The Structure of Quantum Group $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$

Bo HOU*, Zi Long ZHANG, Bing Ling CAI
College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, P. R. China

Abstract

In this paper we construct a new quantum group $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, which can be seen as a generalization of $\mathcal{U}_{q}(\operatorname{osp}(1,2))$. A necessary and sufficient condition for the algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ to be a super Hopf algebra is obtained and the center $Z\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ is given.

Keywords super Hopf algebra; quantum Casimir element; Verma module.
Document code A
MR(2010) Subject Classification 16T20; 17B37; 81R50
Chinese Library Classification O153

1. Introduction

The Lie superalgebra $G=\operatorname{osp}(1,2 n)$ is a special one among the contragredient classical Lie superalgebras. Kac [1, 2] studied the representations of the Lie superalgebra G and indicated that its finite dimensional representations are completely reducible, hence its representation theory is rather similar to that of a semisimple Lie algebra. The deformation theory of Lie superalgebras has a close relation to the quantum Yang-Baxter equation and finds applications in areas of supersymmetry, integrable system and knot theory. The canonical example is the quantized enveloping algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2 n))$ of the Lie superalgebra G. Zou and Musson [3, 4] studied the integrable representations and crystal bases of $\mathcal{U}_{q}(\operatorname{osp}(1,2 n))$.

In this paper we construct and study a new quantum group $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, which can be seen as a natural generalization of $\mathcal{U}_{q}(\operatorname{osp}(1,2))$. This paper is organized as follows: In Section 2 we indicate that the algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ is Noetherian and has no zero divisors, furthermore, the set $\left\{E^{i} F^{j} K^{l}\right\}_{i, j \in \mathbb{N}, l \in \mathbb{Z}}$ is its PBW basis. In Section 3 we give a necessary and sufficient condition for the algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ to be a super Hopf algebra. In Section 4 we construct the quantum Casimir element C_{q} of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ and prove that it generates the center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ as a polynomial algebra.

[^0]
2. Quantum group $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$

Throughout the paper we suppose that k is the complex field and $q \in k^{*}=k \backslash\{0\}$ is not a root of the unit.

Definition 2.1 Define $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ as the algebra generated by the four variables E, F, K, K^{-1} with the relations

$$
K K^{-1}=K^{-1} K=1, \quad K E K^{-1}=q E, \quad K F K^{-1}=q^{-1} F, \quad E F+F E=f(K)
$$

where $f(K)=\sum_{j=-N}^{N} a_{j} K^{j} \in k\left[K, K^{-1}\right]$ and $N \in \mathbb{Z}^{+}$.
Lemma 2.2 Let $m \in \mathbb{N}$, and $n \in \mathbb{Z}$. The following relations hold in $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$:

$$
E^{m} K^{n}=q^{-m n} K^{n} E^{m}, \quad F^{m} K^{n}=q^{m n} K^{n} F^{m}
$$

For any Laurent polynomial $g(K)=\sum_{j=-N}^{N} a_{j} K^{j} \in k\left[K, K^{-1}\right]$, we first introduce the following polynomials defined by the change of coefficients. For any $s, m \in \mathbb{N}$, let

$$
\begin{gathered}
g^{+(s)}(K)=\sum_{j=-N}^{N} q^{j s} a_{j} K^{j}, \quad g^{-(s)}(K)=\sum_{j=-N}^{N} q^{-j s} a_{j} K^{j}, \\
g_{+(m)}(K)=\sum_{j=-N}^{N}(m)_{-q^{j}} a_{j} K^{j}, \quad g_{-(m)}(K)=\sum_{j=-N}^{N}(m)_{-q^{-j}} a_{j} K^{j},
\end{gathered}
$$

where $(n)_{q}=1+q^{2}+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1}$.
Lemma 2.3 1) For any $s \in \mathbb{N}$,

$$
g(K) F^{s}=F^{s} g^{-(s)}(K), \quad F^{s} g(K)=g^{+(s)}(K) F^{s}
$$

2) For any $m \in \mathbb{N}$,

$$
g_{+(m)}(K)=\sum_{s=0}^{m-1}(-1)^{s} g^{+(s)}(K), \quad g_{-(m)}(K)=\sum_{s=0}^{m-1}(-1)^{s} g^{-(s)}(K)
$$

Proof 1) For any $s \in \mathbb{N}$, we have

$$
g(K) F^{s}=\sum_{j=-N}^{N} a_{j} K^{j} F^{s}=\sum_{j=-N}^{N} q^{-j s} a_{j} F^{s} K^{j}=F^{s} g^{-(s)}(K)
$$

Similarly, we can get $F^{s} g(K)=g^{+(s)}(K) F^{s}$.
2) For any $m \in \mathbb{N}$, we have

$$
\begin{aligned}
\sum_{s=0}^{m-1}(-1)^{s} g^{+(s)}(K) & =\sum_{s=0}^{m-1} \sum_{j=-N}^{N}(-1)^{s} q^{j s} a_{j} K^{j}=\sum_{j=-N}^{N}\left(\sum_{s=0}^{m-1}\left(-q^{j}\right)^{s}\right) a_{j} K^{j} \\
& =\sum_{j=-N}^{N}(m)_{-q^{j}} a_{j} K^{j}
\end{aligned}
$$

Similarly, we can get $\sum_{s=0}^{m-1}(-1)^{s} g^{-(s)}(K)=g_{-(m)}(K)$.

