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Abstract This paper addresses the problem of robust stability for a class of discrete-time

neural networks with time-varying delay and parameter uncertainties. By constructing a new

augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in

forms of linear matrix inequality (LMI) technique. Compared with some recent results in the

literature, the conservatism of these new criteria is reduced notably. Two numerical examples

are provided to demonstrate the less conservatism and effectiveness of the proposed results.
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1. Introduction

Over the past few decades, recurrent neural networks (RNNs) have attracted considerable

attention due to their successful applications in various areas including optimization solvers,

model identification, signal processing, and other engineering areas. As is well known that any

useful neural network must be a stable one. However, because of the existence of time delays,

stochastic disturbances, parameter uncertainties and so on, the convergence of a neural network

may often be destroyed. This makes the design or performance for the corresponding closed-

loop systems become difficult. Therefore, stability analysis of delayed uncertain neural network

has received much attention. Up to now, various stability conditions have been obtained, and

many excellent papers and monographs have been available [1–9]. Generally speaking, these

so-far obtained stability results for delayed RNNs can be mainly classified into two types: that
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is, delay-independent and delay-dependent. Since the information of time delays is sufficiently

considered, delay-dependent criteria may be less conservative than delay-independent ones when

the size of time delay is small. For delay-dependent type, the size of the allowable upper bound of

delay is always regarded as an important criterion to discriminate the quality between different

criteria. Recently, free-weighting matrices method is extensively used to research the delay-

dependent stability problems for RNNs with time-varying delay and parameters uncertainties

[10–16]. By introducing free-weighting matrices, the conservatism of a criterion usually may be

reduced effectively.

It should be pointed out that, most of these previous results have been assumed to be in con-

tinuous time, but seldom in discrete time. In practice, when implementing and applying neural

networks, discrete-time neural networks play a more important role than their continuous-time

counter-parts in today’s digital world, such as numerical computation, and computer simula-

tion. And they can ideally keep the dynamic characteristics, functional similarity, and even the

physical or biological reality of the continuous-time networks under mild restriction. Thus, the

stability analysis problems for discrete-time neural networks have received more and more inter-

est, and some stability criteria have been proposed in the literature [10, 17–27]. In [26], Liu et

al., researched a class of discrete-time RNNs with time-varying delay, and established a delay-

dependent exponential stability criterion. The result obtained in [26] has been improved by Song

and Wang in [20]. The results obtained in [20] were further improved in [21] by considering some

useful terms. Recently, some new improved criteria are derived in [22, 23, 27], respectively.

In this paper, some new improved delay-dependent stability criteria are obtained via con-

structing a new augmented Lyapunov-Krasovskii function. These new conditions are less con-

servative than those obtained in [10, 20–23,26, 27]. Two numerical examples are provided to

illuminate the improvement of the proposed criteria.

Notation: The following notations are used in our paper unless otherwise specified. ‖ · ‖

denotes a vector or a matrix norm; R, Rn are real and n-dimensional real number sets, respec-

tively; N+ is positive integer set. I is identity matrix; ∗ represents the elements below the

main diagonal of a symmetric block matrix; Real matrix P > 0(< 0) denotes P is a positive-

definite (negative-definite) matrix; N [a, b] = {a, a + 1, . . . , b}; λmin(λmax) denotes the minimum

(maximum) eigenvalue of a real matrix.

2. Preliminaries

Consider a delayed discrete-time RNNs Σ as follows

Σ : y(k + 1) = C(k)y(k) + A(k)f (y(k)) + B(k)g(y(k − τ(k))) + J, (1)

where y(k) = [y1(k), y2(k), . . . , yn(k)]T ∈ Rn denotes the neural state vector; f(y(k)) = [f1(y1(k)),

f2(y2(k)), . . . , fn(yn(k))]T, g(y(k− τ(k))) = [g1(y1(k− τ(k))), g2(y2(k− τ(k))), . . . , gn(yn(k−

τ(k)))]T are the neuron activation functions; J = [J1, J2, . . . , Jn]T is the external input vec-

tor; Positive integer τ(k) represents the transmission delay satisfying 0 < τm ≤ τ(k) ≤ τM ,

where τm, τM are known positive integers representing the lower and upper bounds of the delay.



