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Abstract In this paper we construct a new quantum group Uq(osp(1, 2, f)), which can be

seen as a generalization of Uq(osp(1, 2)). A necessary and sufficient condition for the algebra

Uq(osp(1, 2, f)) to be a super Hopf algebra is obtained and the center Z(Uq(osp(1, 2, f))) is

given.

Keywords super Hopf algebra; quantum Casimir element; Verma module.

Document code A

MR(2010) Subject Classification 16T20; 17B37; 81R50

Chinese Library Classification O153

1. Introduction

The Lie superalgebra G = osp(1, 2n) is a special one among the contragredient classical Lie

superalgebras. Kac [1, 2] studied the representations of the Lie superalgebra G and indicated that

its finite dimensional representations are completely reducible, hence its representation theory is

rather similar to that of a semisimple Lie algebra. The deformation theory of Lie superalgebras

has a close relation to the quantum Yang–Baxter equation and finds applications in areas of

supersymmetry, integrable system and knot theory. The canonical example is the quantized

enveloping algebra Uq(osp(1, 2n)) of the Lie superalgebra G. Zou and Musson [3, 4] studied the

integrable representations and crystal bases of Uq(osp(1, 2n)).

In this paper we construct and study a new quantum group Uq(osp(1, 2, f)), which can be

seen as a natural generalization of Uq(osp(1, 2)). This paper is organized as follows: In Section 2

we indicate that the algebra Uq(osp(1, 2, f)) is Noetherian and has no zero divisors, furthermore,

the set {EiF jK l}i,j∈N,l∈Z is its PBW basis. In Section 3 we give a necessary and sufficient

condition for the algebra Uq(osp(1, 2, f)) to be a super Hopf algebra. In Section 4 we construct

the quantum Casimir element Cq of Uq(osp(1, 2, f)) and prove that it generates the center of

Uq(osp(1, 2, f)) as a polynomial algebra.
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2. Quantum group Uq(osp(1, 2, f))

Throughout the paper we suppose that k is the complex field and q ∈ k∗ = k \ {0} is not a

root of the unit.

Definition 2.1 Define Uq(osp(1, 2, f)) as the algebra generated by the four variables E, F, K, K−1

with the relations

KK−1 = K−1K = 1, KEK−1 = qE, KFK−1 = q−1F, EF + FE = f(K),

where f(K) =
∑N

j=−N ajK
j ∈ k[K, K−1] and N ∈ Z

+.

Lemma 2.2 Let m ∈ N, and n ∈ Z. The following relations hold in Uq(osp(1, 2, f)):

EmKn = q−mnKnEm, FmKn = qmnKnFm.

For any Laurent polynomial g(K) =
∑N

j=−N ajK
j ∈ k[K, K−1], we first introduce the fol-

lowing polynomials defined by the change of coefficients. For any s, m ∈ N, let

g+(s)(K) =

N
∑

j=−N

qjsajK
j, g−(s)(K) =

N
∑

j=−N

q−jsajK
j ,

g+(m)(K) =

N
∑

j=−N

(m)−qj ajK
j , g−(m)(K) =

N
∑

j=−N

(m)−q−j ajK
j ,

where (n)q = 1 + q2 + · · · + qn−1 = qn−1
q−1 .

Lemma 2.3 1) For any s ∈ N,

g(K)F s = F sg−(s)(K), F sg(K) = g+(s)(K)F s.

2) For any m ∈ N,

g+(m)(K) =

m−1
∑

s=0

(−1)sg+(s)(K), g−(m)(K) =

m−1
∑

s=0

(−1)sg−(s)(K).

Proof 1) For any s ∈ N, we have

g(K)F s =

N
∑

j=−N

ajK
jF s =

N
∑

j=−N

q−jsajF
sKj = F sg−(s)(K).

Similarly, we can get F sg(K) = g+(s)(K)F s.

2) For any m ∈ N, we have

m−1
∑

s=0

(−1)sg+(s)(K) =

m−1
∑

s=0

N
∑

j=−N

(−1)sqjsajK
j =

N
∑

j=−N

(

m−1
∑

s=0

(−qj)s)ajK
j

=

N
∑

j=−N

(m)−qj ajK
j.

