method, the lower semicontinuity of the solution

mappings to two kinds of parametric generalized vector equilibrium problems involving set-valued

mappings is established under new assumptions which are weaker than the C-strict monotonicity.
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1. Introduction

It is well known that the stability analysis of solution mappings for vector equilibrium prob-

lems is an important topic in vector optimization theory. Recently, the semicontinuity, especially

the lower semicontinuity of the solution mappings for parametric vector equilibrium problems

with the parameter perturbed in the space of parameters has been intensively studied in the

literature, such as [1, 2, 5, 6, 12–14].

Among those papers, the scalarization technique plays an important role in dealing with

the lower semicontinuity of solution mappings to parametric vector variational inequalities and

parametric vector equilibrium problems. In [7], by a scalarization method, Cheng and Zhu first

obtained a result on the lower semicontinuity of solution mappings to a finite-dimensional para-

metric weak vector variational inequality. In [12], by virtue of a density result and scalarization

technique, Gong and Yao discussed the lower semicontinuity of efficient solutions for parametric

vector equilibrium problems, which are called generalized systems in their papers. By using the

ideas of [7], Gong [13] studied the upper and lower semicontinuity of the solution set mappings

to a parametric weak vector equilibrium problems. In [6], by using a new proof which is differ-

ent from the ones of [12, 13], Chen et al. discussed the lower semicontinuity and continuity of

solution mappings to a parametric generalized vector equilibrium problems involving set-valued

mappings. In [18], Li et al. obtained the sufficient conditions for the lower semicontinuity and
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continuity of solution mappings to a parametric generalized weak vector equilibrium problem

with set-valued mappings. Note that, in [6, 7, 12, 13, 18], f -efficient solution set (see Definitions

2.1 and 2.2) is confined to be a singleton because of the assumption of C-strict monotonicity. In

[17], Li and Fang established the lower semicontinuity of the weak efficient solution mappings and

globally efficient solution mappings to parametric vector equilibrium problems by a scalarization

method under an assumption which is weaker than the assumption of C-strict monotonicity. Un-

der their assumption (see condition (iii) of Lemma 3.1), the f -efficient solution set is a general

set, which improved the foregoing results.

Motivated by [6, 17, 18], this paper aims to investigate the lower semicontinuity of the solution

set mappings to two kinds of parametric generalized vector equilibrium problems involving set-

valued mappings by using the ideas of [17]. These models are different from the ones considered

in [17]. Under our assumptions, the f -efficient solution set may be a set, but not a singleton. We

will give some examples to illustrate that our results extend the corresponding ones in [6, 17, 18].

The rest of the paper is organized as follows. In Section 2, we introduce two parametric

generalized vector equilibrium problems, and recall some notions. In Sections 3 and 4, we discuss

the lower continuity of solution mappings to parametric generalized vector equilibrium problem

and parametric generalized weak vector equilibrium problem, respectively. In Section 5, we will

give a conclusion.

2. Preliminaries

Throughout this paper, let X , Y and Z be Banach spaces. Assume that C is a pointed closed

convex cone in Y with nonempty interior intC. Let Y ∗ be the topological dual space of Y and

C∗ := {f ∈ Y ∗|f(y) ≥ 0, ∀y ∈ C} be the dual cone of C.

Let A be a nonempty subset of X and F : A × A → 2Y \{∅} be a set-valued mapping. We

consider the following generalized vector equilibrium problem (GVEP)

Find x ∈ A such that F (x, y) ⊂ Y \ − intC, ∀y ∈ A,

and generalized weak vector equilibrium problem (GWVEP)

Find x ∈ A such that F (x, y) ∩ (Y \ − intC) 6= ∅, ∀y ∈ A.