Augmented Lyapunov approach to exponential stability of discrete-time neural networks 481

C(k) = C + △C(k), A(k) = A + △A(k), B(k) = B + △B(k); C = diag(c1, c2, . . . , cn) with

|ci| < 1 describes the rate with which the ith neuron will reset its potential to the resting state

in isolation when disconnected from the networks and external inputs; C, A, B ∈ Rn×n represent

the weighting matrices; ∆C(k), ∆A(k), ∆B(k) denote the time-varying structured uncertainties

which are of the form: [∆C(k) ∆A(k) ∆B(k)] = KF (k)[Ec Ea Eb], where K, Ec, Ea, Eb are

known real constant matrices of appropriate dimensions; F (k) is unknown time-varying matrix

function satisfying FT(k)F (k) ≤ I, ∀k ∈ N+.

The nominal Σ0 of Σ can be defined as

Σ0 : y(k + 1) = Cy(k) + Af(y(k)) + Bg(y(k − τ(k))) + J. (2)

For further discussion, we first introduce the following assumption and lemmas.

Assumption 1 For any x, y ∈ R, x 6= y,

l−i ≤
f i(x) − f i(y)

x − y
≤ l+i , σ−

i ≤
gi(x) − gi(y)

x − y
≤ σ+

i , i ∈ N+, (3)

where l−i , l+i , σ−

i , σ+
i are known constant scalars. As pointed out in [17] that, under Assumption

1, system (2) has equilibrium point. Assume y∗ = [y∗

1 , y∗

2 , . . . , y∗

n]T is an equilibrium point

of (2), and set xi(k) = yi(k) − y∗

i , fi(xi(k)) = f i(xi(k) + y∗

i ) − f i(y
∗

i ), gi(xi(k − τ(k))) =

gi(xi(k − τ(k)) + y∗

i ) − gi(y
∗

i ). Then, system (2) can be transformed into the following form:

x(k + 1) = Cx(k) + Af(x(k)) + Bg(x(k − τ(k))), k ∈ N+, (4)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T, f(x(k)) = [f1(x1(k)), f2(x2(k)), . . . , fn(xn(k))]T, g(x(k−

τ(k))) = [g1(x1(k − τ(k))), g2(x2(k − τ(k))), . . . , gn(xn(k − τ(k)))]T. By Assumption 1, for any

x, y ∈ R, x 6= y, functions fi(·), gi(·) satisfy

l−i ≤
fi(x) − fi(y)

x − y
≤ l+i , σ−

i ≤
gi(x) − gi(y)

x − y
≤ σ+

i , fi(0) = 0, gi(0) = 0, i ∈ N+.

Definition 1 The delayed discrete-time recurrent neural network in (4) is said to be globally

exponentially stable if there exist two positive scalars α > 0 and 0 < β < 1 such that

‖x(k)‖ ≤ α · βk sup
s∈N [−τM ,0]

‖x(s)‖, ∀k ≥ 0.

Lemma 1 (Tchebychev Inequality [28]) For any given vectors vi ∈ Rn, i ∈ N+, the following

inequality holds:
[ n∑

i=1

vi

]T[ n∑

i=1

vi

]
≤ n

n∑

i=1

vT
i vi.

Lemma 2 ([29]) For given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions,

then

Q + HFE + ETFTHT < 0,

for all F satisfying FTF ≤ R, if and only if there exists an ε > 0, such that

Q + ε−1HHT + εETRE < 0.
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Lemma 3 ([30]) Given constant symmetric matrices Σ1, Σ2, Σ3, where ΣT
1 = Σ1 and 0 < Σ2 =

ΣT
2 , then Σ1 + ΣT

3 Σ−1
2 Σ3 < 0 if and only if

[
Σ1 ΣT

3

Σ3 −Σ2

]
< 0 or

[
−Σ2 Σ3

ΣT
3 Σ1

]
< 0.

Lemma 4 ([10]) Let N and E be real constant matrices of appropriate dimensions, and matrix

F (k) satisfy FT(k)F (k) ≤ I. Then, for any ǫ > 0, EF (k)N +NTFT(k)ET ≤ ǫ−1EET + ǫNTN .