Lemma 2.4 Let $m>0$. The following relations hold in $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$:

$$
\begin{align*}
& E F^{m}-(-1)^{m} F^{m} E=(-1)^{m-1} F^{m-1} f_{-(m)}(K)=(-1)^{m-1} f_{+(m)}(K) F^{m-1} \tag{2.1}\\
& E^{m} F-(-1)^{m} F E^{m}=(-1)^{m-1} E^{m-1} f_{+(m)}(K)=(-1)^{m-1} f_{-(m)}(K) E^{m-1} \tag{2.2}
\end{align*}
$$

Proof We only prove the equation (2.1) holds. Suppose $m>0$ is odd, then we have

$$
\begin{aligned}
E F^{m}+F^{m} E= & E F^{m}+F E F^{m-1}+F^{2} E F^{m-2}+\cdots+F^{m-1} E F+F^{m} E- \\
& F E F^{m-1}-F^{2} E F^{m-2}-\cdots-F^{m-1} E F \\
= & (E F+F E) F^{m-1}+F^{2}(E F+F E) F^{m-3}+\cdots+F^{m-1}(E F+F E)- \\
& F(E F+F E) F^{m-2}-\cdots-F^{m-2}(E F+F E) F \\
= & \sum_{i=0}^{m-1}(-1)^{i} F^{m-1-i}(E F+F E) F^{i}=\sum_{i=0}^{m-1}(-1)^{i} F^{m-1-i} f(K) F^{i} \\
= & \sum_{i=0}^{m-1}(-1)^{i} F^{m-1-i} F^{i} f^{-(i)}(K)=F^{m-1} \sum_{i=0}^{m-1}(-1)^{i} f^{-(i)}(K) \\
= & F^{m-1} f_{-(m)}(K) .
\end{aligned}
$$

In a similar way, we have

$$
\begin{aligned}
E F^{m}+F^{m} E & =\sum_{i=0}^{m-1}(-1)^{i} F^{i}(E F+F E) F^{m-1-i}=\sum_{i=0}^{m-1}(-1)^{i} f^{+(i)}(K) F^{m-1} \\
& =f_{+(m)}(K) F^{m-1}
\end{aligned}
$$

Suppose $m>0$ is even, then we have

$$
\begin{aligned}
E F^{m}-F^{m} E= & E F^{m}+F E F^{m-1}+F^{2} E F^{m-2}+\cdots+F^{m-1} E F- \\
& F E F^{m-1}-F^{2} E F^{m-2}-\cdots-F^{m-1} E F-F^{m} E \\
= & (E F+F E) F^{m-1}+F^{2}(E F+F E) F^{m-3}+\cdots+F^{m-2}(E F+F E) F- \\
& F(E F+F E) F^{m-2}-\cdots-F^{m-1}(E F+F E) \\
= & \sum_{i=0}^{m-1}(-1)^{i+1} F^{m-1-i}(E F+F E) F^{i}=\sum_{i=0}^{m-1}(-1)^{i+1} F^{m-1-i} f(K) F^{i} \\
= & \sum_{i=0}^{m-1}(-1)^{i+1} F^{m-1-i} F^{i} f^{-(i)}(K)=F^{m-1} \sum_{i=0}^{m-1}(-1)^{i+1} f^{-(i)}(K) \\
= & -F^{m-1} f_{-(m)}(K) .
\end{aligned}
$$

In a similar way, we have

$$
\begin{aligned}
E F^{m}-F^{m} E & =\sum_{i=0}^{m-1}(-1)^{i+1} F^{i}(E F+F E) F^{m-1-i}=\sum_{i=0}^{m-1}(-1)^{i+1} f^{+(i)}(K) F^{m-1} \\
& =-f_{+(m)}(K) F^{m-1}
\end{aligned}
$$

Proposition 2.5 The algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ is Noetherian and has no zero divisors. The set $\left\{E^{i} F^{j} K^{l}\right\}_{i, j \in \mathbb{N}, l \in \mathbb{Z}}$ is a basis of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$.

Proof Define $A_{0}=k\left[K, K^{-1}\right]$. We shall construct two Ore extensions $A_{0} \subset A_{1} \subset A_{2}$ such that A_{2} is isomorphic to $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$. Firstly, it is clear that A_{0} is Noetherian and has no zero divisors. The set $\left\{K^{l}\right\}_{l \in \mathbb{Z}}$ is a basis of A_{0}.

Secondly, consider the automorphism α_{1} of A_{0} determined by $\alpha_{1}(K)=q K$ and corresponding Ore extension $A_{1}=A_{0}\left[F, \alpha_{1}, 0\right]$. Then A_{1} is the algebra generated by F, K, K^{-1} and satisfies the relation $F K=\alpha_{1}(K) F=q K F$. Moreover, A_{1} is Noetherian and has no zero divisors. The set $\left\{F^{j} K^{l}\right\}_{j \in \mathbb{N}, l \in \mathbb{Z}}$ is a basis of A_{1}.

Finally, we establish an Ore extension $A_{2}=A_{1}\left[E, \alpha_{2}, \delta\right]$ by an automorphism of A_{1} and an α_{2}-derivation of $A_{1} \delta$. The automorphism α_{2} is determined by

$$
\alpha_{2}\left(F^{j} K^{l}\right)=(-1)^{j} q^{-l} F^{j} K^{l}
$$

Let us take it as given for a moment (in Lemma 2.6) that there exists an α_{2}-derivation δ such that $\delta(F)=f(K)$ and $\delta(K)=0$.

Then the following relations hold in A_{2} :

$$
\begin{gathered}
E K=\alpha_{2}(K) E+\delta(K)=q K E, \\
E F=\alpha_{2}(F) E+\delta(F)=-F E+f(K)
\end{gathered}
$$

Hence, one easily concludes that A_{2} is isomorphic to $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ and $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ has the required properties.