When the subset A and the function F are perturbed by a parameter µ which varies over a

subset Λ of Z, we consider the following parametric generalized vector equilibrium problem

(PGVEP) Find x ∈ A(µ) such that F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ),

and parametric generalized weak vector equilibrium problem

(PGWVEP) Find x ∈ A(µ) such that F (x, y, µ) ∩ (Y \ − intC) 6= ∅, ∀y ∈ A(µ),

where A : Λ → 2X\{∅} is a set-valued mapping, B is a nonempty subset of X , F : B ×B ×Λ ⊂

X × X × Z → 2Y \{∅} is a set-valued mapping with A(Λ) = ∪µ∈ΛA(µ) ⊂ B.
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For each µ ∈ Λ, let S(µ) denote the solution set of (PGVEP), i.e.,

S(µ) = {x ∈ A(µ)|F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ)},

and Sw(µ) denote the solution set of (PGWVEP), i.e.,

Sw(µ) = {x ∈ A(µ)|F (x, y, µ) ∩ (Y \ − intC) 6= ∅, ∀y ∈ A(µ)}.

Throughout this paper, we always assume S(µ) 6= ∅ and Sw(µ) 6= ∅ for all µ ∈ Λ. This paper

aims to investigate the lower semicontinuity of the solution set maps S(·) and Sw(·).

Now we recall some basic definitions and the properties.

Definition 2.1 ([6]) Let f ∈ C∗\{0}. A vector x ∈ A(µ) is called an f -efficient solution to the

(PGVEP) if

inf
z∈F (x,y,µ)

f(z) ≥ 0, ∀y ∈ A(µ).

The set of the f -efficient solution to the (PGVEP) is denoted by Sf (µ).

Now we give the scalarization results for S(µ) and Sw(µ).

Definition 2.2 ([18]) Let f ∈ C∗\{0}. A vector x ∈ A(µ) is called an f -efficient solution to the

(PGWVEP) if

∃z ∈ F (x, y, µ), s.t. f(z) ≥ 0, ∀y ∈ A(µ).

The set of the f -efficient solution to the (PGWVEP) is denoted by S̄f (µ).

Lemma 2.1 ([6]) For each µ ∈ Λ, if for each x ∈ A(µ), F (x, A(µ), µ) + C is a convex set, then

S(µ) =
⋃

f∈C∗\{0} Sf (µ).

Lemma 2.2 ([18]) For each µ ∈ Λ, if for each x ∈ Sw(µ) and y ∈ A(µ), there exists a selection

z(y) of F (x, y, µ)\− intC (i.e., z(y) ∈ F (x, y, µ)\− intC), such that
⋃

y∈A(µ) z(y)+C is a convex

set, then Sw(µ) =
⋃

f∈C∗\{0} S̄f (µ).

Let F : Λ → 2X be a set-valued mapping, and given λ̄ ∈ Λ.The notion B(λ̄, δ) denotes the

open ball with center λ̄ ∈ Λ and radius δ > 0.

Definition 2.3 ([15])

(i) F is called lower semicontinuous (l.s.c) at λ̄ if for any open set V satisfying V ∩F (λ̄) 6= ∅,

there exists δ > 0 such that for every λ ∈ B(λ̄, δ), V ∩ F (λ) 6= ∅.

(ii) F is called upper semicontinuous (u.s.c) at λ̄ if for any open set V satisfying F (λ̄) ⊂ V ,

there exists δ > 0 such that for every λ ∈ B(λ̄, δ), F (λ) ⊂ V .

We say F is l.s.c (resp.u.s.c) on Λ, if it is l.s.c (resp.u.s.c) at each λ ∈ Λ. F is said to be

continuous on Λ if it is both l.s.c and u.s.c on Λ.

Proposition 2.1 ([3, 8])

(i) F is l.s.c at λ̄ if and only if for any sequence λn ⊂ Λ with λn → λ̄ and any x̄ ∈ F (λ̄),

there exists xn ∈ F (λn) such that xn → x̄.
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(ii) If F has compact values (i.e., F (λ) is a compact set for each λ ∈ Λ), then F is u.s.c at

λ̄ if and only if for any sequence {λn} ⊂ Λ with λn → λ̄ and for any xn ∈ F (λn), there exist

x̄ ∈ F (λ̄) and a subsequence {xnk
} of xn, such that xnk

→ x̄.