3. Main results

Theorem 1 For any given positive integers 0 < τm < τM , then, under Assumption 1, system

(4) is globally exponentially stable for any time-varying delay τ(k) satisfying τm ≤ τ(k) ≤ τM ,

if there exist positive matrices Q, R, H , P , positive diagonal matrices D1, D2, Z1, Z2, arbitrary

matrices M1, M2, N1, N2, F1, F2 of appropriate dimensions, such that the following LMI holds:

Ξ =




Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19 Ξ1,10

∗ Ξ22 0 0 Ξ25 0 0 0 Ξ29 Ξ2,10

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 0 0 0

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 0 0 0

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10




< 0, (5)

where Q =




Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33


,

Ξ11 =Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q22 + Q33 − D1L1 + N1 + NT

1 + F1 + FT
1 +

M1(C − I) + (C − I)TMT
1 + (1 + (τM − τm)−1)R + H + P + (1 + τM )Z2 + (1 + τm)Z1,

Ξ12 =NT
2 + FT

2 − F1 − N1, Ξ13 = −Q12 − Q22 − QT
23, Ξ14 = −Q13 − Q23 − Q33,

Ξ15 =Q11 + Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q22 + Q33 − M1 + (C − I)TMT

2 + NT
1 ,

Ξ16 =Q22 + QT
23, Ξ17 = Q23 + Q33, Ξ18 = M1A + D1L2, Ξ19 = M1B,

Ξ1,10 =NT
2 + FT

2 − F1 − N1, Ξ22 = −N2 − F2 + (−N2 − F2)
T − (τM − τm)−1R − D2Π1,

Ξ25 = − NT
1 , Ξ29 = D2Π2, Ξ2,10 = −NT

2 − FT
2 − F2 − N2, Ξ33 = Q22 − H, Ξ34 = −Q23,

Ξ35 = − QT
12 − Q23 − Q22, Ξ36 = −Q22, Ξ37 = −Q23, Ξ44 = Q33 − P,

Ξ45 = − QT
13 − QT

23 − Q33, Ξ46 = −QT
23, Ξ47 = −Q33,

Ξ55 =Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q11 + Q22 + Q33 − MT

2 − M2,

Ξ56 =Q12 + Q22 + QT
23, Ξ57 = Q13 + Q23 + Q33, Ξ58 = M2A, Ξ59 = M2B, Ξ5,10 = −N1,
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Ξ66 = −
Z1

1 + τm
, Ξ77 = −

Z2

1 + τM
, Ξ88 = −D1,

Ξ99 = − D2, Ξ10,10 = −NT
2 − N2 − FT

2 − F2,

L1 =diag(l+1 l−1 , . . . , l+n l−n ), L2 = diag(
l+1 + l−1

2
, . . . ,

l+n + l−n
2

),

Π1 =diag(σ+
1 σ−

1 , . . . , σ+
n σ−

n ), Π2=diag(
σ+

1 +σ−

1

2
, . . . ,

σ+
n+σ−

n

2
).

Proof. Constructing a new augmented Lyapunov-Krasovskii function candidate as follows:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k),

V1(k) = X̂T(k)QX̂(k), X̂T(k) =
[
xT(k),

k∑

i=k−τm

xT(i),

k∑

i=k−τM

xT(i)
]
,

V2(k) =

k−1∑

i=k−τm

xT(i)Hx(i) +

k−1∑

i=k−τM

xT(i)Px(i),

V3(k) =

k∑

j=k−τm

k−1∑

i=j

xT(i)Z1x(i) +

k∑

j=k−τM

k−1∑

i=j

xT(i)Z2x(i),

V4(k) =
1

τM − τm

k−1∑

i=k−τ(k)

xT(i)Rx(i), V5(k) =
1

τM − τm

k−τm∑

j=k+1−τM

k−1∑

i=j

xT(i)Rx(i).

Set XT(k) = [xT(k), xT(k−τ(k)), xT(k−τm), xT(k−τM ), ηT(k),
∑k

i=k−τm
xT(i),

∑k
i=k−τM

xT(i),

fT(x(k)), gT(x(k − τ(k)))], η(k) = x(k + 1) − x(k). Define ∆V (k) = V (k + 1) − V (k). Then

along the solution of system (4), we have

∆V1(k) =X̂T(k + 1)QX̂(k + 1) − X̂T(k)QX̂(k)