To complete the proof of Proposition 2.5, it remains to prove the following technical lemma.
Lemma 2.6 Set $\delta\left(K^{l}\right)=0$ and $\delta\left(F^{j} K^{l}\right)=(-1)^{j-1} f_{+(j)}(K) F^{j-1} K^{l}=\left(E F^{j}-(-1)^{j} F^{j} E\right) K^{l}$ when $j>0$. Then δ extends to an α_{2}-derivation of A_{1}.

Proof We must check that for all $j, m \in \mathbb{N}$ and all $l, n \in \mathbb{Z}$, we have

$$
\delta\left(F^{j} K^{l} \cdot F^{m} K^{n}\right)=\alpha_{2}\left(F^{j} K^{l}\right) \delta\left(F^{m} K^{n}\right)+\delta\left(F^{j} K^{l}\right) F^{m} K^{n}
$$

In fact, by Lemma 2.4 we have

$$
\begin{aligned}
& \alpha_{2}\left(F^{j} K^{l}\right) \delta\left(F^{m} K^{n}\right)+\delta\left(F^{j} K^{l}\right) F^{m} K^{n} \\
& \quad=(-1)^{j} q^{-l} F^{j} K^{l}\left(E F^{m}-(-1)^{m} F^{m} E\right) K^{n}+\left(E F^{j}-(-1)^{j} F^{j} E\right) K^{l} F^{m} K^{n} \\
& \quad=(-1)^{j+m-1} q^{-l} F^{j} K^{l} f_{+(m)}(K) F^{m-1} K^{n}+\left(E F^{j}-(-1)^{j} F^{j} E\right) K^{l} F^{m} K^{n} \\
& \quad=(-1)^{j+m-1} q^{-m l} F^{j} f_{+(m)}(K) F^{m-1} K^{l+n}+q^{-m l}\left(E F^{j}-(-1)^{j} F^{j} E\right) F^{m} K^{l+n} \\
& \quad=q^{-m l}\left((-1)^{j} F^{j}\left(E F^{m}-(-1)^{m} F^{m} E\right)+\left(E F^{j}-(-1)^{j} F^{j} E\right) F^{m}\right) K^{l+n} \\
& \quad=q^{-m l}\left(E F^{j+m}-(-1)^{j+m} F^{j+m} E\right) K^{l+n} \\
& \quad=q^{-m l} \delta\left(F^{j+m} K^{l+n}\right)=\delta\left(F^{j} K^{l} \cdot F^{m} K^{n}\right) .
\end{aligned}
$$

Definition 2.7 Let V be a $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$-module and $\lambda \neq 0$ a scalar. An element $v \neq 0$ of V is a highest weight vector of weight λ if $K \cdot v=\lambda v$ and $E \cdot v=0$. A $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$-module is the highest weight module of weight λ if it is generated by the highest weight vector.

Let us fix a scalar $\lambda \neq 0$ and consider an infinite dimensional vector space $V(\lambda)$ with denumerable basis $\left\{v_{i}\right\}_{i \in \mathbb{N}}$. For $n \geq 0$, set

$$
\begin{gathered}
K \cdot v_{n}=\lambda q^{-n} v_{n}, \quad K^{-1} \cdot v_{n}=\lambda^{-1} q^{n} v_{n} \\
E \cdot v_{n+1}=(-1)^{n} f_{-(n+1)}(\lambda) v_{n}, \quad E \cdot v_{0}=0, \quad F \cdot v_{n}=v_{n+1}
\end{gathered}
$$

Lemma 2.8 The above relations define a $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$-module structure on $V(\lambda)$. Moreover, $V(\lambda)$ is the highest weight module of weight λ with its generator v_{0}. We shall call $V(\lambda)$ a Verma module of highest weight λ.

Proof We only prove the relation $(E F+F E) \cdot v_{n}=f(K) \cdot v_{n}$ holds

$$
\begin{aligned}
(E F+F E) \cdot v_{n} & =E \cdot v_{n+1}+(-1)^{n-1} f_{-(n)}(\lambda) F \cdot v_{n-1} \\
& =(-1)^{n} f_{-(n+1)}(\lambda) v_{n}+(-1)^{n-1} f_{-(n)}(\lambda) v_{n} \\
& =(-1)^{n}\left(f_{-(n+1)}(\lambda)-f_{-(n)}(\lambda)\right) v_{n}=(-1)^{n}(-1)^{n} f^{-(n)}(\lambda) v_{n} \\
& =\left(\sum_{j} a_{j} \lambda^{j} q^{-j n}\right) v_{n}=f(K) \cdot v_{n}
\end{aligned}
$$

Clearly, v_{0} is the highest weight vector of weight λ and generates $V(\lambda)$.
Remark 2.9 If λ satisfies the equation $f_{-(n)}(\lambda)=0$ for some $n>0$, then we have $E \cdot v_{n}=0$ and $K \cdot v_{n}=\lambda q^{-n} v_{n}$. Thus the set $\left\{v_{i}\right\}_{i \geq n}$ spans a non-trivial submodule $L(\lambda)$ of $V(\lambda)$ which is isomorphic to $V\left(\lambda q^{-n}\right)$.

3. The super Hopf algebra structure of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$

In this section, we construct a super Hopf algebra structure in $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$. We first give the definition of super Hopf algebras.