Similarly, we can get
∑m−1

s=0 (−1)sg−(s)(K) = g−(m)(K). 2
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Lemma 2.4 Let m > 0. The following relations hold in Uq(osp(1, 2, f)):

EFm − (−1)mFmE = (−1)m−1Fm−1f−(m)(K) = (−1)m−1f+(m)(K)Fm−1, (2.1)

EmF − (−1)mFEm = (−1)m−1Em−1f+(m)(K) = (−1)m−1f−(m)(K)Em−1. (2.2)

Proof We only prove the equation (2.1) holds. Suppose m > 0 is odd, then we have

EFm + FmE =EFm + FEFm−1 + F 2EFm−2 + · · · + Fm−1EF + FmE−
FEFm−1 − F 2EFm−2 − · · · − Fm−1EF

=(EF + FE)Fm−1 + F 2(EF + FE)Fm−3 + · · · + Fm−1(EF + FE)−
F (EF + FE)Fm−2 − · · · − Fm−2(EF + FE)F

=

m−1
∑

i=0

(−1)iFm−1−i(EF + FE)F i =

m−1
∑

i=0

(−1)iFm−1−if(K)F i

=

m−1
∑

i=0

(−1)iFm−1−iF if−(i)(K) = Fm−1
m−1
∑

i=0

(−1)if−(i)(K)

=Fm−1f−(m)(K).

In a similar way, we have

EFm + FmE =

m−1
∑

i=0

(−1)iF i(EF + FE)Fm−1−i =

m−1
∑

i=0

(−1)if+(i)(K)Fm−1

= f+(m)(K)Fm−1.

Suppose m > 0 is even, then we have

EFm − FmE =EFm + FEFm−1 + F 2EFm−2 + · · · + Fm−1EF−
FEFm−1 − F 2EFm−2 − · · · − Fm−1EF − FmE

=(EF + FE)Fm−1 + F 2(EF + FE)Fm−3 + · · · + Fm−2(EF + FE)F−
F (EF + FE)Fm−2 − · · · − Fm−1(EF + FE)

=

m−1
∑

i=0

(−1)i+1Fm−1−i(EF + FE)F i =

m−1
∑

i=0

(−1)i+1Fm−1−if(K)F i

=

m−1
∑

i=0

(−1)i+1Fm−1−iF if−(i)(K) = Fm−1
m−1
∑

i=0

(−1)i+1f−(i)(K)

= − Fm−1f−(m)(K).

In a similar way, we have

EFm − FmE =

m−1
∑

i=0

(−1)i+1F i(EF + FE)Fm−1−i =

m−1
∑

i=0

(−1)i+1f+(i)(K)Fm−1

= −f+(m)(K)Fm−1. 2

Proposition 2.5 The algebra Uq(osp(1, 2, f)) is Noetherian and has no zero divisors. The set

{EiF jK l}i,j∈N, l∈Z is a basis of Uq(osp(1, 2, f)).
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Proof Define A0 = k[K, K−1]. We shall construct two Ore extensions A0 ⊂ A1 ⊂ A2 such that

A2 is isomorphic to Uq(osp(1, 2, f)). Firstly, it is clear that A0 is Noetherian and has no zero

divisors. The set {K l}l∈Z is a basis of A0.

Secondly, consider the automorphism α1 of A0 determined by α1(K) = qK and corresponding

Ore extension A1 = A0[F, α1, 0]. Then A1 is the algebra generated by F, K, K−1 and satisfies

the relation FK = α1(K)F = qKF . Moreover, A1 is Noetherian and has no zero divisors. The

set {F jK l}j∈N,l∈Z is a basis of A1.

Finally, we establish an Ore extension A2 = A1[E, α2, δ] by an automorphism of A1 and an

α2–derivation of A1 δ. The automorphism α2 is determined by

α2(F
jK l) = (−1)jq−lF jK l.

Let us take it as given for a moment (in Lemma 2.6) that there exists an α2-derivation δ such

that δ(F ) = f(K) and δ(K) = 0.

Then the following relations hold in A2:

EK = α2(K)E + δ(K) = qKE,

EF = α2(F )E + δ(F ) = −FE + f(K).

Hence, one easily concludes that A2 is isomorphic to Uq(osp(1, 2, f)) and Uq(osp(1, 2, f)) has the

required properties. 2

To complete the proof of Proposition 2.5, it remains to prove the following technical lemma.

