The Structure of Quantum Group $U_q(osp(1,2,f))$

Bo HOU*, Zi Long ZHANG, Bing Ling CAI

College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, P. R. China

Abstract In this paper we construct a new quantum group $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, which can be seen as a generalization of $\mathcal{U}_q(\operatorname{osp}(1,2))$. A necessary and sufficient condition for the algebra $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ to be a super Hopf algebra is obtained and the center $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$ is given.

Keywords super Hopf algebra; quantum Casimir element; Verma module.

Document code A MR(2010) Subject Classification 16T20; 17B37; 81R50 Chinese Library Classification 0153

1. Introduction

The Lie superalgebra $G = \operatorname{osp}(1, 2n)$ is a special one among the contragredient classical Lie superalgebras. Kac [1, 2] studied the representations of the Lie superalgebra G and indicated that its finite dimensional representations are completely reducible, hence its representation theory is rather similar to that of a semisimple Lie algebra. The deformation theory of Lie superalgebras has a close relation to the quantum Yang–Baxter equation and finds applications in areas of supersymmetry, integrable system and knot theory. The canonical example is the quantized enveloping algebra $\mathcal{U}_q(\operatorname{osp}(1, 2n))$ of the Lie superalgebra G. Zou and Musson [3, 4] studied the integrable representations and crystal bases of $\mathcal{U}_q(\operatorname{osp}(1, 2n))$.

In this paper we construct and study a new quantum group $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, which can be seen as a natural generalization of $\mathcal{U}_q(\operatorname{osp}(1,2))$. This paper is organized as follows: In Section 2 we indicate that the algebra $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ is Noetherian and has no zero divisors, furthermore, the set $\{E^i F^j K^l\}_{i,j\in\mathbb{N},l\in\mathbb{Z}}$ is its PBW basis. In Section 3 we give a necessary and sufficient condition for the algebra $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ to be a super Hopf algebra. In Section 4 we construct the quantum Casimir element C_q of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ and prove that it generates the center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ as a polynomial algebra.

Received April 14, 2009; Accepted May 4, 2010

Supported by the National Natural Science Foundation of China (Grant Nos. 10971049; 10971052) and the Natural Science Foundation of Hebei Province (Grant Nos. A2008000135; A2009000253).

^{*} Corresponding author

E-mail address: houbo1969@sina.com (B. HOU)

2. Quantum group $\mathcal{U}_q(\operatorname{osp}(1,2,f))$

Throughout the paper we suppose that k is the complex field and $q \in k^* = k \setminus \{0\}$ is not a root of the unit.

Definition 2.1 Define $U_q(osp(1, 2, f))$ as the algebra generated by the four variables E, F, K, K^{-1} with the relations

$$KK^{-1} = K^{-1}K = 1, \quad KEK^{-1} = qE, \quad KFK^{-1} = q^{-1}F, \quad EF + FE = f(K),$$

where $f(K) = \sum_{j=-N}^{N} a_j K^j \in k[K, K^{-1}]$ and $N \in \mathbb{Z}^+$.

Lemma 2.2 Let $m \in \mathbb{N}$, and $n \in \mathbb{Z}$. The following relations hold in $\mathcal{U}_q(\operatorname{osp}(1,2,f))$:

$$E^m K^n = q^{-mn} K^n E^m, \quad F^m K^n = q^{mn} K^n F^m.$$

For any Laurent polynomial $g(K) = \sum_{j=-N}^{N} a_j K^j \in k[K, K^{-1}]$, we first introduce the following polynomials defined by the change of coefficients. For any $s, m \in \mathbb{N}$, let

$$g^{+(s)}(K) = \sum_{j=-N}^{N} q^{js} a_j K^j, \quad g^{-(s)}(K) = \sum_{j=-N}^{N} q^{-js} a_j K^j,$$
$$g_{+(m)}(K) = \sum_{j=-N}^{N} (m)_{-q^j} a_j K^j, \quad g_{-(m)}(K) = \sum_{j=-N}^{N} (m)_{-q^{-j}} a_j K^j,$$
$$1 + q^2 + \dots + q^{n-1} = \frac{q^{n-1}}{q-1}.$$

where $(n)_q = 1 + q^2 + \dots + q^{n-1} = \frac{q^{n-1}}{q-1}$

Lemma 2.3 1) For any $s \in \mathbb{N}$,

$$g(K)F^{s} = F^{s}g^{-(s)}(K), \quad F^{s}g(K) = g^{+(s)}(K)F^{s}$$

2) For any $m \in \mathbb{N}$,

$$g_{+(m)}(K) = \sum_{s=0}^{m-1} (-1)^s g^{+(s)}(K), \quad g_{-(m)}(K) = \sum_{s=0}^{m-1} (-1)^s g^{-(s)}(K)$$

Proof 1) For any $s \in \mathbb{N}$, we have

$$g(K)F^{s} = \sum_{j=-N}^{N} a_{j}K^{j}F^{s} = \sum_{j=-N}^{N} q^{-js}a_{j}F^{s}K^{j} = F^{s}g^{-(s)}(K).$$

Similarly, we can get $F^s g(K) = g^{+(s)}(K)F^s$.