The following lemma plays an important role in the proof of lower semicontinuity of the

solution set mappings S(µ) and Sw(µ).

Lemma 2.3 ([4]) The union Γ =
⋃

i∈I Γi of a family of l.s.c set-valued mappings Γi from a

topological space X into a topological space Y is also an l.s.c set-valued mapping from X into

Y , where I is an index set.

3. Lower semicontinuity of solution map for (PGVEP)

In this section, we establish the lower semicontinuity of the solution set mapping for (PGVEP).

The notion B(0, d(x, y)) denotes the open ball with center 0 and radius d(x, y) > 0, d(x, y) =

‖x − y‖.

Lemma 3.1 Let f ∈ C∗\{0}. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact convex values on Λ;

(ii) F is u.s.c with nonempty compact on B × B × Λ;

(iii) For each µ ∈ Λ, x ∈ A(µ)\Sf (µ), there exists y ∈ Sf (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) ⊂ −C.

Then, Sf (·) is l.s.c on Λ.

Proof Suppose to the contrary that there exists µ0 ∈ Λ such that Sf (·) is not l.s.c at µ0. Then,

there exist a sequence {µn} with µn → µ0 and x0 ∈ Sf (µ0) such that for any xn ∈ Sf (µn),

xn 6→ x0.

From x0 ∈ Sf (µ0), we have x0 ∈ A(µ0). Since A(·) is l.s.c at µ0, there exists a sequence

x̄n ∈ A(µn) such that x̄n → x0. Obviously, x̄n ∈ A(µn)\Sf(µn). Then, by (iii), there exists

yn ∈ Sf (µn) such that

F (x̄n, yn, µn) + F (yn, x̄n, µn) + B(0, d(x̄n, yn)) ⊂ −C. (1)

Since yn ∈ Sf (µn) implies yn ∈ A(µn), it follows from the upper semicontinuity and compactness

of A(·) at µ0 that there exist y0 ∈ A(µ0) and a subsequence {ynk
} of {yn} such that ynk

→ y0.

Particularly, for (1), we have

F (x̄nk
, ynk

, µnk
) + F (ynk

, x̄nk
, µnk

) + B(0, d(x̄nk
, ynk

)) ⊂ −C. (2)

Then there exist z1
nk

∈ F (x̄nk
, ynk

, µnk
) and z2

nk
∈ F (ynk

, x̄nk
, µnk

) such that

z1
nk

+ z2
nk

+ B(0, d(x̄nk
, ynk

)) ⊂ −C. (3)

Since F (·, ·, ·) is u.s.c with compact values, there exist z01
∈ F (x0, y0, µ0) and z02

∈ F (y0, x0, µ0)

such that z1
nk

→ z01
, z2

nk
→ z02

. By (3), we have

z01
+ z02

+ B(0, d(x0, y0)) ⊂ −C. (4)
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If x0 6= y0, by (4), we have z01
+ z02

∈ −intC. Thus,

f(z01
+ z02

) < 0. (5)

Noting that x0 ∈ Sf (µ0) and y0 ∈ A(µ0), we get infz∈F (x0,y0,µ0) f(z) ≥ 0. Particularly, we

have

f(z01
) ≥ 0. (6)

On the other hand, since ynk
∈ Sf (µnk

) and x̄nk
∈ A(µnk

), we have infz∈F (yn
k

,x̄n
k

,µn
k
) f(z) ≥ 0.

Also, we have f(z2
nk

) ≥ 0. It follows from the continuity of f that we have

f(z02
) ≥ 0. (7)

By (6), (7) and the linearity of f , we get

f(z01
+ z02

) ≥ 0, (8)

which contradicts (5). Therefore, we have y0 = x0. This is impossible by the contradiction

assumption. Thus, our result holds and the proof is completed. 2

Remark 3.1 (i) When F is a vector-valued mapping, the (PGVEP) reduces to (VEP)µ con-

sidered in [17]. Then, Lemma 3.1 reduces to Lemma 3.1 in [17].