Definition 3.1 ([7]) $A \mathbb{Z}_{2}$-graded super Hopf algebra is a direct sum $H=H_{0} \oplus H_{1}$ of vector subspaces such that the following conditions hold:

1) H is an algebra such that $H_{n} H_{m} \subseteq H_{n+m}$ for all $m, n \in \mathbb{Z}_{2}$ and $1 \in H_{0}$;
2) H is a coalgebra such that $\Delta\left(H_{n}\right) \subseteq \oplus_{i+j=n} H_{i} \otimes H_{j}$, and $\varepsilon\left(H_{1}\right)=0$;
3) $\Delta: H \rightarrow H \otimes H, \varepsilon: H \rightarrow k$ are algebra homomorphisms, where the product \bullet of $H \otimes H$ is defined by

$$
\begin{equation*}
\left(x \otimes y_{m}\right) \bullet\left(x_{n}^{\prime} \otimes y^{\prime}\right)=(-1)^{m n} x x_{n}^{\prime} \otimes y_{m} y^{\prime} \tag{3.1}
\end{equation*}
$$

for $x, y^{\prime} \in H, x_{n}^{\prime} \in H_{n}, y_{m} \in H_{m}$;
4) There exists a linear mapping S such that $\mathrm{id} * S=S * \mathrm{id}=\eta \varepsilon$, and $S\left(H_{n}\right) \subseteq H_{n}$.

Here, * is the convolution and η is the unit map of H.
Clearly, $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ is \mathbb{Z}_{2}-graded with the grading given by

$$
\operatorname{deg} E=\operatorname{deg} F=1, \quad \operatorname{deg} K=\operatorname{deg} K^{-1}=0
$$

Lemma 3.2 Assume that Δ is a morphism of algebras from $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ to $\mathcal{U}_{q}(\operatorname{osp}(1,2, f)) \otimes$ $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ such that K and K^{-1} are group-like elements. If the Laurent polynomial $g(K) \in$
$K\left[K, K^{-1}\right]$ is a group-like element, then $g(K)=K^{m}$ for some $m \in \mathbb{Z}$.
Proof Suppose that $g(K)=\sum_{i=-N}^{N} b_{i} K_{i}$. By the assumption, we have

$$
\Delta g(K)=\sum_{i=-N}^{N} \sum_{j=-N}^{N} b_{i} b_{j} K_{i} \otimes K^{j}
$$

If there exist $i \neq j$ such that $b_{i} b_{j} \neq 0$, then $\Delta g(K)$ is not a group-like element by Proposition 2.5. Therefore $g(K)=b K^{m}$ for some $b \in k$ and $m \in \mathbb{Z}$. It is clear that $b^{2}=b$, and so $b=1$ or $b=0$, but the last is impossible.

Proposition 3.3 Assume that Δ is a morphism of algebras from $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ to $\mathcal{U}_{q}(\operatorname{osp}(1,2, f)) \otimes$ $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ such that

$$
\begin{gathered}
\Delta(K)=K \otimes K, \quad \Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1} \\
\Delta(E)=K^{s} \otimes E+E \otimes K^{t}, \quad \Delta(F)=K^{n} \otimes F+F \otimes K^{m}
\end{gathered}
$$

Then we have $n=-t, m=-s$ and $f(K)=a\left(K^{m-n}-K^{n-m}\right)$ for some $a \in k \backslash\{0\}$.
Proof Suppose $f(K)=\sum_{j=-N}^{N} a_{j} K^{j}$, then we have

$$
\begin{aligned}
\Delta & (E) \bullet \Delta(F)+\Delta(F) \bullet \Delta(E) \\
= & \left(K^{s} \otimes E+E \otimes K^{t}\right) \bullet\left(K^{n} \otimes F+F \otimes K^{m}\right)+\left(K^{n} \otimes F+F \otimes K^{m}\right) \bullet\left(K^{s} \otimes E+E \otimes K^{t}\right) \\
= & K^{s+n} \otimes E F+E K^{n} \otimes K^{t} F-K^{s} F \otimes E K^{m}+E F \otimes K^{t+m}+ \\
& K^{n+s} \otimes F E+F K^{s} \otimes K^{m} E-K^{n} E \otimes F K^{t}+F E \otimes K^{m+t} \\
= & K^{s+n} \otimes f(K)+\left(q^{-t}-q^{n}\right) E K^{n} \otimes F K^{t}+\left(q^{m}-q^{-s}\right) F K^{s} \otimes E K^{m}+f(K) \otimes K^{t+m}+ \\
= & \sum_{j=-N}^{N} a_{j} K^{s+n} \otimes K^{j}+\left(q^{-t}-q^{n}\right) E K^{n} \otimes F K^{t}+ \\
& \left(q^{m}-q^{-s}\right) F K^{s} \otimes E K^{m}+\sum_{j=-N}^{N} a_{j} K^{j} \otimes K^{t+m},
\end{aligned}
$$

and by Lemma 3.2, we have $\Delta(f(K))=\sum_{j=-N}^{N} a_{j} K^{j} \otimes K^{j}$.
Since $\Delta(E) \bullet \Delta(F)+\Delta(F) \bullet \Delta(E)=\Delta(f(K))$, and the set $\left\{E^{i} F^{j} K^{l}\right\}_{i, j \in \mathbb{N}, l \in \mathbb{Z}}$ is a basis of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, by Proposition 2.5, we have that $q^{m}-q^{-s}=0, q^{-t}-q^{n}=0$ and thus $n=-t$, $m=-s$. Moreover,

$$
\begin{equation*}
\sum_{j=-N}^{N} a_{j} K^{s+n} \otimes K^{j}+\sum_{j=-N}^{N} a_{j} K^{j} \otimes K^{t+m}=\sum_{j=-N}^{N} a_{j} K^{j} \otimes K^{j} \tag{3.2}
\end{equation*}
$$