2) For any $m \in \mathbb{N}$, we have

$$\sum_{s=0}^{m-1} (-1)^s g^{+(s)}(K) = \sum_{s=0}^{m-1} \sum_{j=-N}^N (-1)^s q^{js} a_j K^j = \sum_{j=-N}^N (\sum_{s=0}^{m-1} (-q^j)^s) a_j K^j$$
$$= \sum_{j=-N}^N (m)_{-q^j} a_j K^j.$$

Similarly, we can get $\sum_{s=0}^{m-1}(-1)^sg^{-(s)}(K)=g_{-(m)}(K).\ \square$

Lemma 2.4 Let m > 0. The following relations hold in $U_q(osp(1, 2, f))$:

$$EF^{m} - (-1)^{m}F^{m}E = (-1)^{m-1}F^{m-1}f_{-(m)}(K) = (-1)^{m-1}f_{+(m)}(K)F^{m-1}, \qquad (2.1)$$

$$E^{m}F - (-1)^{m}FE^{m} = (-1)^{m-1}E^{m-1}f_{+(m)}(K) = (-1)^{m-1}f_{-(m)}(K)E^{m-1}.$$
 (2.2)

Proof We only prove the equation (2.1) holds. Suppose m > 0 is odd, then we have

$$\begin{split} EF^m + F^m E = & EF^m + FEF^{m-1} + F^2 EF^{m-2} + \dots + F^{m-1} EF + F^m E - \\ & FEF^{m-1} - F^2 EF^{m-2} - \dots - F^{m-1} EF \\ = & (EF + FE)F^{m-1} + F^2 (EF + FE)F^{m-3} + \dots + F^{m-1} (EF + FE) - \\ & F(EF + FE)F^{m-2} - \dots - F^{m-2} (EF + FE)F \\ = & \sum_{i=0}^{m-1} (-1)^i F^{m-1-i} (EF + FE)F^i = \sum_{i=0}^{m-1} (-1)^i F^{m-1-i} f(K)F^i \\ & = & \sum_{i=0}^{m-1} (-1)^i F^{m-1-i} F^i f^{-(i)}(K) = F^{m-1} \sum_{i=0}^{m-1} (-1)^i f^{-(i)}(K) \\ & = F^{m-1} f_{-(m)}(K). \end{split}$$

In a similar way, we have

$$EF^{m} + F^{m}E = \sum_{i=0}^{m-1} (-1)^{i} F^{i}(EF + FE) F^{m-1-i} = \sum_{i=0}^{m-1} (-1)^{i} f^{+(i)}(K) F^{m-1}$$
$$= f_{+(m)}(K) F^{m-1}.$$

Suppose m > 0 is even, then we have

$$\begin{split} EF^m - F^m E = & EF^m + FEF^{m-1} + F^2 EF^{m-2} + \dots + F^{m-1} EF - \\ & FEF^{m-1} - F^2 EF^{m-2} - \dots - F^{m-1} EF - F^m E \\ = & (EF + FE)F^{m-1} + F^2 (EF + FE)F^{m-3} + \dots + F^{m-2} (EF + FE)F - \\ & F(EF + FE)F^{m-2} - \dots - F^{m-1} (EF + FE) \\ = & \sum_{i=0}^{m-1} (-1)^{i+1} F^{m-1-i} (EF + FE)F^i = \sum_{i=0}^{m-1} (-1)^{i+1} F^{m-1-i} f(K)F^i \\ = & \sum_{i=0}^{m-1} (-1)^{i+1} F^{m-1-i} F^i f^{-(i)}(K) = F^{m-1} \sum_{i=0}^{m-1} (-1)^{i+1} f^{-(i)}(K) \\ = & -F^{m-1} f_{-(m)}(K). \end{split}$$

In a similar way, we have

$$EF^m - F^m E = \sum_{i=0}^{m-1} (-1)^{i+1} F^i (EF + FE) F^{m-1-i} = \sum_{i=0}^{m-1} (-1)^{i+1} f^{+(i)}(K) F^{m-1}$$
$$= -f_{+(m)}(K) F^{m-1}. \quad \Box$$

Proposition 2.5 The algebra $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ is Noetherian and has no zero divisors. The set $\{E^iF^jK^l\}_{i,j\in\mathbb{N},\ l\in\mathbb{Z}}$ is a basis of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$.

Proof Define $A_0 = k[K, K^{-1}]$. We shall construct two Ore extensions $A_0 \subset A_1 \subset A_2$ such that A_2 is isomorphic to $\mathcal{U}_q(\operatorname{osp}(1, 2, f))$. Firstly, it is clear that A_0 is Noetherian and has no zero divisors. The set $\{K^l\}_{l \in \mathbb{Z}}$ is a basis of A_0 .

Secondly, consider the automorphism α_1 of A_0 determined by $\alpha_1(K) = qK$ and corresponding Ore extension $A_1 = A_0[F, \alpha_1, 0]$. Then A_1 is the algebra generated by F, K, K^{-1} and satisfies the relation $FK = \alpha_1(K)F = qKF$. Moreover, A_1 is Noetherian and has no zero divisors. The set $\{F^jK^l\}_{j\in\mathbb{N}, l\in\mathbb{Z}}$ is a basis of A_1 .