=xT(k)[Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q22 + Q33]x(k)−

2xT(k)[Q12 + Q22 + QT
23)]x(k − τm) − 2xT(k)[Q13 + Q23 + Q33)]x(k − τM )+

2xT(k)[Q11 + Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q22 + Q33]η(k)+

2xT(k)[Q22 + QT
23]

k∑

i=k−τm

x(i) + 2xT(k)[Q23 + Q33]

k∑

i=k−τM

x(i)+

xT(k − τm)Q22x(k − τm) − 2xT(k − τm)Q23x(k − τM )−

2xT(k − τm)[QT
12 + Q23 + Q22]η(k) − 2xT(k − τm)Q22

k∑

i=k−τm

x(i)−

2xT(k − τm)Q23

k∑

i=k−τM

x(i) + xT(k − τM )Q33x(k − τM )−

2xT(k − τM )QT
23

k∑

i=k−τm

x(i) − 2xT(k − τM )[QT
13 + QT

23 + Q33]η(k)+

2ηT(k)[Q13 + Q23 + Q33]
k∑

i=k−τM

x(i) − 2xT(k − τM )Q33

k∑

i=k−τM

x(i)+



484 Z. X. LIU, S. LÜ, S. M. ZHONG and M. YE

ηT(k)[Q12 + QT
12 + Q13 + QT

13 + Q23 + QT
23 + Q11 + Q22 + Q33]η(k)+

2ηT(k)[Q12 + Q22 + QT
23]

k∑

i=k−τm

x(i), (6)

∆V2(k) = xT(k)(H + P )x(k) − xT(k − τm)Hx(k − τm) − xT(k − τM )Px(k − τM ). (7)

From Lemma 1, we have

∆V3(k) =

k+1∑

j=k+1−τm

k∑

i=j

xT(i)Z1x(i) −

k∑

j=k−τm

k−1∑

i=j

xT(i)Z1x(i)+

k+1∑

j=k+1−τM

k∑

i=j

xT(i)Z2x(i) −

k∑

j=k−τM

k−1∑

i=j

xT(i)Z2x(i)

=

k∑

j=k−τm

k∑

i=j+1

xT(i)Z1x(i) −

k∑

j=k−τm

k−1∑

i=j

xT(i)Z1x(i)+

k∑

j=k−τM

k∑

i=j+1

xT(i)Z2x(i) −
k∑

j=k−τM

k−1∑

i=j

xT(i)Z2x(i)

≤(1 + τm)xT(k)Z1x(k) −
1

1 + τm

[ k∑

j=k−τm

x(j)
]T

Z1

[ k∑

j=k−τm

x(j)
]
+

(1 + τM )xT(k)Z2x(k) −
1

1 + τM

[ k∑

j=k−τM

x(j)
]T

Z2

[ k∑

j=k−τM

x(j)
]
. (8)

∆V4(k) =
1

τM − τm

[
xT(k)Rx(k) − xT(k − τ(k))Rx(k − τ(k)))+

k−τm∑

i=k+1−τ(k+1)

xT(i)Rx(i) +

k−1∑

i=k+1−τm

xT(i)Rx(i) −

k−1∑

i=k+1−τ(k)

xT(i)Rx(i)
]

≤
1

τM − τm
[xT(k)Rx(k) − xT(k − τ(k))Rx(k − τ(k))]+

1

τM − τm

[ k−τm∑

i=k+1−τM

xT(i)Rx(i)
]
, (9)

∆V5(k) =xT(k)Rx(k) −
1

τM − τm

[ k−τm∑

i=k+1−τM

xT(i)Rx(i)
]
. (10)

For any matrices M1, M2 of appropriate dimensions, we have

2xT(k)M1[(C − I)x(k) + Af(x(k)) + Bg(x(k − τ(k))) − η(k)] = 0, (11)

2ηT(k)M2[(C − I)x(k) + Af(x(k)) + Bg(x(k − τ(k))) − η(k)] = 0. (12)

Since x(k)−
∑k−1

i=k−τ(k) η(i)−x(k−τ(k)) = 0, for arbitrary matrices N1, N2, F1, F2 of appropriate

dimensions, we can obtain that

0 = X̃T
1

[
0 N1

0 N2

]
X̃2, 0 = X

T

1

[
0 F1

0 F2

]
X̃2, (13)
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where X̃T
1 (k) = [ηT(k)+ xT(k),

∑k−1
i=k−τ(k) ηT(i)+ xT(k− τ(k))], X̃T

2 = [ηT(k)+ xT(k), xT(k)−
∑k−1

i=k−τ(k) ηT(i) − xT(k − τ(k))], X
T

1 = [xT(k),
∑k−1

i=k−τ(k) ηT(i) + xT(k − τ(k))].