From the equation (3.2), we have $a_{j}=0$ when $j \neq n+s, m+t$. If $n+s=m+t$, then the equation (3.2) becomes

$$
2 a_{s+n} K^{s+n} \otimes K^{s+n}=a_{s+n} K^{s+n} \otimes K^{s+n}
$$

hence, $a_{s+n}=0$, which is impossible. If $n+s \neq m+t$, then the equation (3.2) becomes

$$
a_{s+n} K^{s+n} \otimes K^{s+n}+a_{m+t} K^{s+n} \otimes K^{m+t}+a_{s+n} K^{s+n} \otimes K^{m+t}+a_{m+t} K^{m+t} \otimes K^{m+t}
$$

$$
=a_{s+n} K^{s+n} \otimes K^{s+n}+a_{m+t} K^{m+t} \otimes K^{m+t}
$$

hence, $a_{s+n}+a_{m+t}=0$. This is to say that $f(K)=a\left(K^{m-n}-K^{n-m}\right)$ for some $a \in k$.
Proposition 3.4 Assume $f(K)$ is a non-zero Laurent polynomial in $k\left[K, K^{-1}\right]$. Then the algebra $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ is a \mathbb{Z}_{2}-graded super Hopf algebra such that K, K^{-1} are group-like elements and E, F are skew primitives if and only if $f(K)=a\left(K^{m}-K^{-m}\right)$ for some $0 \neq a \in k, m \in \mathbb{Z}_{+}$, and the following relations

$$
\begin{align*}
& \Delta(K)=K \otimes K, \quad \varepsilon(K)=1, \quad S(K)=K^{-1} \\
& \Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1}, \quad \varepsilon\left(K^{-1}\right)=1, \quad S\left(K^{-1}\right)=K \\
& \Delta(E)=E \otimes K^{s}+K^{t} \otimes E, \quad \varepsilon(E)=0, \quad S(E)=-K^{-t} E K^{-s} \\
& \Delta(F)=F \otimes K^{-t}+K^{-s} \otimes F, \quad \varepsilon(F)=0, \quad S(F)=-K^{s} F K^{t} \tag{3.3}
\end{align*}
$$

hold for some $s, t \in \mathbb{Z}$ with $m=t-s$.
Proof The necessity is clear from Lemma 3.2 and Proposition 3.3. The sufficiency can be proved similarly to [5].

Proposition 3.5 For all $i, j \in \mathbb{N}$ and $l \in \mathbb{Z}$, we have

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l}\right)= & \sum_{r=0}^{i} \sum_{k=0}^{j}(-1)^{k(i-r)} q^{(i-j+k-r)(r s-k t)}\binom{i}{r}_{-q^{t-s}}\binom{j}{k}_{-q^{s-t}} \times \\
& E^{r} F^{k} K^{(i-r) t-(j-k) s+l} \otimes E^{i-r} F^{j-k} K^{r s-k t+l}
\end{aligned}
$$

Proof First observe that

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l}\right) & =\Delta(E)^{i} \bullet \Delta(F)^{j} \bullet \Delta(K)^{l} \\
& =\left(E \otimes K^{s}+K^{t} \otimes E\right)^{i} \bullet\left(F \otimes K^{-t}+K^{-s} \otimes F\right)^{j} \bullet(K \otimes K)^{l}
\end{aligned}
$$

Now,

$$
\left(K^{t} \otimes E\right) \bullet\left(E \otimes K^{s}\right)=-q^{t-s}\left(E \otimes K^{s}\right) \bullet\left(K^{t} \otimes E\right)
$$

and

$$
\left(K^{-s} \otimes F\right) \bullet\left(F \otimes K^{-t}\right)=-q^{s-t}\left(F \otimes K^{-t}\right) \bullet\left(K^{-s} \otimes F\right)
$$

Thus, we get

$$
\begin{aligned}
\Delta(E)^{i} & =\sum_{r=0}^{i}\binom{i}{r}_{-q^{t-s}}\left(E \otimes K^{s}\right)^{r} \bullet\left(K^{t} \otimes E\right)^{i-r} \\
& =\sum_{r=0}^{i} q^{(i-r) r s}\binom{i}{r}_{-q^{t-s}}\left(E^{r} K^{(i-r) t} \otimes E^{i-r} K^{r s}\right),
\end{aligned}
$$

and

$$
\Delta(F)^{j}=\sum_{k=0}^{j}\binom{j}{k}_{-q^{s-t}}\left(F \otimes K^{-t}\right)^{k} \bullet\left(K^{-s} \otimes F\right)^{j-k}
$$

$$
=\sum_{k=0}^{j} q^{(j-k) k t}\binom{j}{k}_{-q^{s-t}}\left(F^{k} K^{-(j-k) s} \otimes F^{j-k} K^{-k t}\right)
$$