Lemma 2.6 Set δ(K l) = 0 and δ(F jK l) = (−1)j−1f+(j)(K)F j−1K l = (EF j − (−1)jF jE)K l

when j > 0. Then δ extends to an α2-derivation of A1.

Proof We must check that for all j, m ∈ N and all l, n ∈ Z, we have

δ(F jK l · FmKn) = α2(F
jK l)δ(FmKn) + δ(F jK l)FmKn.

In fact, by Lemma 2.4 we have

α2(F
jK l)δ(FmKn) + δ(F jK l)FmKn

= (−1)jq−lF jK l(EFm − (−1)mFmE)Kn + (EF j − (−1)jF jE)K lFmKn

= (−1)j+m−1q−lF jK lf+(m)(K)Fm−1Kn + (EF j − (−1)jF jE)K lFmKn

= (−1)j+m−1q−mlF jf+(m)(K)Fm−1K l+n + q−ml(EF j − (−1)jF jE)FmK l+n

= q−ml((−1)jF j(EFm − (−1)mFmE) + (EF j − (−1)jF jE)Fm)K l+n

= q−ml(EF j+m − (−1)j+mF j+mE)K l+n

= q−mlδ(F j+mK l+n) = δ(F jK l · FmKn). 2

Definition 2.7 Let V be a Uq(osp(1, 2, f))-module and λ 6= 0 a scalar. An element v 6= 0 of V

is a highest weight vector of weight λ if K · v = λv and E · v = 0. A Uq(osp(1, 2, f))-module is

the highest weight module of weight λ if it is generated by the highest weight vector.



The structure of quantum group Uq(osp(1, 2, f)) 455

Let us fix a scalar λ 6= 0 and consider an infinite dimensional vector space V (λ) with denu-

merable basis {vi}i∈N. For n ≥ 0, set

K · vn = λq−nvn, K−1 · vn = λ−1qnvn,

E · vn+1 = (−1)nf−(n+1)(λ)vn, E · v0 = 0, F · vn = vn+1.

Lemma 2.8 The above relations define a Uq(osp(1, 2, f))-module structure on V (λ). Moreover,

V (λ) is the highest weight module of weight λ with its generator v0. We shall call V (λ) a Verma

module of highest weight λ.

Proof We only prove the relation (EF + FE) · vn = f(K) · vn holds

(EF + FE) · vn = E · vn+1 + (−1)n−1f−(n)(λ)F · vn−1

= (−1)nf−(n+1)(λ)vn + (−1)n−1f−(n)(λ)vn

= (−1)n(f−(n+1)(λ) − f−(n)(λ))vn = (−1)n(−1)nf−(n)(λ)vn

= (
∑

j

ajλ
jq−jn)vn = f(K) · vn.

Clearly, v0 is the highest weight vector of weight λ and generates V (λ). 2

Remark 2.9 If λ satisfies the equation f−(n)(λ) = 0 for some n > 0, then we have E · vn = 0

and K · vn = λq−nvn. Thus the set {vi}i≥n spans a non-trivial submodule L(λ) of V (λ) which

is isomorphic to V (λq−n).

3. The super Hopf algebra structure of Uq(osp(1, 2, f))

In this section, we construct a super Hopf algebra structure in Uq(osp(1, 2, f)). We first give

the definition of super Hopf algebras.

Definition 3.1 ([7]) A Z2-graded super Hopf algebra is a direct sum H = H0 ⊕ H1 of vector

subspaces such that the following conditions hold:

1) H is an algebra such that HnHm ⊆ Hn+m for all m, n ∈ Z2 and 1 ∈ H0;

2) H is a coalgebra such that ∆(Hn) ⊆ ⊕i+j=nHi ⊗ Hj , and ε(H1) = 0;

3) ∆ : H → H ⊗ H , ε : H → k are algebra homomorphisms, where the product • of H ⊗ H

is defined by

(x ⊗ ym) • (x′
n ⊗ y′) = (−1)mnxx′

n ⊗ ymy′, (3.1)

for x, y′ ∈ H, x′
n ∈ Hn, ym ∈ Hm;

4) There exists a linear mapping S such that id ∗ S = S ∗ id = ηε, and S(Hn) ⊆ Hn.

Here, ∗ is the convolution and η is the unit map of H .

Clearly, Uq(osp(1, 2, f)) is Z2-graded with the grading given by

degE = degF = 1, degK = degK−1 = 0.