Finally, we establish an Ore extension $A_2 = A_1[E, \alpha_2, \delta]$ by an automorphism of A_1 and an α_2 -derivation of $A_1 \delta$. The automorphism α_2 is determined by

$$\alpha_2(F^j K^l) = (-1)^j q^{-l} F^j K^l.$$

Let us take it as given for a moment (in Lemma 2.6) that there exists an α_2 -derivation δ such that $\delta(F) = f(K)$ and $\delta(K) = 0$.

Then the following relations hold in A_2 :

$$EK = \alpha_2(K)E + \delta(K) = qKE,$$

$$EF = \alpha_2(F)E + \delta(F) = -FE + f(K).$$

Hence, one easily concludes that A_2 is isomorphic to $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ and $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ has the required properties. \Box

To complete the proof of Proposition 2.5, it remains to prove the following technical lemma.

Lemma 2.6 Set $\delta(K^l) = 0$ and $\delta(F^j K^l) = (-1)^{j-1} f_{+(j)}(K) F^{j-1} K^l = (EF^j - (-1)^j F^j E) K^l$ when j > 0. Then δ extends to an α_2 -derivation of A_1 .

Proof We must check that for all $j, m \in \mathbb{N}$ and all $l, n \in \mathbb{Z}$, we have

$$\delta(F^j K^l \cdot F^m K^n) = \alpha_2(F^j K^l) \delta(F^m K^n) + \delta(F^j K^l) F^m K^n.$$

In fact, by Lemma 2.4 we have

$$\begin{split} &\alpha_2(F^jK^l)\delta(F^mK^n) + \delta(F^jK^l)F^mK^n \\ &= (-1)^jq^{-l}F^jK^l(EF^m - (-1)^mF^mE)K^n + (EF^j - (-1)^jF^jE)K^lF^mK^n \\ &= (-1)^{j+m-1}q^{-l}F^jK^lf_{+(m)}(K)F^{m-1}K^n + (EF^j - (-1)^jF^jE)K^lF^mK^n \\ &= (-1)^{j+m-1}q^{-ml}F^jf_{+(m)}(K)F^{m-1}K^{l+n} + q^{-ml}(EF^j - (-1)^jF^jE)F^mK^{l+n} \\ &= q^{-ml}((-1)^jF^j(EF^m - (-1)^mF^mE) + (EF^j - (-1)^jF^jE)F^m)K^{l+n} \\ &= q^{-ml}(EF^{j+m} - (-1)^{j+m}F^{j+m}E)K^{l+n} \\ &= q^{-ml}\delta(F^{j+m}K^{l+n}) = \delta(F^jK^l \cdot F^mK^n). \quad \Box \end{split}$$

Definition 2.7 Let V be a $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ -module and $\lambda \neq 0$ a scalar. An element $v \neq 0$ of V is a highest weight vector of weight λ if $K \cdot v = \lambda v$ and $E \cdot v = 0$. A $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ -module is the highest weight module of weight λ if it is generated by the highest weight vector.

Let us fix a scalar $\lambda \neq 0$ and consider an infinite dimensional vector space $V(\lambda)$ with denumerable basis $\{v_i\}_{i\in\mathbb{N}}$. For $n \geq 0$, set

$$K \cdot v_n = \lambda q^{-n} v_n, \quad K^{-1} \cdot v_n = \lambda^{-1} q^n v_n,$$
$$E \cdot v_{n+1} = (-1)^n f_{-(n+1)}(\lambda) v_n, \quad E \cdot v_0 = 0, \quad F \cdot v_n = v_{n+1}.$$

Lemma 2.8 The above relations define a $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ -module structure on $V(\lambda)$. Moreover, $V(\lambda)$ is the highest weight module of weight λ with its generator v_0 . We shall call $V(\lambda)$ a Verma module of highest weight λ .

Proof We only prove the relation $(EF + FE) \cdot v_n = f(K) \cdot v_n$ holds

$$(EF + FE) \cdot v_n = E \cdot v_{n+1} + (-1)^{n-1} f_{-(n)}(\lambda) F \cdot v_{n-1}$$

= $(-1)^n f_{-(n+1)}(\lambda) v_n + (-1)^{n-1} f_{-(n)}(\lambda) v_n$
= $(-1)^n (f_{-(n+1)}(\lambda) - f_{-(n)}(\lambda)) v_n = (-1)^n (-1)^n f^{-(n)}(\lambda) v_n$
= $(\sum_i a_j \lambda^j q^{-jn}) v_n = f(K) \cdot v_n.$

Clearly, v_0 is the highest weight vector of weight λ and generates $V(\lambda)$. \Box

Remark 2.9 If λ satisfies the equation $f_{-(n)}(\lambda) = 0$ for some n > 0, then we have $E \cdot v_n = 0$ and $K \cdot v_n = \lambda q^{-n} v_n$. Thus the set $\{v_i\}_{i \ge n}$ spans a non-trivial submodule $L(\lambda)$ of $V(\lambda)$ which is isomorphic to $V(\lambda q^{-n})$.

