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1. Introduction

Let Ω(x) be a measurable function on Rn satisfying the following conditions:

Ω(λx) = Ω(x); for any λ > 0 and x ∈ Rn\{0}; (1.1)
∫

Sn−1

Ω(x′)dσ(x′) = 0, (1.2)

where Sn−1 is the unit sphere in Rn with normalized Lebesgue measure dσ. Let P (x) be a real

valued polynomial on Rn. The oscillatory singular integral operator T is defined on the test

function space S(Rn) by

Tf(x) = p.v.

∫

Rn

eiP (x−y) Ω(x− y)

|x− y|n
f(y)dy. (1.3)

Ricci and Stein in [1] proved that if Ω ∈ C1(Sn−1) with the conditions (1.1) and (1.2), then T

is bounded on Lp(Rn) (1 < p <∞), and the norm of Lp(Rn) of T depends only on the degree of

P (x), not its coefficients. Later, Lu and Zhang in [2] improved the result under a weaker condition

Ω ∈ Lr(Sn−1) (1 < r ≤ ∞). Moreover, Fan and Pan in [3] proved if Ω ∈ H1(Sn−1), then T is

still bounded on Lp(Rn) (1 < p < ∞). On the other hand, the homogeneous Triebel-Lizorkin

space Ḟα,q
p (Rn) is a unified setting of many well-known function spaces, i.e., Lp(Rn) = Ḟ 0,2

p (Rn),

Sobolev spaces Lp
α(Rn) = Ḟα,2

p (Rn), when 1 < p < ∞, and Hardy spaces Hp(Rn) = Ḟ 0,2
p (Rn)

when 0 < p ≤ 1. Recently, Chen, Jia and Jiang in [4] showed that T is bounded on Ḟα,q
p (Rn)
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under a further weaker condition Ω ∈ L log+ L(Sn−1). The following theorem is the main result

in [4]:

Theorem A Let α ∈ R, 1 < p, q <∞, P (x) be a polynomial with ∇P (0) = 0, and T be defined

as in (1.3). If Ω ∈ L log+ L(Sn−1) and satisfies conditions (1.1) and (1.2), then T is bounded on

Ḟα,q
p (Rn), that is

‖Tf‖Ḟ α,q
p

≤ C(1 + ‖Ω‖L log+ L(Sn−1))‖f‖Ḟ α,q
p
,

where C is a constant which depends only on the degree of P (x) but not its coefficients.

When P (x) is of degree N = 0, the phase function in T is identically zero and T is the

classical singular integral operator of convolution type. In this case, it was proved that T is

bounded on Ḟα,q
p (Rn) and Ḃα,q

p (Rn) in [5] as Ω ∈ H1(Sn−1). With the following fact

⋃

r>1

Lr(Sn−1) ⊆ L log+ L(Sn−1) ⊆ H1(Sn−1),

it is natural to ask whether T defined as in (1.3) is bounded on Ḟα,q
p (Rn) or not as Ω ∈ H1(Sn−1).

In this paper, we will study this problem. It is commonly known that Triebel-Lizorkin spaces

are much harder to work with than Besov spaces due to their particular structure.

Suppose that P (s) = PN (s) is a real polynomial on R of degree N , the oscillatory singular

integral operator TΩ is defined on the test function space S(Rn) by

TΩ,P f(x) = p.v.

∫

Rn

eiP (|x−y|) Ω(x− y)

|x− y|n
f(y)dy. (1.4)

Specially, for β ∈ R, β 6= 0, 1, the oscillatory singular integral operator TΩ is defined on the

test function space S(Rn) by

TΩ,βf(x) = p.v.

∫

Rn

ei|x−y|β Ω(x− y)

|x− y|n
f(y)dy. (1.5)

In [6] and [7], Chanillo, Kurts and Sampson studied the Lp(ω) (1 < p < ∞) and weighted

weak type (1, 1) boundedness of operator Tf(x) = p.v.(1 + | · |)−1ei|·|β ∗ f(x), where ω ∈ Ap.

As shown in [7], the same results are also true for the operator defined in (1.5) with standard

C-Z kernel. In [8], Chen and Jiang showed that TΩ,β defined in (1.5) is bounded on Ḟα,q
p (Rn) as

Ω ∈ L log+ L(Sn−1).