Lemma 3.2 Assume that ∆ is a morphism of algebras from Uq(osp(1, 2, f)) to Uq(osp(1, 2, f))⊗
Uq(osp(1, 2, f)) such that K and K−1 are group-like elements. If the Laurent polynomial g(K) ∈
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K[K, K−1] is a group-like element, then g(K) = Km for some m ∈ Z.

Proof Suppose that g(K) =
∑N

i=−N biKi. By the assumption, we have

∆g(K) =

N
∑

i=−N

N
∑

j=−N

bibjKi ⊗ Kj .

If there exist i 6= j such that bibj 6= 0, then ∆g(K) is not a group-like element by Proposition

2.5. Therefore g(K) = bKm for some b ∈ k and m ∈ Z. It is clear that b2 = b, and so b = 1 or

b = 0, but the last is impossible. 2

Proposition 3.3 Assume that ∆ is a morphism of algebras from Uq(osp(1, 2, f)) to Uq(osp(1, 2, f))⊗
Uq(osp(1, 2, f)) such that

∆(K) = K ⊗ K, ∆(K−1) = K−1 ⊗ K−1,

∆(E) = Ks ⊗ E + E ⊗ Kt, ∆(F ) = Kn ⊗ F + F ⊗ Km.

Then we have n = −t, m = −s and f(K) = a(Km−n − Kn−m) for some a ∈ k \ {0}.

Proof Suppose f(K) =
∑N

j=−N ajK
j , then we have

∆(E) • ∆(F ) + ∆(F ) • ∆(E)

= (Ks ⊗ E + E ⊗ Kt) • (Kn ⊗ F + F ⊗ Km) + (Kn ⊗ F + F ⊗ Km) • (Ks ⊗ E + E ⊗ Kt)

= Ks+n ⊗ EF + EKn ⊗ KtF − KsF ⊗ EKm + EF ⊗ Kt+m+

Kn+s ⊗ FE + FKs ⊗ KmE − KnE ⊗ FKt + FE ⊗ Km+t

= Ks+n ⊗ f(K) + (q−t − qn)EKn ⊗ FKt + (qm − q−s)FKs ⊗ EKm + f(K) ⊗ Kt+m+

=

N
∑

j=−N

ajK
s+n ⊗ Kj + (q−t − qn)EKn ⊗ FKt+

(qm − q−s)FKs ⊗ EKm +
N

∑

j=−N

ajK
j ⊗ Kt+m,

and by Lemma 3.2, we have ∆(f(K)) =
∑N

j=−N ajK
j ⊗ Kj .

Since ∆(E) • ∆(F ) + ∆(F ) • ∆(E) = ∆(f(K)), and the set {EiF jK l}i,j∈N, l∈Z is a basis of

Uq(osp(1, 2, f)), by Proposition 2.5, we have that qm − q−s = 0, q−t − qn = 0 and thus n = −t,

m = −s. Moreover,

N
∑

j=−N

ajK
s+n ⊗ Kj +

N
∑

j=−N

ajK
j ⊗ Kt+m =

N
∑

j=−N

ajK
j ⊗ Kj. (3.2)

From the equation (3.2), we have aj = 0 when j 6= n + s, m + t. If n + s = m + t, then the

equation (3.2) becomes

2as+nKs+n ⊗ Ks+n = as+nKs+n ⊗ Ks+n,

hence, as+n = 0, which is impossible. If n + s 6= m + t, then the equation (3.2) becomes

as+nKs+n ⊗ Ks+n + am+tK
s+n ⊗ Km+t + as+nKs+n ⊗ Km+t + am+tK

m+t ⊗ Km+t
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= as+nKs+n ⊗ Ks+n + am+tK
m+t ⊗ Km+t,

hence, as+n + am+t = 0. This is to say that f(K) = a(Km−n − Kn−m) for some a ∈ k. 2

Proposition 3.4 Assume f(K) is a non-zero Laurent polynomial in k[K, K−1]. Then the algebra

Uq(osp(1, 2, f)) is a Z2-graded super Hopf algebra such that K, K−1 are group-like elements and

E, F are skew primitives if and only if f(K) = a(Km −K−m) for some 0 6= a ∈ k, m ∈ Z+, and

the following relations

∆(K) = K ⊗ K, ε(K) = 1, S(K) = K−1,

∆(K−1) = K−1 ⊗ K−1, ε(K−1) = 1, S(K−1) = K,

∆(E) = E ⊗ Ks + Kt ⊗ E, ε(E) = 0, S(E) = −K−tEK−s,

∆(F ) = F ⊗ K−t + K−s ⊗ F, ε(F ) = 0, S(F ) = −KsFKt (3.3)

hold for some s, t ∈ Z with m = t − s.