3. The super Hopf algebra structure of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$

In this section, we construct a super Hopf algebra structure in $\mathcal{U}_q(\operatorname{osp}(1,2,f))$. We first give the definition of super Hopf algebras.

Definition 3.1 ([7]) A \mathbb{Z}_2 -graded super Hopf algebra is a direct sum $H = H_0 \oplus H_1$ of vector subspaces such that the following conditions hold:

1) *H* is an algebra such that $H_nH_m \subseteq H_{n+m}$ for all $m, n \in \mathbb{Z}_2$ and $1 \in H_0$;

2) *H* is a coalgebra such that $\Delta(H_n) \subseteq \bigoplus_{i+j=n} H_i \otimes H_j$, and $\varepsilon(H_1) = 0$;

3) $\Delta: H \to H \otimes H, \varepsilon: H \to k$ are algebra homomorphisms, where the product • of $H \otimes H$ is defined by

$$(x \otimes y_m) \bullet (x'_n \otimes y') = (-1)^{mn} x x'_n \otimes y_m y', \tag{3.1}$$

for $x, y' \in H, x'_n \in H_n, y_m \in H_m$;

4) There exists a linear mapping S such that $id * S = S * id = \eta \varepsilon$, and $S(H_n) \subseteq H_n$. Here, * is the convolution and η is the unit map of H.

Clearly, $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ is \mathbb{Z}_2 -graded with the grading given by

$$\deg E = \deg F = 1, \quad \deg K = \deg K^{-1} = 0.$$

Lemma 3.2 Assume that Δ is a morphism of algebras from $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ to $\mathcal{U}_q(\operatorname{osp}(1,2,f)) \otimes \mathcal{U}_q(\operatorname{osp}(1,2,f))$ such that K and K^{-1} are group-like elements. If the Laurent polynomial $g(K) \in \mathcal{U}_q(\operatorname{osp}(1,2,f))$

 $K[K, K^{-1}]$ is a group-like element, then $g(K) = K^m$ for some $m \in \mathbb{Z}$.

Proof Suppose that $g(K) = \sum_{i=-N}^{N} b_i K_i$. By the assumption, we have

$$\Delta g(K) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} b_i b_j K_i \otimes K^j.$$

If there exist $i \neq j$ such that $b_i b_j \neq 0$, then $\Delta g(K)$ is not a group-like element by Proposition 2.5. Therefore $g(K) = bK^m$ for some $b \in k$ and $m \in \mathbb{Z}$. It is clear that $b^2 = b$, and so b = 1 or b = 0, but the last is impossible. \Box

Proposition 3.3 Assume that Δ is a morphism of algebras from $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ to $\mathcal{U}_q(\operatorname{osp}(1,2,f)) \otimes \mathcal{U}_q(\operatorname{osp}(1,2,f))$ such that

$$\Delta(K) = K \otimes K, \quad \Delta(K^{-1}) = K^{-1} \otimes K^{-1},$$
$$\Delta(E) = K^s \otimes E + E \otimes K^t, \quad \Delta(F) = K^n \otimes F + F \otimes K^m.$$

Then we have n = -t, m = -s and $f(K) = a(K^{m-n} - K^{n-m})$ for some $a \in k \setminus \{0\}$.

 $\begin{aligned} & \mathbf{Proof} \ \text{Suppose } f(K) = \sum_{j=-N}^{N} a_j K^j, \text{ then we have} \\ & \Delta(E) \bullet \Delta(F) + \Delta(F) \bullet \Delta(E) \\ & = (K^s \otimes E + E \otimes K^t) \bullet (K^n \otimes F + F \otimes K^m) + (K^n \otimes F + F \otimes K^m) \bullet (K^s \otimes E + E \otimes K^t) \\ & = K^{s+n} \otimes EF + EK^n \otimes K^t F - K^s F \otimes EK^m + EF \otimes K^{t+m} + \\ & K^{n+s} \otimes FE + FK^s \otimes K^m E - K^n E \otimes FK^t + FE \otimes K^{m+t} \\ & = K^{s+n} \otimes f(K) + (q^{-t} - q^n) EK^n \otimes FK^t + (q^m - q^{-s}) FK^s \otimes EK^m + f(K) \otimes K^{t+m} + \\ & = \sum_{j=-N}^{N} a_j K^{s+n} \otimes K^j + (q^{-t} - q^n) EK^n \otimes FK^t + \\ & (q^m - q^{-s}) FK^s \otimes EK^m + \sum_{j=-N}^{N} a_j K^j \otimes K^{t+m}, \end{aligned}$

and by Lemma 3.2, we have $\Delta(f(K)) = \sum_{j=-N}^{N} a_j K^j \otimes K^j$.