(ii) In [5], Chen et al. obtained the continuity of the f -efficient solution set of (PGVEP)

by virtue of C-strict monotonicity. But this condition is so strict that the f -efficient solution

set is confined to be a singleton. In our paper, by using the ideas in [17], we introduce the

assumption (iii) of Lemma 3.1, which abates the condition of C-strict monotonicity. In the case,

the f -efficient solution set of (PGVEP) may be a set, but not a singleton. We also obtain the

lower semicontinuity of the f -efficient solution set. Now we give the following example to show

that the f -efficient solution set is a set.

Example 3.1 Let X = R, Y = R2, C = R2
+, Λ = [1, 2], A(µ) = [−1, 1]. For each µ ∈ Λ and

x ∈ A(µ), ∀y ∈ A(µ), let

F (x, y, µ) = {(a, b) ∈ R2|(a, b) = (1 − t)(−1, µx) + t(−2, 2µx), t ∈ [0, 1]}.

For any given µ ∈ Λ, let f((x, y)) = 1
µ
y ∈ C∗\{0}. It follows from a direct computation that

Sf (µ) = [0, 1]. It is obvious that the set of f -efficient solution to (PGVEP) is not a singleton

but a general set. The assumption (iii) in Lemma 3.1 can be checked as follows: For any

x ∈ A(µ)\Sf (µ) = [−1, 0), there exists y = 0 ∈ Sf (µ) = [0, 1] such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) = (t + 1)(−2, µx) + B(0, d(x, y))

= (t + 1)(−2, µx) + B(0, d(x, 0)) ⊂ −C.

However, the assumption of C-strict monotonicity in Lemma 3.2 of [6] is violated. Indeed, for

∀x ∈ A(µ)\Sf (µ) = [−1, 0), there exists y = −x ∈ Sf (µ) = [0, 1] such that

F (x, y, µ) + F (y, x, µ) = (t + 1)(−2, 0) ∈ −∂C\{0}
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where ∂C is the boundary of C. Obviously, F (x, y, µ) + F (y, x, µ) 6∈ −intC, which implies that

F (·, ·, µ) is not C-strictly monotone on A(µ) × A(µ).

Theorem 3.1 For each f ∈ C∗\{0}, suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact convex values on Λ;

(ii) F is u.s.c with nonempty compact on B × B × Λ;

(iii) For each µ ∈ Λ and x ∈ A(µ), F (x, ·, µ) is C-convexlike on A(µ), i.e., for any x1, x2 ∈

A(µ) and any ρ ∈ [0, 1], there exists x3 ∈ A(µ) such that ρF (x, x1, µ) + (1 − ρ)F (x, x2, µ) ⊂

F (x, x3, µ) + C;

(iv) For each µ ∈ Λ, x ∈ A(µ)\Sf (µ), there exists y ∈ Sf (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) ⊂ −C.

Then, S(·) is l.s.c on Λ.

Proof For each µ ∈ Λ and x ∈ A(µ), since F (x, ·, µ) is C-convexlike on A(µ), F (x, A(µ), µ)+ C

is a convex set. Then, it follows from Lemma 2.1 that for each µ ∈ Λ,

S(µ) =
⋃

f∈C∗\{0}

Sf (µ).

By Lemma 3.1, for each f ∈ C∗\{0}, Sf (·) is l.s.c on Λ. Thus, in view of Lemma 2.3, we have

S(·) is l.s.c on Λ. The proof is completed. 2

Now, we give an example to illustrate that our result is different from that of [6].

Example 3.2 Let X = R, Y = R2, C = R2
+, Λ = [1, 2], A(µ) = [−1, 0] and F (x, y, µ) =

{(a, b) ∈ R2|(a, b) = (1 − t)(−1, µx) + t(−2, 2µx), t ∈ [0, 1]}.