From Assumption 1, for any positive diagonal matrices D1, D2 of appropriate dimensions,

we have

2xT(k)D1L2f(x(k)) − xT(k)D1L1x(k) − fT(x(k))D1f(x(k)) ≥ 0,

2xT(k − τ(k))D2Π2g(x(k − τ(k))) − xT(k − τ(k))D2Π1x(k − τ(k))−

gT(x(k − τ(k)))D2g(x(k − τ(k))) ≥ 0. (14)

Combining (6)–(14), we get

∆V (k) ≤ X ′T(k)ΞX ′(k), X ′T(k) =
[
XT(k),

k−1∑

i=k−τ(k)

ηT(i)
]
. (15)

If the LMI (5) holds, it follows that there exists a sufficient small positive scalar ε > 0 such that

∆V (k) ≤ −ε‖x(k)‖2. (16)

On the other hand, it is easy to get that

V (k) ≤ α1‖x(k)‖2 + α2

k∑

i=k−τM

‖x(i)‖2, (17)

where α1 = λmax(Q), α2 = (λmax(Q) + λmax(H) + λmax(Z1))τm + (λmax(Q) + λmax(P ) +

λmax(Z2))τM + 2λmax(Q) + λmax(Z1) + λmax(Z2) + (1 + 1
τM−τm

)λmax(R).

For any θ > 1, it follows from (17) that

θj+1V (j + 1) − θjV (j) = θj+1∆V (j) + θj(θ − 1)V (j)

≤ θj
(
− εθ‖x(j)‖2 + (θ − 1)α1‖x(j)‖2 + (θ − 1)α2

j∑

i=j−τM

‖x(i)‖2
)
. (18)

Summing up both sides of (18) from 0 to k − 1 we can obtain

θkV (k) − V (0) ≤ [α1(θ − 1) − εθ]
k−1∑

j=0

θj‖x(j)‖2 + α2(θ − 1)
k−1∑

j=0

j∑

i=j−τM

θj‖x(i)‖2

≤ µ1(θ) sup
j∈N [−τM ,0]

‖x(j)‖2 + µ2(θ)

k∑

j=0

θk‖x(j)‖2, (19)

where µ1(θ) = α2(θ−1)τ2
MθτM , µ2(θ) = α2(θ−1)τMθτM +α1(θ−1)−εθ. Since µ2(1) = −ε < 0,

there must exist a positive θ0 > 1 such that µ2(θ0) < 0. Then, we have

V (k) ≤ µ1(θ0)(
1

θ0
)k sup

j∈N [−τM ,0]

‖x(j)‖2 + (
1

θ0
)kV (0). (20)

On the other hand, set σ = α1 + (1 + τM )α2, we can obtain

V (0) ≤ σ sup
j∈N [−τM ,0]

‖x(j)‖2 and V (k) ≥ λmin(Q)‖x(k)‖2. (21)
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It follows that ‖x(k)‖ ≤ α · βk supj∈N [−τM ,0] ‖x(j)‖, where β = (θ0)
−1/2, α =

√
µ1(θ0)+σ
λmin(Q) . By

Definition 1, system (4) is globally exponentially stable, which completes the proof of Theorem

1. 2

Remark 1 In Theorem 1, we proposed V1 which takes xT(k),
∑k

i=k−τm
xT(i),

∑k
i=k−τM

xT(i)

as augmented state. The proposed augmented Lyapunov function V1 is not considered in the

existing literature and may reduce the conservatism of the delay-dependent result.

Remark 2 Free-weighting matrices N1, N2, F1, F2 introduced through zero equation (13) may

improve the feasibility region of delay-dependent stability criterion.

Remark 3 It is worthwhile pointing out that this new criterion can be easily extended to

robust exponential stability condition. As for the robust stability of system (1), according to

Lemma 2, we can obtain the following result.