The aim of this note is to investigate the boundedness of the oscillatory singular integral

operators TΩ and T with the Hardy kernels on the Triebel-Lizorkin spaces and the Besov spaces.

Before stating our main results, we recall the definitions of the Triebel-Lizorkin spaces and the

Besov spaces.

Definition 1.1 Let φ ∈ C∞
0 (Rn) and supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2} such that 0 ≤ φ ≤ 1,

and φ(x) > c > 0, when 3/5 ≤ |x| ≤ 5/3. Write φl(x) = φ(2lx) and
∑+∞

l=−∞ φ2
l (x) = 1 when

x 6= 0. Denote Slf = Φl ∗ f , where Φ̂l(ξ) = φl(ξ). Let Ψ ∈ S(Rn) with supp(Ψ) ⊂ {ξ : |ξ| ≤ 2}

and |Ψ̂| ≥ c > 0 as |ξ| ≤ 5
3 . Let P (Rn) denote the class of polynomials on Rn. Then the
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homogeneous Triebel-Lizorkin spaces are defined by

Ḟα,q
p = {f ∈ S′(Rn)/P (Rn) : ‖f‖Ḟ α,q

p (Rn) =
∥∥∥
( ∑

l∈Z

2−lαq|Slf |
q
) 1

q

∥∥∥
p
<∞},

and the inhomogeneous Triebel-Lizorkin spaces are defined by

Fα,q
p (Rn) = {f ∈ S′(Rn) : ‖f‖F α,q

p (Rn) =
∥∥∥
( ∑

l≥1

2−lαq|Slf |
q
) 1

q

∥∥∥
p

+ ‖Ψ ∗ f‖p <∞}.

And the homogeneous Besov spaces Ḃα,q
p (Rn) are defined by

Ḃα,q
p ((Rn) = {f ∈ S′((Rn)/P (Rn) : ‖f‖Ḃα,q

p (Rn) =
( ∑

l∈Z

2−lαq‖Slf‖
q
Lp

) 1
q <∞},

and the inhomogeneous Besov spaces are defined by

Bα,q
p (Rn) = {f ∈ S′(Rn) : ‖f‖Bα,q

p (Rn) =
( ∑

l≥1

2−lαq‖Slf‖
q
Lp

) 1
q + ‖Ψ ∗ f‖p <∞}.

Let S∗
l be the dual operator of Sl. It is easy to see that

‖f‖Ḟ α,q
p (Rn) ∼

∥∥∥
( ∑

l∈Z

2−lαq|S∗
l f |

q
) 1

q

∥∥∥
p
.

The following properties of Triebel-Lizorkin spaces and the Besov spaces are well-known. Let

1 < p, q <∞ and 1
p + 1

p′
= 1, 1

q + 1
q′

= 1. Then we have

(1) Ḟ 0,2
p = Hp for 0 < p ≤ 1, Ḟ 0,2

p = Ḃ0,2
p = Lp for 1 < p <∞ and Ḟ 0,2

∞ = BMO;

(2) Fα,q
p ∼ Ḟα,q

p

⋂
Lp and ‖f‖F α,q

p
∼ ‖f‖Lp + ‖f‖Ḟ α,q

p
, for α > 0;

(3) Bα,q
p ∼ Ḃα,q

p

⋂
Lp and ‖f‖Bα,q

p
∼ ‖f‖Lp + ‖f‖Ḃα,q

p
, for α > 0;

(4) (Fα,q
p )∗ = F−α,q′

p′ and (Ḟα,q
p )∗ = Ḟ−α,q′

p′ ;

(5) (Bα,q
p )∗ = B−α,q′

p′ and (Ḃα,q
p )∗ = Ḃ−α,q′

p′ ;

(6) Ḟα,q1
p ⊂ Ḟα,q2

p and Fα,q1
p ⊂ Fα,q2

p , if q1 ≤ q2.

The main results of this note are in the following.

Theorem 1.1 Let α ∈ R, 1 < p, q <∞, and P (s) = PN (s) be a real polynomial on R of degree

N (N ≥ 2). If Ω ∈ H1(Sn−1) and satisfies the conditions (1.1) and (1.2), then TΩ,P defined as

in (1.4) is bounded on Ḟα,q
p (Rn), that is,

‖TΩ,P f‖Ḟ α,q
p

≤ C‖f‖Ḟ α,q
p
, (1.6)

where C is a constant which depends only on the degree of P but not its coefficients.