Since $\Delta(E) \bullet \Delta(F) + \Delta(F) \bullet \Delta(E) = \Delta(f(K))$, and the set $\{E^i F^j K^l\}_{i,j \in \mathbb{N}, l \in \mathbb{Z}}$ is a basis of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, by Proposition 2.5, we have that $q^m - q^{-s} = 0$, $q^{-t} - q^n = 0$ and thus n = -t, m = -s. Moreover,

$$\sum_{j=-N}^{N} a_j K^{s+n} \otimes K^j + \sum_{j=-N}^{N} a_j K^j \otimes K^{t+m} = \sum_{j=-N}^{N} a_j K^j \otimes K^j.$$
(3.2)

From the equation (3.2), we have $a_j = 0$ when $j \neq n + s, m + t$. If n + s = m + t, then the equation (3.2) becomes

$$2a_{s+n}K^{s+n} \otimes K^{s+n} = a_{s+n}K^{s+n} \otimes K^{s+n},$$

hence, $a_{s+n} = 0$, which is impossible. If $n + s \neq m + t$, then the equation (3.2) becomes

$$a_{s+n}K^{s+n} \otimes K^{s+n} + a_{m+t}K^{s+n} \otimes K^{m+t} + a_{s+n}K^{s+n} \otimes K^{m+t} + a_{m+t}K^{m+t} \otimes K^{m+t} \otimes K^{m+t}$$

$$= a_{s+n}K^{s+n} \otimes K^{s+n} + a_{m+t}K^{m+t} \otimes K^{m+t}$$

hence, $a_{s+n} + a_{m+t} = 0$. This is to say that $f(K) = a(K^{m-n} - K^{n-m})$ for some $a \in k$. \Box

Proposition 3.4 Assume f(K) is a non-zero Laurent polynomial in $k[K, K^{-1}]$. Then the algebra $\mathcal{U}_q(\operatorname{osp}(1, 2, f))$ is a \mathbb{Z}_2 -graded super Hopf algebra such that K, K^{-1} are group-like elements and E, F are skew primitives if and only if $f(K) = a(K^m - K^{-m})$ for some $0 \neq a \in k, m \in \mathbb{Z}_+$, and the following relations

$$\begin{split} \Delta(K) &= K \otimes K, \quad \varepsilon(K) = 1, \quad S(K) = K^{-1}, \\ \Delta(K^{-1}) &= K^{-1} \otimes K^{-1}, \quad \varepsilon(K^{-1}) = 1, \quad S(K^{-1}) = K, \\ \Delta(E) &= E \otimes K^s + K^t \otimes E, \quad \varepsilon(E) = 0, \quad S(E) = -K^{-t}EK^{-s}, \\ \Delta(F) &= F \otimes K^{-t} + K^{-s} \otimes F, \quad \varepsilon(F) = 0, \quad S(F) = -K^s FK^t \end{split}$$
(3.3)

hold for some $s, t \in \mathbb{Z}$ with m = t - s.

Proof The necessity is clear from Lemma 3.2 and Proposition 3.3. The sufficiency can be proved similarly to [5]. \Box

Proposition 3.5 For all $i, j \in \mathbb{N}$ and $l \in \mathbb{Z}$, we have

$$\Delta(E^{i}F^{j}K^{l}) = \sum_{r=0}^{i} \sum_{k=0}^{j} (-1)^{k(i-r)} q^{(i-j+k-r)(rs-kt)} \binom{i}{r}_{-q^{t-s}} \binom{j}{k}_{-q^{s-t}} \times E^{r}F^{k}K^{(i-r)t-(j-k)s+l} \otimes E^{i-r}F^{j-k}K^{rs-kt+l}.$$

Proof First observe that

$$\Delta(E^i F^j K^l) = \Delta(E)^i \bullet \Delta(F)^j \bullet \Delta(K)^l$$

= $(E \otimes K^s + K^t \otimes E)^i \bullet (F \otimes K^{-t} + K^{-s} \otimes F)^j \bullet (K \otimes K)^l.$

Now,

$$(K^t \otimes E) \bullet (E \otimes K^s) = -q^{t-s}(E \otimes K^s) \bullet (K^t \otimes E),$$

and

$$(K^{-s} \otimes F) \bullet (F \otimes K^{-t}) = -q^{s-t}(F \otimes K^{-t}) \bullet (K^{-s} \otimes F).$$

Thus, we get

$$\Delta(E)^{i} = \sum_{r=0}^{i} {\binom{i}{r}}_{-q^{t-s}} (E \otimes K^{s})^{r} \bullet (K^{t} \otimes E)^{i-r}$$
$$= \sum_{r=0}^{i} q^{(i-r)rs} {\binom{i}{r}}_{-q^{t-s}} (E^{r}K^{(i-r)t} \otimes E^{i-r}K^{rs}).$$

and

$$\Delta(F)^{j} = \sum_{k=0}^{j} \binom{j}{k}_{-q^{s-t}} (F \otimes K^{-t})^{k} \bullet (K^{-s} \otimes F)^{j-k}$$

$$= \sum_{k=0}^{j} q^{(j-k)kt} \binom{j}{k}_{-q^{s-t}} (F^k K^{-(j-k)s} \otimes F^{j-k} K^{-kt}).$$