Proof The necessity is clear from Lemma 3.2 and Proposition 3.3. The sufficiency can be proved

similarly to [5]. 2

Proposition 3.5 For all i, j ∈ N and l ∈ Z, we have

∆(EiF jK l) =
i

∑

r=0

j
∑

k=0

(−1)k(i−r)q(i−j+k−r)(rs−kt)

(

i

r

)

−qt−s

(

j

k

)

−qs−t

×

ErF kK(i−r)t−(j−k)s+l ⊗ Ei−rF j−kKrs−kt+l.

Proof First observe that

∆(EiF jK l) = ∆(E)i • ∆(F )j • ∆(K)l

= (E ⊗ Ks + Kt ⊗ E)i • (F ⊗ K−t + K−s ⊗ F )j • (K ⊗ K)l.

Now,

(Kt ⊗ E) • (E ⊗ Ks) = −qt−s(E ⊗ Ks) • (Kt ⊗ E),

and

(K−s ⊗ F ) • (F ⊗ K−t) = −qs−t(F ⊗ K−t) • (K−s ⊗ F ).

Thus, we get

∆(E)i =

i
∑

r=0

(

i

r

)

−qt−s

(E ⊗ Ks)r • (Kt ⊗ E)i−r

=

i
∑

r=0

q(i−r)rs

(

i

r

)

−qt−s

(ErK(i−r)t ⊗ Ei−rKrs),

and

∆(F )j =

j
∑

k=0

(

j

k

)

−qs−t

(F ⊗ K−t)k • (K−s ⊗ F )j−k
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=

j
∑

k=0

q(j−k)kt

(

j

k

)

−qs−t

(F kK−(j−k)s ⊗ F j−kK−kt).

So, we have

∆(EiF jK l) =(E ⊗ Ks + Kt ⊗ E)i • (F ⊗ K−t + K−s ⊗ F )j • (K ⊗ K)l

=
i

∑

r=0

j
∑

k=0

q(i−r)rsq(j−k)kt

(

i

r

)

−qt−s

(

j

k

)

−qs−t

×

(ErK(i−r)t ⊗ Ei−rKrs) • (F kK−(j−k)s ⊗ F j−kK−kt) • (K l ⊗ K l)

=

i
∑

r=0

j
∑

k=0

q(i−r)rs+(j−k)kt

(

i

r

)

−qt−s

(

j

k

)

−qs−t

×

(−1)k(i−r)(ErK(i−r)tF kK−(j−k)sK l ⊗ Ei−rKrsF j−kK−kt+l)

=

i
∑

r=0

j
∑

k=0

(−1)k(i−r)q(i−r)rs+(j−k)kt

(

i

r

)

−qt−s

(

j

k

)

−qs−t

×

q−k(i−r)tq−rs(j−k)ErF kK(i−r)tK−(j−k)sK l ⊗ Ei−rF j−kKrs−kt+l

=

i
∑

r=0

j
∑

k=0

(−1)k(i−r)q(i−j+k−r)(rs−kt)

(

i

r

)

−qt−s

(

j

k

)

−qs−t

×

ErF kK(i−r)t−(j−k)s+l ⊗ Ei−rF j−kKrs−kt+l. 2

4. The center of Uq(osp(1, 2, f))

Clearly, Uq(osp(1, 2, f)) has also a Z-graded structure with

degK±1 = 0, degE = 1, degF = −1.

Thus we have Uq(osp(1, 2, f)) = ⊕m∈ZUm, where Um = 〈F iK lEi+m|i ∈ N, l ∈ Z〉. In particular,

U0 = 〈F iK lEi|i ∈ N, l ∈ Z〉. Set U0 = k[K, K−1], then any element x0 in U0 has a unique form

x0 =
∑

i∈N
F ihiE

i, here hi ∈ U0.