Theorem 2 For any given positive integers 0 < τm < τM , then, under Assumption 1, system

(1) is globally, robustly, and exponentially stable for any time-varying delay τ(k) satisfying

τm ≤ τ(k) ≤ τM , if there exist positive matrices Q, R, H , P , positive diagonal matrices D1, D2,

Z1, Z2, arbitrary matrices M1, M2, N1, N2, F1, F2 of appropriate dimensions, and ǫ > 0, such

that the following LMI holds:

Ξ′ ,




Ξ ξ1 ǫξT
2

∗ −ǫI 0

∗ ∗ −ǫI


 < 0, (22)

where ξT
1 = [KTMT

1 , 0, 0, KTMT
2 , 0, 0, 0, 0, 0, 0], ξ2 = [Ec, 0, 0, 0, 0, 0, 0, Ea, Eb, 0].

Proof Replacing A, B, C in inequality (5) with A+KF (t)Ea, B +KF (t)Eb and C +KF (t)Ec,

respectively, inequality (5) for system (1) is equivalent to Ξ + ξ1F (t)ξ2 + ξT
2 FT(t)ξT

1 < 0. From

Lemmas 2, 3 and 4, we can easily obtain this result. The proof is completed. 2

4. Numerical examples

In this section, two numerical examples will be presented to show the improvement and

effectiveness of the main results derived above.

Example 1 For the convenience of comparison, consider a delayed discrete-time recurrent neural

network in (4) with parameters given by

C =

[
0.8 0

0 0.7

]
, A =

[
0.001 0

0 0.005

]
, B =

[
−0.1 0.01

−0.2 −0.1

]
,

and the activation functions are assumed to be fi(s) = gi(s) = 0.5 ∗ (|s + 1| − |s − 1|).

Obviously, l−1 = σ−

1 = −1, l+2 = σ+
2 = 1. It can be verified that the LMI (5) is feasible. For

τm = 1, 4, 8, 15, 25, Table 1 gives out the allowable upper bound τM of the time-varying delay for

given τm, which shows that Theorem 1 is less conservative than these previous results obtained
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in [10, 20–23,26, 27].

Cases τm = 1 τm = 4 τm = 8 τm = 15 τm = 25

By [10,26] 3 6 10 17 27

By [20] 12 14 16 21 29

By [21] 12 14 18 25 35

By [27] 14 17 19 26 36

By [22] 14 17 21 28 38

By [23] 20 22 26 33 43

By Theorem 3.1 τM > 0 τM > 0 τM > 0 τM > 0 τM > 0

Table 1 Allowable upper bounds τM for given τm (Example 1)

Example 2 Consider a delayed discrete-time recurrent neural network in (1) with parameters

given by

C =




0.4 0 0

0 0.5 0

0 0 0.4


 , A =




0.3 −0.1 0.2

0 −0.3 0.2

−0.1 −0.1 −0.2


 , B =




0.2 0.1 0.1

−0.2 0.3 0.1

0.1 −0.2 0.3


 ,

K =




0.1 0 0

0 0.1 0

0 0 0.1


 , Ec = Ea = Eb = K, J = [0, 0, 0]T,

f1(s) = tanh(0.2s), f2(s) = tanh(0.4s), f3(s) = tanh(0.2s),

g1(s) = tanh(0.12s), g2(s) = tanh(0.2s), g3(s) = tanh(0.4s).

It can be verified that L1 = Π1 = 0, L2 = diag(0.1, 0.2, 0.1), Π2 = diag(0.06, 0.1, 0.2), and the

LMI (22) is feasible. For τm = 2, 4, 6, 8, 10, Table 2 gives out the allowable upper bound τM of

the time-varying delay for given τm, which implies that, for this example, the delay-dependent

exponential stability result proposed in Theorem 2 in this paper provides less conservatism than

those in [10, 20, 21, 23, 26].

Cases τm = 2 τm = 4 τm = 6 τm = 8 τm = 10

By [20] failed failed failed failed failed

By [21] failed failed failed failed failed

By [26] failed failed failed failed failed

By [10] 18 20 22 24 26

By [23] 24 26 28 30 34

By Theorem 2 τM > 0 τM > 0 τM > 0 τM > 0 τM > 0

Table 2 Allowable upper bounds τM for given τm (Example 2)
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5. Conclusions

Combined with linear matrix inequality (LMI) technique, a new augmented Lyapunov-

Krasovskii function is constructed, and some new improved sufficient conditions ensuring glob-

ally exponential stability or robust exponential stability are obtained. Numerical examples show

that the new results are less conservative than some recent results obtained in the literature cited

therein.
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