So, we have

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l}\right)= & \left(E \otimes K^{s}+K^{t} \otimes E\right)^{i} \bullet\left(F \otimes K^{-t}+K^{-s} \otimes F\right)^{j} \bullet(K \otimes K)^{l} \\
= & \sum_{r=0}^{i} \sum_{k=0}^{j} q^{(i-r) r s} q^{(j-k) k t}\binom{i}{r}_{-q^{t-s}}\binom{j}{k}_{-q^{s-t}} \times \\
& \left(E^{r} K^{(i-r) t} \otimes E^{i-r} K^{r s}\right) \bullet\left(F^{k} K^{-(j-k) s} \otimes F^{j-k} K^{-k t}\right) \bullet\left(K^{l} \otimes K^{l}\right) \\
= & \sum_{r=0}^{i} \sum_{k=0}^{j} q^{(i-r) r s+(j-k) k t}\binom{i}{r}_{-q^{t-s}}\binom{j}{k}_{-q^{s-t}} \times \\
& (-1)^{k(i-r)}\left(E^{r} K^{(i-r) t} F^{k} K^{-(j-k) s} K^{l} \otimes E^{i-r} K^{r s} F^{j-k} K^{-k t+l}\right) \\
= & \sum_{r=0}^{i} \sum_{k=0}^{j}(-1)^{k(i-r)} q^{(i-r) r s+(j-k) k t}\binom{i}{r}_{-q^{t-s}}\binom{j}{k}_{-q^{s-t}} \times \\
& q^{-k(i-r) t} q^{-r s(j-k)} E^{r} F^{k} K^{(i-r) t} K^{-(j-k) s} K^{l} \otimes E^{i-r} F^{j-k} K^{r s-k t+l} \\
= & \sum_{r=0}^{i} \sum_{k=0}^{j}(-1)^{k(i-r)} q^{(i-j+k-r)(r s-k t)}\binom{i}{r}_{-q^{t-s}}\binom{j}{k}_{-q^{s-t}} \times \\
& E^{r} F^{k} K^{(i-r) t-(j-k) s+l} \otimes E^{i-r} F^{j-k} K^{r s-k t+l} . \square
\end{aligned}
$$

4. The center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$

Clearly, $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ has also a \mathbb{Z}-graded structure with

$$
\operatorname{deg} K^{ \pm 1}=0, \quad \operatorname{deg} E=1, \quad \operatorname{deg} F=-1
$$

Thus we have $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))=\oplus_{m \in \mathbb{Z}} \mathcal{U}_{m}$, where $\mathcal{U}_{m}=\left\langle F^{i} K^{l} E^{i+m} \mid i \in \mathbb{N}, l \in \mathbb{Z}\right\rangle$. In particular, $\mathcal{U}_{0}=\left\langle F^{i} K^{l} E^{i} \mid i \in \mathbb{N}, l \in \mathbb{Z}\right\rangle$. Set $\mathcal{U}^{0}=k\left[K, K^{-1}\right]$, then any element x_{0} in \mathcal{U}_{0} has a unique form $x_{0}=\sum_{i \in \mathbb{N}} F^{i} h_{i} E^{i}$, here $h_{i} \in \mathcal{U}_{0}$.

Let $r \in k$. The map $\phi_{r}: \mathcal{U}_{0} \rightarrow \mathcal{U}_{0}$ defined by $\phi_{r}(g(K))=g(r K)$ is an algebra isomorphism, and the image of $g(K)$ is denoted by $\phi_{r} g$.

Denote the center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ by $\mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$. Now, we construct an element $C_{q} \in \mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$, which will be called the quantum Casimir element of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, and discuss its properties.

Lemma 4.1 The element of $\mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ belongs to \mathcal{U}_{0}.
Proposition 4.2 Let $x=\sum_{i \in \mathbb{N}} F^{i} h_{i} E^{i} \in \mathcal{U}_{0}$. Then we have $x \in \mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ if and only if

$$
\begin{equation*}
h_{i}=(-1)^{i} f_{-(i+1)}(K) h_{i+1}+(-1)^{i} \phi_{q^{-1}} h_{i} \tag{4.1}
\end{equation*}
$$

holds for all $i \in \mathbb{N}$.

Proof On the one hand, by the equation (2.1), we have

$$
\begin{aligned}
E x & =\sum_{i \in \mathbb{N}} E F^{i} h_{i} E^{i}=\sum_{i \in \mathbb{N}}\left((-1)^{i-1} F^{i-1} f_{-(i)}(K)+(-1)^{i} F^{i} E\right) h_{i} E^{i} \\
& =\sum_{i \in \mathbb{N}}(-1)^{i} F^{i} f_{-(i+1)}(K) h_{i+1} E^{i+1}+\sum_{i \in \mathbb{N}}(-1)^{i} F^{i} E h_{i} E^{i} \\
& =\sum_{i \in \mathbb{N}}(-1)^{i} F^{i} f_{-(i+1)}(K) h_{i+1} E^{i+1}+\sum_{i \in \mathbb{N}}(-1)^{i} F^{i} \phi_{q^{-1}} h_{i} E^{i+1} \\
& =F^{i} \sum_{i \in \mathbb{N}}\left((-1)^{i} f_{-(i+1)}(K) h_{i+1}+(-1)^{i} \phi_{q^{-1}} h_{i}\right) E^{i+1}
\end{aligned}
$$

On the other hand, we have $x E=\sum_{i \in \mathbb{N}} F^{i} h_{i} E^{i+1}$. Thus $E x=x E$ if and only if the equation (4.1) holds.

Similarly, we can get $F x=x F$ if and only if the equation (4.1) holds, and $x K=K x$ holds for any $x \in \mathcal{U}_{0}$.

From Propositions 2.5 and 4.2, we know that h_{1}, h_{2}, \ldots are uniquely determined by h_{0} and that $h_{i}=0$ for all $i>2$ when $h_{2} \in k$. By the equation (4.1), we have

$$
\begin{align*}
f(K) h_{1}+\phi_{q^{-1}} h_{0} & =h_{0} \tag{4.2}\\
\left(\phi_{q^{-1}} f(K)\right) h_{2}-f(K) h_{2} & =\phi_{q^{-1}} h_{1}+h_{1} \tag{4.3}
\end{align*}
$$