So, we have

$$\begin{split} \Delta(E^{i}F^{j}K^{l}) = & (E \otimes K^{s} + K^{t} \otimes E)^{i} \bullet (F \otimes K^{-t} + K^{-s} \otimes F)^{j} \bullet (K \otimes K)^{l} \\ &= \sum_{r=0}^{i} \sum_{k=0}^{j} q^{(i-r)rs} q^{(j-k)kt} {\binom{i}{r}}_{-q^{t-s}} {\binom{j}{k}}_{-q^{s-t}} \times \\ & (E^{r}K^{(i-r)t} \otimes E^{i-r}K^{rs}) \bullet (F^{k}K^{-(j-k)s} \otimes F^{j-k}K^{-kt}) \bullet (K^{l} \otimes K^{l}) \\ &= \sum_{r=0}^{i} \sum_{k=0}^{j} q^{(i-r)rs+(j-k)kt} {\binom{i}{r}}_{-q^{t-s}} {\binom{j}{k}}_{-q^{s-t}} \times \\ & (-1)^{k(i-r)} (E^{r}K^{(i-r)t}F^{k}K^{-(j-k)s}K^{l} \otimes E^{i-r}K^{rs}F^{j-k}K^{-kt+l}) \\ &= \sum_{r=0}^{i} \sum_{k=0}^{j} (-1)^{k(i-r)} q^{(i-r)rs+(j-k)kt} {\binom{i}{r}}_{-q^{t-s}} {\binom{j}{k}}_{-q^{s-t}} \times \\ & q^{-k(i-r)t}q^{-rs(j-k)}E^{r}F^{k}K^{(i-r)t}K^{-(j-k)s}K^{l} \otimes E^{i-r}F^{j-k}K^{rs-kt+l} \\ &= \sum_{r=0}^{i} \sum_{k=0}^{j} (-1)^{k(i-r)}q^{(i-j+k-r)(rs-kt)} {\binom{i}{r}}_{-q^{t-s}} {\binom{j}{k}}_{-q^{s-t}} \times \\ & E^{r}F^{k}K^{(i-r)t-(j-k)s+l} \otimes E^{i-r}F^{j-k}K^{rs-kt+l}. \Box \end{split}$$

4. The center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$

Clearly, $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ has also a \mathbb{Z} -graded structure with

 $\deg K^{\pm 1} = 0, \ \deg E = 1, \ \deg F = -1.$

Thus we have $\mathcal{U}_q(\operatorname{osp}(1,2,f)) = \bigoplus_{m \in \mathbb{Z}} \mathcal{U}_m$, where $\mathcal{U}_m = \langle F^i K^l E^{i+m} | i \in \mathbb{N}, l \in \mathbb{Z} \rangle$. In particular, $\mathcal{U}_0 = \langle F^i K^l E^i | i \in \mathbb{N}, l \in \mathbb{Z} \rangle$. Set $\mathcal{U}^0 = k[K, K^{-1}]$, then any element x_0 in \mathcal{U}_0 has a unique form $x_0 = \sum_{i \in \mathbb{N}} F^i h_i E^i$, here $h_i \in \mathcal{U}_0$.

Let $r \in k$. The map $\phi_r : \mathcal{U}_0 \to \mathcal{U}_0$ defined by $\phi_r(g(K)) = g(rK)$ is an algebra isomorphism, and the image of g(K) is denoted by $\phi_r g$.

Denote the center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ by $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$. Now, we construct an element $C_q \in Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$, which will be called the quantum Casimir element of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, and discuss its properties.

Lemma 4.1 The element of $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$ belongs to \mathcal{U}_0 .

Proposition 4.2 Let $x = \sum_{i \in \mathbb{N}} F^i h_i E^i \in \mathcal{U}_0$. Then we have $x \in \mathbb{Z}(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$ if and only if

$$h_{i} = (-1)^{i} f_{-(i+1)}(K) h_{i+1} + (-1)^{i} \phi_{q^{-1}} h_{i}$$

$$(4.1)$$

holds for all $i \in \mathbb{N}$.

Proof On the one hand, by the equation (2.1), we have

$$\begin{split} Ex &= \sum_{i \in \mathbb{N}} EF^{i}h_{i}E^{i} = \sum_{i \in \mathbb{N}} ((-1)^{i-1}F^{i-1}f_{-(i)}(K) + (-1)^{i}F^{i}E)h_{i}E^{i} \\ &= \sum_{i \in \mathbb{N}} (-1)^{i}F^{i}f_{-(i+1)}(K)h_{i+1}E^{i+1} + \sum_{i \in \mathbb{N}} (-1)^{i}F^{i}Eh_{i}E^{i} \\ &= \sum_{i \in \mathbb{N}} (-1)^{i}F^{i}f_{-(i+1)}(K)h_{i+1}E^{i+1} + \sum_{i \in \mathbb{N}} (-1)^{i}F^{i}\phi_{q^{-1}}h_{i}E^{i+1} \\ &= F^{i}\sum_{i \in \mathbb{N}} ((-1)^{i}f_{-(i+1)}(K)h_{i+1} + (-1)^{i}\phi_{q^{-1}}h_{i})E^{i+1}. \end{split}$$

On the other hand, we have $xE = \sum_{i \in \mathbb{N}} F^i h_i E^{i+1}$. Thus Ex = xE if and only if the equation (4.1) holds.