Let r ∈ k. The map φr : U0 → U0 defined by φr(g(K)) = g(rK) is an algebra isomorphism,

and the image of g(K) is denoted by φrg.

Denote the center of Uq(osp(1, 2, f)) by Z(Uq(osp(1, 2, f))). Now, we construct an element

Cq ∈ Z(Uq(osp(1, 2, f))), which will be called the quantum Casimir element of Uq(osp(1, 2, f)),

and discuss its properties.

Lemma 4.1 The element of Z(Uq(osp(1, 2, f))) belongs to U0.

Proposition 4.2 Let x =
∑

i∈N
F ihiE

i ∈ U0. Then we have x ∈ Z(Uq(osp(1, 2, f))) if and only

if

hi = (−1)if−(i+1)(K)hi+1 + (−1)iφq−1hi (4.1)

holds for all i ∈ N.
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Proof On the one hand, by the equation (2.1), we have

Ex =
∑

i∈N

EF ihiE
i =

∑

i∈N

((−1)i−1F i−1f−(i)(K) + (−1)iF iE)hiE
i

=
∑

i∈N

(−1)iF if−(i+1)(K)hi+1E
i+1 +

∑

i∈N

(−1)iF iEhiE
i

=
∑

i∈N

(−1)iF if−(i+1)(K)hi+1E
i+1 +

∑

i∈N

(−1)iF iφq−1hiE
i+1

= F i
∑

i∈N

((−1)if−(i+1)(K)hi+1 + (−1)iφq−1hi)E
i+1.

On the other hand, we have xE =
∑

i∈N
F ihiE

i+1. Thus Ex = xE if and only if the equation

(4.1) holds.

Similarly, we can get Fx = xF if and only if the equation (4.1) holds, and xK = Kx holds

for any x ∈ U0. 2

From Propositions 2.5 and 4.2, we know that h1, h2, . . . are uniquely determined by h0 and

that hi = 0 for all i > 2 when h2 ∈ k. By the equation (4.1), we have

f(K)h1 + φq−1h0 = h0, (4.2)

(φq−1f(K))h2 − f(K)h2 = φq−1h1 + h1. (4.3)

In the following section, we assume that f(K) = a(Km − K−m) for some a ∈ k \ {0} and

m > 0. Set t = −1
(q−m/2+qm/2)2

and assume x =
∑

i∈N F ihiE
i ∈ Z(Uq(osp(1, 2, f))) with hi ∈ U0.

First, we consider the equation (4.3):

φq−1h1 + h1 = (φq−1f(K))h2 − f(K)h2

= a(q−mKm − qmK−m)h2 − a(Km − K−m)h2

= a((q−m − 1)Km − (qm − 1)K−m)h2

= a((q−m + 1)
q−m − 1

q−m + 1
Km − (qm + 1)

qm − 1

qm + 1
K−m)h2

= a(qm − q−m)((q−m + 1)
q−m − 1

(q−m + 1)(qm − q−m)
Km − (qm + 1)

qm − 1

(qm + 1)(qm − q−m)
K−m)h2

= a(qm − q−m)((q−m + 1)
q−2m − 1

(q−m + 1)2(qm − q−m)
Km − (qm + 1)

q2m − 1

(qm + 1)2(qm − q−m)
K−m)h2

= a(qm − q−m)((q−m + 1)
−1

(q−m + 1)2qm
Km − (qm + 1)

1

(qm + 1)2q−m
K−m)h2

= a(qm − q−m)((q−m + 1)
−1

(q−m/2 + qm/2)2
Km + (qm + 1)

−1

(qm/2 + q−m/2)2
K−m)h2

= a(qm − q−m)((q−m + 1)tKm + (qm + 1)tK−m)h2

= a(qm − q−m)t((q−mKm + qmK−m) + (Km + K−m))h2.

So, when h2 ∈ k, we have that P = a(qm − q−m)t(Km + K−m)h2 is an h1 in the equation (4.3).

Then, we choose h1 to be P and consider the equation (4.2):

h0 − φq−1h0 = a2(qm − q−m)t(Km − K−m)(Km + K−m)h2
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= a2(qm − q−m)t(K2m − K−2m)h2

= a2t(qmK2m − qmK−2m − q−mK2m + q−mK−2m)h2

= a2t((qmK2m + q−mK−2m) − (q−mK2m + qmK−2m))h2.