Since the operator TΩ,P is bounded on Lp(Rn) (see [3]), by applying Theorem 1.1 and the

properties (2), (4), we have the following corollary about the inhomogeneous Triebel-Lizorkin

spaces.

Corollary 1.1 Let α ∈ R, 1 < p, q < ∞. Let TΩ,P , Ω be defined as in Theorem 1.1. Then

TΩ,P is bounded on Fα,q
p (Rn), that is,

‖TΩ,P f‖F α,q
p

≤ C‖f‖F α,q
p
,

where C is a constant which depends only on the degree of P (x) but not its coefficients.
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Theorem 1.2 Let α ∈ R, 1 < p, q < ∞, β > 0 (β 6= 0, 1). If Ω ∈ H1(Sn−1) and satisfies the

conditions (1.1) and (1.2), then TΩ,β defined as in (1.5) is bounded on Ḟα,q
p (Rn), that is,

‖TΩ,βf‖Ḟ α,q
p

≤ C‖f‖Ḟ α,q
p
. (1.7)

Noting the following fact

⋃

r>1

Lr(Sn−1) ⊆ L log+ L(Sn−1) ⊆ H1(Sn−1),

we see that Theorem 1.2 improves Theorem 1.1 in [7].

Theorem 1.3 Let α ∈ R, 1 < p, q < ∞. Let P (x) be a real valued polynomial on Rn. If

Ω ∈ H1(Sn−1) and satisfies the conditions (1.1) and (1.2), then T defined as in (1.3) is bounded

on Ḃα,q
p (Rn), that is,

‖Tf‖Ḃα,q
p

≤ C‖f‖Ḃα,q
p
,

where C is a constant which depends only on the degree of P (x) but not its coefficients.

Since the operator T is bounded on Lp(Rn) (see [3]), by applying Theorem 1.3 and the

properties (3), (5), we have the following corollary about the inhomogeneous Besov spaces.

Corollary 1.2 Let α ∈ R, 1 < p, q < ∞. Let T , Ω and P (x) be defined as in Theorem 1.3.

Then T is bounded on Bα,q
p (Rn), that is,

‖Tf‖Bα,q
p

≤ C‖f‖Bα,q
p
,

where C is a constant which depends only on the degree of P (x) but not its coefficients.

Noting that (Ḟα0,q0
p , Ḟα1,q1

p )θ,q = Ḃα1,q1
p for 0 < θ < 1, we can obtain the following results

from Theorem 1.2 and the properties (3), (5).

Theorem 1.4 Let α ∈ R, 1 < p, q < ∞. Let TΩ,β , Ω, and β be defined as in Theorem 1.2.

Then

(i) ‖TΩ,βf‖Ḃα,q
p

≤ C‖f‖Ḃα,q
p

, for α ∈ R;

(ii) ‖TΩ,βf‖Bα,q
p

≤ C‖f‖Bα,q
p

, for α > 0.

In the next section we shall introduce some notations and lemmas which will be used in our

proofs. In the last section we shall give the proofs of Theorems 1.1 and 1.3.

2. Preliminary lemmas

Let us begin with recalling the definition of the Hardy space H1(Sn−1). The Poisson kernel

on Sn−1 is defined by Pty′(x′) = (1 − t2)/|ty′ − x′|n with 0 ≤ t < 1 and x′, y′ ∈ Sn−1. Then the

Hardy space H1(Sn−1) is defined by

H1(Sn−1) =
{
ω̄ ∈ L1(Sn−1) : P+ω̄(x′) =: sup

0≤t<1

∣∣
∫

Sn−1

ω̄(y′)Ptx′(y′)dσ(y′)
∣∣ ∈ L1(Sn−1)

}

with the norm ‖ω̄‖H1(Sn−1) =: ‖P+ω̄‖L1(Sn−1) for ω̄ ∈ H1(Sn−1).
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An exceptional atom is an L∞ function a(·) satisfying ‖a‖L∞(Sn−1) ≤ 1. A regular q-atom is

an Lq (1 < q ≤ ∞) function a(·) that satisfies:

supp(a) ⊂ Sn−1
⋂

{y ∈ Rn : |y − ξ′| < ρ for some ξ′ ∈ Sn−1 and ρ ∈ (0, 1]}; (2.1)
∫

Sn−1

a(x′)dσ(x′) = 0; (2.2)

and

‖a‖q ≤ ρ(n−1)(1/q−1). (2.3)

If Ω ∈ H1(Sn−1), then it has the following atomic decomposition [12]

Ω =

∞∑

j=1

λjaj , (2.4)

where
∑∞

j=1 |λj | ≤ C‖Ω‖H1(Sn−1) and the aj ’s are either exceptional atoms or regular q-atoms.