For any f ∈ C∗\{0}, it follows from a direct computation that if Sf (µ) 6= ∅, 0 ∈ Sf (µ). It is

clear that conditions (i)–(iii) of Theorem 3.1 are satisfied. For any x ∈ A(µ)\Sf (µ), there exists

y = 0 ∈ Sf (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) = (t + 1)(−2, µx) + B(0, d(x, y))

= (t + 1)(−2, µx) + B(0, d(x, 0)) ⊂ −C.

Thus, the condition (iv) of Theorem 3.1 is also satisfied. By Theorem 3.1, S(·) is lower semicon-

tinuous on Λ.

However, for x̄ = ȳ = 0,

F (x̄, ȳ, µ) + F (ȳ, x̄, µ) = (−2, 0) ∈ −∂C\{0},

where ∂C is the boundary of C. Obviously, F (x̄, ȳ, µ) + F (ȳ, x̄, µ) 6⊂ −intC, i.e., F (·, ·, µ) is not

C-strictly monotone on A(µ) × A(µ). Thus, Theorem 3.1 of [6] is not applicable.

4. Lower semicontinuity of solution map for (PGWVEP)

In this section, we establish the lower semicontinuity of the solution set mapping for (PG-

WVEP).
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Lemma 4.1 Let f ∈ C∗\{0}. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact convex values on Λ;

(ii) F is continuous with nonempty compact on B × B × Λ;

(iii) For each µ ∈ Λ, x ∈ A(µ)\S̄f (µ), there exists y ∈ S̄f (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) ⊂ −C.

Then, S̄f (·) is l.s.c on Λ.

Proof Suppose to the contrary that there exists µ0 ∈ Λ such that S̄f (·) is not l.s.c at µ0. Then,

there exist a sequence {µn} with µn → µ0 and x0 ∈ S̄f (µ0) such that for any xn ∈ S̄f (µn),

xn 6→ x0.

From x0 ∈ S̄f (µ0), we have x0 ∈ A(µ0). Since A(·) is l.s.c at µ0, there exists a sequence

x̄n ∈ A(µn) such that x̄n → x0. Obviously, x̄n ∈ A(µn)\S̄f(µn). Then, by (iii), there exists

yn ∈ S̄f (µn) such that

F (x̄n, yn, µn) + F (yn, x̄n, µn) + B(0, d(x̄n, yn)) ⊂ −C. (9)

Since yn ∈ S̄f (µn) implies yn ∈ A(µn), it follows from the upper semicontinuity and compactness

of A(·) at µ0 that there exist y0 ∈ A(µ0) and a subsequence {ynk
} of {yn} such that ynk

→ y0.

Particularly, for (9), we have

F (x̄nk
, ynk

, µnk
) + F (ynk

, x̄nk
, µnk

) + B(0, d(x̄nk
, ynk

)) ⊂ −C. (10)

Since x0 ∈ S̄f (µ0), for y0 ∈ A(µ0), there exists z01
∈ F (x0, y0, µ0) such that

f(z01
) ≥ 0. (11)

By the lower semicontinuity of F (·, ·, ·) at (x0, y0, µ0), there exists z1
nk

∈ F (x̄nk
, ynk

, µnk
) such

that z1
nk

→ z01
. On the other hand, from ynk

∈ S̄f (µnk
) and x̄nk

∈ A(µnk
), there exists

z2
nk

∈ F (ynk
, x̄nk

, µnk
) such that

f(z2
nk

) ≥ 0. (12)

Since F (·, ·, ·) is u.s.c at (y0, x0, µ0) with compact values, there exists z02
∈ F (y0, x0, µ0) such

that z2
nk

→ z02
. It follows from the continuity of f and (12) that we get

f(z02
) ≥ 0. (12)

By (11), (13) and the linearity of f

f(z01
+ z02

) ≥ 0. (14)

From (10), we can obtain z1
nk

+ z2
nk

+ B(0, d(x̄nk
, ynk

)) ⊂ −C. Taking nk → ∞, we get

z01
+ z02

+ B(0, d(x0, y0)) ⊂ −C. If x0 6= y0, we have z01
+ z02

∈ −intC.