So, when h2 ∈ k, we have that a2t(qmK2m +q−mK−2m)h2 is an h0 in the equation (4.2). Choose

h2 = 1 and we get an element Cq in Z(Uq(osp(1, 2, f))),

Cq = F 2E2 + at(qm − q−m)F (Km + K−m)E + a2t(qmK2m + q−mK−2m), (4.4)

which is called quantum Casimir element.

Let π be a map from U0 to U0 defined by π(
∑

i F ihiE
i) = h0. Then π is an algebra map

and is called Harish-Chandra map. The element z in U0 can be written as π(z) +
∑

i>0 F ihiE
i.

By the equation (4.1) we can easily get the following lemma.

Lemma 4.3 π|Z is injective from Z(Uq(osp(1, 2, f))) to U0.

For any z ∈ U0, note that π(z) is a Laurent polynomial in K, we denote its value at λ by

π(z)(λ).

Lemma 4.4 Let V be the highest weight Uq(osp(1, 2, f))-module with highest weight λ. Then,

for any central element z of Uq(osp(1, 2, f)) and any v ∈ V , we have

z · v = π(z)(λ)v.

Proof The proof is similar to that of Theorem 6.4.4 in [5]. 2

In order to determine the center of Uq(osp(1, 2, f)), we set p =
√

q and write

P (λ) = P (p−1λ) = (φp−1P )(λ),

for any Laurent polynomial P (K) in k[K, K−1].

Lemma 4.5 For any element z in the center of Uq(osp(1, 2, f)), we have

π(z)(ξλ) = π(z)(ξλ−1), π(z)(ζλ) = π(z)(ζλ−1)

for all λ ∈ k and ξ with ξ2m = 1 and ζ with ζ2m = −1.

Proof For ξ with ξ2m = 1 and any odd integer n > 0. Consider the Verma module V (ξpn−1).

By Lemma 2.8, we have E · vn = f−(n)(ξp
n−1)vn−1 = 0. In fact,

f−(n)(ξp
n−1) = (n)−q−m(ξpn−1)m − (n)−qm(ξpn−1)−m

= ((n)−q−m(ξpn−1)2m − (n)−qm )(ξpn−1)−m

= ((n)−q−m((qm)n−1) − (n)−qm)(ξpn−1)−m

= ((n)−q−m((−qm)n−1) − (n)−qm)(ξpn−1)−m

= 0.

Thus, by Remark 2.9 vn is the highest weight vector of weight ξpn−1q−n = ξpn−1p−2n = ξp−n−1.
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Then, we have π(z)(ξpn−1) = π(z)(ξp−n−1) by Lemma 4.4. In other words, we have

π(z)(ξpn) = π(z)(ξp−n),

as what we want because of the random of n.

For ζ with ζ2m = −1 and any even integer n > 0. Consider the Verma module V (ζpn−1).

Similarly, we can get π(z)(ζλ) = π(z)(ζλ−1). 2

Lemma 4.6 Any Laurent polynomial of k[K, K−1] satisfying the relations P (ξλ) = P (ξλ−1)

and P (ζλ) = P (ζλ−1) for all λ ∈ k and ξ with ξ2m = 1 and ζ with ζ2m = −1 is a polynomial in

K2m + K−2m.

Proof It can be proved by induction. 2

Theorem 4.7 The center of Uq(osp(1, 2, f)) is a polynomial algebra generated by the Casimir

element Cq. The restriction of the Harish-Chandra homomorphism π to Z(Uq(osp(1, 2, f))) is an

isomorphism onto the subalgebra of k[K, K−1] generated by qmK2m + q−mK−2m.

Proof We know that the restriction of π to the center is injective, and we are left with deter-

mining its image. By Lemmas 4.5 and 4.6 the latter is contained in the subalgebra of k[K, K−1]

generated by qmK2m + q−mK−2m. In fact,

qmK2m + q−mK−2m = qmq−mK2m + q−mqmK−2m = K2m + K−2m.

Consider the image of the Casimir element Cq defined by (4.4), we have

π(Cq) = a2t(qmK2m + q−mK−2m),

which implies that the image is the whole subalgebra and that Cq generates the center. The

latter is a polynomial algebra because the powers of qmK2m+q−mK−2m are linearly independent

for obvious reasons of degree. 2
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