Similarly, we can get Fx = xF if and only if the equation (4.1) holds, and xK = Kx holds for any $x \in \mathcal{U}_0$. \Box

From Propositions 2.5 and 4.2, we know that h_1, h_2, \ldots are uniquely determined by h_0 and that $h_i = 0$ for all i > 2 when $h_2 \in k$. By the equation (4.1), we have

$$f(K)h_1 + \phi_{q^{-1}}h_0 = h_0, \tag{4.2}$$

$$(\phi_{q^{-1}}f(K))h_2 - f(K)h_2 = \phi_{q^{-1}}h_1 + h_1.$$
(4.3)

In the following section, we assume that $f(K) = a(K^m - K^{-m})$ for some $a \in k \setminus \{0\}$ and m > 0. Set $t = \frac{-1}{(q^{-m/2} + q^{m/2})^2}$ and assume $x = \sum_{i \in \mathbb{N}} F^i h_i E^i \in \mathbb{Z}(\mathcal{U}_q(\operatorname{osp}(1, 2, f)))$ with $h_i \in \mathcal{U}^0$. First, we consider the equation (4.3):

$$\begin{split} \phi_{q^{-1}h_1} + h_1 &= (\phi_{q^{-1}}f(K))h_2 - f(K)h_2 \\ &= a(q^{-m}K^m - q^mK^{-m})h_2 - a(K^m - K^{-m})h_2 \\ &= a((q^{-m} - 1)K^m - (q^m - 1)K^{-m})h_2 \\ &= a((q^{-m} + 1)\frac{q^{-m} - 1}{q^{-m} + 1}K^m - (q^m + 1)\frac{q^m - 1}{q^m + 1}K^{-m})h_2 \\ &= a(q^m - q^{-m})((q^{-m} + 1)\frac{q^{-m} - 1}{(q^{-m} + 1)(q^m - q^{-m})}K^m - (q^m + 1)\frac{q^m - 1}{(q^m + 1)(q^m - q^{-m})}K^{-m})h_2 \\ &= a(q^m - q^{-m})((q^{-m} + 1)\frac{q^{-2m} - 1}{(q^{-m} + 1)^2(q^m - q^{-m})}K^m - (q^m + 1)\frac{q^{2m} - 1}{(q^m + 1)^2(q^m - q^{-m})}K^{-m})h_2 \\ &= a(q^m - q^{-m})((q^{-m} + 1)\frac{-1}{(q^{-m} + 1)^2q^m}K^m - (q^m + 1)\frac{1}{(q^m + 1)^2q^{-m}}K^{-m})h_2 \\ &= a(q^m - q^{-m})((q^{-m} + 1)\frac{-1}{(q^{-m/2} + q^{m/2})^2}K^m + (q^m + 1)\frac{-1}{(q^{m/2} + q^{-m/2})^2}K^{-m})h_2 \\ &= a(q^m - q^{-m})((q^{-m} + 1)tK^m + (q^m + 1)tK^{-m})h_2 \\ &= a(q^m - q^{-m})t((q^{-m}K^m + q^mK^{-m}) + (K^m + K^{-m}))h_2. \end{split}$$

So, when $h_2 \in k$, we have that $P = a(q^m - q^{-m})t(K^m + K^{-m})h_2$ is an h_1 in the equation (4.3). Then, we choose h_1 to be P and consider the equation (4.2):

$$h_0 - \phi_{q^{-1}}h_0 = a^2(q^m - q^{-m})t(K^m - K^{-m})(K^m + K^{-m})h_2$$

$$= a^{2}(q^{m} - q^{-m})t(K^{2m} - K^{-2m})h_{2}$$

= $a^{2}t(q^{m}K^{2m} - q^{m}K^{-2m} - q^{-m}K^{2m} + q^{-m}K^{-2m})h_{2}$
= $a^{2}t((q^{m}K^{2m} + q^{-m}K^{-2m}) - (q^{-m}K^{2m} + q^{m}K^{-2m}))h_{2}.$

So, when $h_2 \in k$, we have that $a^2 t(q^m K^{2m} + q^{-m} K^{-2m})h_2$ is an h_0 in the equation (4.2). Choose $h_2 = 1$ and we get an element C_q in $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$,

$$C_q = F^2 E^2 + at(q^m - q^{-m})F(K^m + K^{-m})E + a^2t(q^m K^{2m} + q^{-m} K^{-2m}),$$
(4.4)

which is called quantum Casimir element.

Let π be a map from \mathcal{U}_0 to \mathcal{U}^0 defined by $\pi(\sum_i F^i h_i E^i) = h_0$. Then π is an algebra map and is called Harish-Chandra map. The element z in \mathcal{U}_0 can be written as $\pi(z) + \sum_{i>0} F^i h_i E^i$. By the equation (4.1) we can easily get the following lemma.

Lemma 4.3 $\pi|_Z$ is injective from $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$ to \mathcal{U}^0 .

For any $z \in \mathcal{U}_0$, note that $\pi(z)$ is a Laurent polynomial in K, we denote its value at λ by $\pi(z)(\lambda)$.