Thus,

f(z01
+ z02

) < 0, (15)

which contradicts (14). Therefore, we have x0 = y0. This is impossible by the contradiction

assumption. Thus, our result holds and the proof is completed. 2



418 J. Z. LI, H. W. LIANG and D. ZHAO

Remark 4.1 In [18], Li et al. obtained the continuity of the f -efficient solution set of (PG-

WVEP) by virtue of C-strict monotonicity. But this condition is so strict that the f -efficient

solution set is confined to be a singleton. In our paper, we introduce the assumption (iii) of

Lemma 4.1, which abates the condition of C-strict monotonicity. In the case, the f -efficient

solution set of (PGWVEP) may be a set, but not a singleton. Note that Sf (µ) ⊂ S̄f (µ). Thus,

Example 3.1 shows that S̄f (µ) may not be a singleton.

Theorem 4.1 For each f ∈ C∗\{0}, suppose that the following conditions are satisfied:

(i) A(·) is continuous with compact convex values on Λ;

(ii) F is continuous with nonempty compact on B × B × Λ;

(iii) For each µ ∈ Λ, x ∈ A(µ)\S̄f (µ), there exists y ∈ S̄f (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) ⊂ −C;

(iv) For each µ ∈ Λ, if for each x ∈ Sw(µ) and y ∈ A(µ), there exists a selection z(y) of

F (x, y, µ)\ − intC (i.e. z(y) ∈ F (x, y, µ)\ − intC), such that
⋃

y∈A(µ) z(y) + C is a convex set,

then Sw(·) is l.s.c on Λ.

Proof By virtue of the condition (iv) and Lemma 2.2, for each µ ∈ Λ,

Sw(µ) =
⋃

f∈C∗\{0}

S̄f (µ).

By Lemma 4.1, for each f ∈ C∗\{0}, S̄f (·) is l.s.c on Λ. Therefore, in view of Lemma 2.3, we

have Sw(·) is l.s.c on Λ. The proof is completed. 2

Remark 4.2 The condition (iii) of Theorem 4.1 is weaker than C-strict monotonicity for a set-

valued map. Thus, Theorem 4.1 is different from Theorem 3.7 of [18]. Now we give an example

to illustrate it.

Example 4.1 Let X = R, Y = R2, C = R2
+, Λ = [1, 2], A(µ) = [−1, 0] and F (x, y, µ) =

{(a, b) ∈ R2|(a, b) = (1 − t)(−1, µx) + t(−3, 3µx), t ∈ [0, 1]}.

It is similar to Example 3.2. For any x ∈ A(µ)\Sf (µ), there exists y = 0 ∈ Sf (µ) such that

F (x, y, µ) + F (y, x, µ) + B(0, d(x, y)) = (2t + 1)(−1, µx) + B(0, d(x, y))

= (2t + 1)(−1, µx) + B(0, d(x, 0)) ⊂ −C.

Thus, the conditions of Theorem 4.1 are all satisfied. By Theorem 4.1, S(·) is lower semicontin-

uous on Λ.

However, for x̄ = ȳ = 0,

F (x̄, ȳ, µ) + F (ȳ, x̄, µ) = (−1, 0) ∈ −∂C\{0},

where ∂C is the boundary of C. Obviously, F (x̄, ȳ, µ) + F (ȳ, x̄, µ) 6⊂ −intC, i.e., F (·, ·, µ) is not

C-strictly monotone on A(µ) × A(µ). Thus, Theorem 3.7 of [18] is not applicable.

5. Conclusion
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In our paper, we investigate the lower semicontinuity of the solution set mappings of two kinds

of parametric multivalued vector quasiequilibrium problems involving set-valued mappings under

new assumptions. Our results extend the corresponding ones in [6, 17, 18] since our assumptions

are weaker than C-strict monotonicity and the f -efficient solution set is a general set but a

singleton. Some examples are also given to illustrate this.
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