In the following section, we assume that $f(K)=a\left(K^{m}-K^{-m}\right)$ for some $a \in k \backslash\{0\}$ and $m>0$. Set $t=\frac{-1}{\left(q^{-m / 2}+q^{m / 2}\right)^{2}}$ and assume $x=\sum_{i \in \mathrm{~N}} F^{i} h_{i} E^{i} \in \mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ with $h_{i} \in \mathcal{U}^{0}$. First, we consider the equation (4.3):

$$
\begin{aligned}
& \phi_{q^{-1}} h_{1}+h_{1}=\left(\phi_{q^{-1}} f(K)\right) h_{2}-f(K) h_{2} \\
& \quad=a\left(q^{-m} K^{m}-q^{m} K^{-m}\right) h_{2}-a\left(K^{m}-K^{-m}\right) h_{2} \\
& \quad=a\left(\left(q^{-m}-1\right) K^{m}-\left(q^{m}-1\right) K^{-m}\right) h_{2} \\
& \quad=a\left(\left(q^{-m}+1\right) \frac{q^{-m}-1}{q^{-m}+1} K^{m}-\left(q^{m}+1\right) \frac{q^{m}-1}{q^{m}+1} K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right)\left(\left(q^{-m}+1\right) \frac{q^{-m}-1}{\left(q^{-m}+1\right)\left(q^{m}-q^{-m}\right)} K^{m}-\left(q^{m}+1\right) \frac{q^{m}-1}{\left(q^{m}+1\right)\left(q^{m}-q^{-m}\right)} K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right)\left(\left(q^{-m}+1\right) \frac{q^{-2 m}-1}{\left(q^{-m}+1\right)^{2}\left(q^{m}-q^{-m}\right)} K^{m}-\left(q^{m}+1\right) \frac{q^{2 m}-1}{\left(q^{m}+1\right)^{2}\left(q^{m}-q^{-m}\right)} K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right)\left(\left(q^{-m}+1\right) \frac{-1}{\left(q^{-m}+1\right)^{2} q^{m}} K^{m}-\left(q^{m}+1\right) \frac{1}{\left(q^{m}+1\right)^{2} q^{-m}} K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right)\left(\left(q^{-m}+1\right) \frac{-1}{\left(q^{-m / 2}+q^{m / 2}\right)^{2}} K^{m}+\left(q^{m}+1\right) \frac{-1}{\left(q^{m / 2}+q^{-m / 2}\right)^{2}} K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right)\left(\left(q^{-m}+1\right) t K^{m}+\left(q^{m}+1\right) t K^{-m}\right) h_{2} \\
& \quad=a\left(q^{m}-q^{-m}\right) t\left(\left(q^{-m} K^{m}+q^{m} K^{-m}\right)+\left(K^{m}+K^{-m}\right)\right) h_{2} .
\end{aligned}
$$

So, when $h_{2} \in k$, we have that $P=a\left(q^{m}-q^{-m}\right) t\left(K^{m}+K^{-m}\right) h_{2}$ is an h_{1} in the equation (4.3). Then, we choose h_{1} to be P and consider the equation (4.2):

$$
h_{0}-\phi_{q^{-1}} h_{0}=a^{2}\left(q^{m}-q^{-m}\right) t\left(K^{m}-K^{-m}\right)\left(K^{m}+K^{-m}\right) h_{2}
$$

$$
\begin{aligned}
& =a^{2}\left(q^{m}-q^{-m}\right) t\left(K^{2 m}-K^{-2 m}\right) h_{2} \\
& =a^{2} t\left(q^{m} K^{2 m}-q^{m} K^{-2 m}-q^{-m} K^{2 m}+q^{-m} K^{-2 m}\right) h_{2} \\
& =a^{2} t\left(\left(q^{m} K^{2 m}+q^{-m} K^{-2 m}\right)-\left(q^{-m} K^{2 m}+q^{m} K^{-2 m}\right)\right) h_{2}
\end{aligned}
$$

So, when $h_{2} \in k$, we have that $a^{2} t\left(q^{m} K^{2 m}+q^{-m} K^{-2 m}\right) h_{2}$ is an h_{0} in the equation (4.2). Choose $h_{2}=1$ and we get an element C_{q} in $\mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$,

$$
\begin{equation*}
C_{q}=F^{2} E^{2}+a t\left(q^{m}-q^{-m}\right) F\left(K^{m}+K^{-m}\right) E+a^{2} t\left(q^{m} K^{2 m}+q^{-m} K^{-2 m}\right) \tag{4.4}
\end{equation*}
$$

which is called quantum Casimir element.
Let π be a map from \mathcal{U}_{0} to \mathcal{U}^{0} defined by $\pi\left(\sum_{i} F^{i} h_{i} E^{i}\right)=h_{0}$. Then π is an algebra map and is called Harish-Chandra map. The element z in \mathcal{U}_{0} can be written as $\pi(z)+\sum_{i>0} F^{i} h_{i} E^{i}$. By the equation (4.1) we can easily get the following lemma.

Lemma $\left.4.3 \pi\right|_{Z}$ is injective from $\mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ to \mathcal{U}^{0}.
For any $z \in \mathcal{U}_{0}$, note that $\pi(z)$ is a Laurent polynomial in K, we denote its value at λ by $\pi(z)(\lambda)$.