Lemma 4.4 Let V be the highest weight $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ -module with highest weight λ . Then, for any central element z of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ and any $v \in V$, we have

$$z \cdot v = \pi(z)(\lambda)v.$$

Proof The proof is similar to that of Theorem 6.4.4 in [5]. \Box

In order to determine the center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, we set $p = \sqrt{q}$ and write

$$\overline{P}(\lambda) = P(p^{-1}\lambda) = (\phi_{p^{-1}}P)(\lambda),$$

for any Laurent polynomial P(K) in $k[K, K^{-1}]$.

Lemma 4.5 For any element z in the center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$, we have

$$\overline{\pi(z)}(\xi\lambda) = \overline{\pi(z)}(\xi\lambda^{-1}), \quad \overline{\pi(z)}(\zeta\lambda) = \overline{\pi(z)}(\zeta\lambda^{-1})$$

for all $\lambda \in k$ and ξ with $\xi^{2m} = 1$ and ζ with $\zeta^{2m} = -1$.

Proof For ξ with $\xi^{2m} = 1$ and any odd integer n > 0. Consider the Verma module $V(\xi p^{n-1})$. By Lemma 2.8, we have $E \cdot v_n = f_{-(n)}(\xi p^{n-1})v_{n-1} = 0$. In fact,

$$f_{-(n)}(\xi p^{n-1}) = (n)_{-q^{-m}}(\xi p^{n-1})^m - (n)_{-q^m}(\xi p^{n-1})^{-m}$$

= $((n)_{-q^{-m}}(\xi p^{n-1})^{2m} - (n)_{-q^m})(\xi p^{n-1})^{-m}$
= $((n)_{-q^{-m}}((q^m)^{n-1}) - (n)_{-q^m})(\xi p^{n-1})^{-m}$
= $((n)_{-q^{-m}}((-q^m)^{n-1}) - (n)_{-q^m})(\xi p^{n-1})^{-m}$
= 0.

Thus, by Remark 2.9 v_n is the highest weight vector of weight $\xi p^{n-1}q^{-n} = \xi p^{n-1}p^{-2n} = \xi p^{-n-1}$.

Then, we have $\pi(z)(\xi p^{n-1}) = \pi(z)(\xi p^{-n-1})$ by Lemma 4.4. In other words, we have

$$\overline{\pi(z)}(\xi p^n) = \overline{\pi(z)}(\xi p^{-n}),$$

as what we want because of the random of n.

For ζ with $\zeta^{2m} = -1$ and any even integer n > 0. Consider the Verma module $V(\zeta p^{n-1})$. Similarly, we can get $\overline{\pi(z)}(\zeta \lambda) = \overline{\pi(z)}(\zeta \lambda^{-1})$. \Box

Lemma 4.6 Any Laurent polynomial of $k[K, K^{-1}]$ satisfying the relations $P(\xi\lambda) = P(\xi\lambda^{-1})$ and $P(\zeta\lambda) = P(\zeta\lambda^{-1})$ for all $\lambda \in k$ and ξ with $\xi^{2m} = 1$ and ζ with $\zeta^{2m} = -1$ is a polynomial in $K^{2m} + K^{-2m}$.

Proof It can be proved by induction. \Box

Theorem 4.7 The center of $\mathcal{U}_q(\operatorname{osp}(1,2,f))$ is a polynomial algebra generated by the Casimir element C_q . The restriction of the Harish-Chandra homomorphism π to $Z(\mathcal{U}_q(\operatorname{osp}(1,2,f)))$ is an isomorphism onto the subalgebra of $k[K, K^{-1}]$ generated by $q^m K^{2m} + q^{-m} K^{-2m}$.

Proof We know that the restriction of π to the center is injective, and we are left with determining its image. By Lemmas 4.5 and 4.6 the latter is contained in the subalgebra of $k[K, K^{-1}]$ generated by $q^m K^{2m} + q^{-m} K^{-2m}$. In fact,

$$\overline{q^m K^{2m} + q^{-m} K^{-2m}} = q^m q^{-m} K^{2m} + q^{-m} q^m K^{-2m} = K^{2m} + K^{-2m}.$$

Consider the image of the Casimir element C_q defined by (4.4), we have

$$\pi(C_q) = a^2 t (q^m K^{2m} + q^{-m} K^{-2m}),$$

which implies that the image is the whole subalgebra and that C_q generates the center. The latter is a polynomial algebra because the powers of $q^m K^{2m} + q^{-m} K^{-2m}$ are linearly independent for obvious reasons of degree. \Box

Acknowledgment The authors would like to thank the referees for their useful suggestions and comments.

References

- [1] KAC V G. Lie superalgebras [J]. Advances in Math., 1977, 26(1): 8–96.
- [2] KAC V. Representations of Classical Lie Superalgebras [M]. Springer, Berlin, 1978.
- [3] MUSSON I M, ZOU Yiming. Crystal bases for $U_q(osp(1, 2r))$ [J]. J. Algebra, 1998, **210**(2): 514–534.
- [4] ZOU Yiming. Integrable representations of $U_q(osp(1, 2n))$ [J]. J. Pure Appl. Algebra, 1998, **130**(1): 99–112.
- [5] KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
- [6] MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. American Mathematical Society, Providence, RI, 1993.
- [7] KLIMYK A, SCHMÜDGEN K. Quantum Groups and Their Representation [M]. Springer-Verlag, Berlin, 1997.