Lemma 4.4 Let V be the highest weight $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$-module with highest weight λ. Then, for any central element z of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ and any $v \in V$, we have

$$
z \cdot v=\pi(z)(\lambda) v
$$

Proof The proof is similar to that of Theorem 6.4.4 in [5].
In order to determine the center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, we set $p=\sqrt{q}$ and write

$$
\bar{P}(\lambda)=P\left(p^{-1} \lambda\right)=\left(\phi_{p^{-1}} P\right)(\lambda)
$$

for any Laurent polynomial $P(K)$ in $k\left[K, K^{-1}\right]$.
Lemma 4.5 For any element z in the center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$, we have

$$
\overline{\pi(z)}(\xi \lambda)=\overline{\pi(z)}\left(\xi \lambda^{-1}\right), \quad \overline{\pi(z)}(\zeta \lambda)=\overline{\pi(z)}\left(\zeta \lambda^{-1}\right)
$$

for all $\lambda \in k$ and ξ with $\xi^{2 m}=1$ and ζ with $\zeta^{2 m}=-1$.
Proof For ξ with $\xi^{2 m}=1$ and any odd integer $n>0$. Consider the Verma module $V\left(\xi p^{n-1}\right)$. By Lemma 2.8, we have $E \cdot v_{n}=f_{-(n)}\left(\xi p^{n-1}\right) v_{n-1}=0$. In fact,

$$
\begin{aligned}
f_{-(n)}\left(\xi p^{n-1}\right) & =(n)_{-q^{-m}}\left(\xi p^{n-1}\right)^{m}-(n)_{-q^{m}}\left(\xi p^{n-1}\right)^{-m} \\
& =\left((n)_{-q^{-m}}\left(\xi p^{n-1}\right)^{2 m}-(n)_{-q^{m}}\right)\left(\xi p^{n-1}\right)^{-m} \\
& =\left((n)_{-q^{-m}}\left(\left(q^{m}\right)^{n-1}\right)-(n)_{-q^{m}}\right)\left(\xi p^{n-1}\right)^{-m} \\
& =\left((n)_{-q^{-m}}\left(\left(-q^{m}\right)^{n-1}\right)-(n)_{-q^{m}}\right)\left(\xi p^{n-1}\right)^{-m} \\
& =0
\end{aligned}
$$

Thus, by Remark $2.9 v_{n}$ is the highest weight vector of weight $\xi p^{n-1} q^{-n}=\xi p^{n-1} p^{-2 n}=\xi p^{-n-1}$.

Then, we have $\pi(z)\left(\xi p^{n-1}\right)=\pi(z)\left(\xi p^{-n-1}\right)$ by Lemma 4.4. In other words, we have

$$
\overline{\pi(z)}\left(\xi p^{n}\right)=\overline{\pi(z)}\left(\xi p^{-n}\right)
$$

as what we want because of the random of n.
For ζ with $\zeta^{2 m}=-1$ and any even integer $n>0$. Consider the Verma module $V\left(\zeta p^{n-1}\right)$. Similarly, we can get $\overline{\pi(z)}(\zeta \lambda)=\overline{\pi(z)}\left(\zeta \lambda^{-1}\right)$.

Lemma 4.6 Any Laurent polynomial of $k\left[K, K^{-1}\right]$ satisfying the relations $P(\xi \lambda)=P\left(\xi \lambda^{-1}\right)$ and $P(\zeta \lambda)=P\left(\zeta \lambda^{-1}\right)$ for all $\lambda \in k$ and ξ with $\xi^{2 m}=1$ and ζ with $\zeta^{2 m}=-1$ is a polynomial in $K^{2 m}+K^{-2 m}$.

Proof It can be proved by induction.
Theorem 4.7 The center of $\mathcal{U}_{q}(\operatorname{osp}(1,2, f))$ is a polynomial algebra generated by the Casimir element C_{q}. The restriction of the Harish-Chandra homomorphism π to $\mathrm{Z}\left(\mathcal{U}_{q}(\operatorname{osp}(1,2, f))\right)$ is an isomorphism onto the subalgebra of $k\left[K, K^{-1}\right]$ generated by $q^{m} K^{2 m}+q^{-m} K^{-2 m}$.

Proof We know that the restriction of π to the center is injective, and we are left with determining its image. By Lemmas 4.5 and 4.6 the latter is contained in the subalgebra of $k\left[K, K^{-1}\right]$ generated by $q^{m} K^{2 m}+q^{-m} K^{-2 m}$. In fact,

$$
\overline{q^{m} K^{2 m}+q^{-m} K^{-2 m}}=q^{m} q^{-m} K^{2 m}+q^{-m} q^{m} K^{-2 m}=K^{2 m}+K^{-2 m}
$$

Consider the image of the Casimir element C_{q} defined by (4.4), we have

$$
\pi\left(C_{q}\right)=a^{2} t\left(q^{m} K^{2 m}+q^{-m} K^{-2 m}\right)
$$

which implies that the image is the whole subalgebra and that C_{q} generates the center. The latter is a polynomial algebra because the powers of $q^{m} K^{2 m}+q^{-m} K^{-2 m}$ are linearly independent for obvious reasons of degree.

Acknowledgment The authors would like to thank the referees for their useful suggestions and comments.

References

[1] KAC V G. Lie superalgebras [J]. Advances in Math., 1977, 26(1): 8-96.
[2] KAC V. Representations of Classical Lie Superalgebras [M]. Springer, Berlin, 1978.
[3] MUSSON I M, ZOU Yiming. Crystal bases for $U_{q}(\operatorname{osp}(1,2 r))$ [J]. J. Algebra, 1998, 210(2): 514-534.
[4] ZOU Yiming. Integrable representations of $U_{q}(\operatorname{osp}(1,2 n))$ [J]. J. Pure Appl. Algebra, 1998, 130(1): 99-112.
[5] KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
[6] MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. American Mathematical Society, Providence, RI, 1993.
[7] KLIMYK A, SCHMÜDGEN K. Quantum Groups and Their Representation [M]. Springer-Verlag, Berlin, 1997.

[^0]: Received April 14, 2009; Accepted May 4, 2010
 Supported by the National Natural Science Foundation of China (Grant Nos. 10971049; 10971052) and the Natural Science Foundation of Hebei Province (Grant Nos. A2008000135; A2009000253).

 * Corresponding author

 E-mail address: houbo1969@sina.com (B. HOU)