In particular, if Ω ∈ H1(Sn−1) has the mean zero property (1.2), then all the atoms aj in (2.4)

can be chosen to be regular q-atoms for a fixed q, 1 < q ≤ ∞.

In the rest of this paper, for any non-zero ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, we write ξ/|ξ| = ξ′ =

(ξ′1, ξ
′
2, . . . , ξ

′
n) ∈ Sn−1. Let a(·) be a regular ∞-atom in H1(Sn−1) whose support satisfies

supp(a) ⊂ Sn−1 ∩B(ξ′, ρ). Set

Ea(s, ξ′) = (1 − s2)(n−3)/2χ(−1,1)(s)

∫

Sn−2

a
(
s, (1 − s2)1/2ỹ

)
dσ(ỹ), n ≥ 3, (2.5)

and

ea(s, ξ′) = (1 − s2)−1/2χ(−1,1)(s)
[
a
(
s, (1 − s2)1/2

)
+ a

(
s,−(1 − s2)1/2

)]
, n = 2.

The following lemmas are needed in the next section.

Lemma 2.1 ([13]) There exists a constant c > 0, independent of a, such that Ea(s, ξ′) is an

∞-atom on R. That is, cEa satisfies

‖cEa‖L∞ ≤ 1/r(ξ′), supp(Ea) ⊂ (ξ′1 − 2r(ξ′), ξ′1 + 2r(ξ′))

and ∫

R

Ea(s, ξ′)ds = 0,

where r(ξ′) = |ξ|−1|Aρξ| and Aρ(ξ) = (ρ2ξ1, ρξ2, . . . , ρξn).

Lemma 2.2 ([13]) For 1 < q < 2, there exists a constant c > 0, independent of a, such

that cea(s, ξ
′) is a q-atom on R, the center of whose support is ξ′1 and the radius r(ξ′) =

|ξ|−1(ρ4ξ21 + ρ2ξ22)1/2.

Lemma 2.3 ([1]) Let φ(t) be real-valued and smooth function in (a, b) and |φ(k)(t)| ≥ 1 for all

t ∈ (a, b). Then
∣∣
∫ b

a

eiλφ(t)dt
∣∣ ≤ Ckλ

− 1
k

holds when (i) k ≥ 2 or (ii) k = 1, φ′(t) is monotonic. The bound Ck is independent of φ and λ.



514 Y. M. NIU and S. P. TAO

Lemma 2.4 Denote σk(x) = eiP (|x|)|x|−na(x′)χ(2k−1 < |x| ≤ 2k), where P (s) = PN (s) =∑N−1
m=0 βms

m + sN is a real polynomial on R of degree N , a is an ∞-atom. Then there exists a

positive constant θ such that

|σ̂k(ξ)| ≤ Cmin{|Aρ2
kξ|θ, |Aρ2

kξ|−1/4}, (2.6)

where C is independent of k ∈ Z, ξ ∈ Rn and ρ > 0, only depends on the degree of P but not

its coefficients.

Proof We will only prove the case n ≥ 3, since the proof for n = 2 is essentially the same (using

Lemma 2.2 instead of Lemma 2.1).

Firstly, we verify that σ̂k(ξ) satisfies

|σ̂k(ξ)| ≤ C|Aρ2
kξ|−1/4.

For any ξ 6= 0, we choose a rotation O such that O(ξ) = |ξ|1 = |ξ|(1, 0, . . . , 0). Let y′ =

(s, y′2, y
′
3, . . . , y

′
n). Then it is easy to see that

σ̂k(ξ) =

∫

Ik

t−1

∫

Sn−1

a(O−1y′)e−it|ξ|〈1,y′〉+iPN (t)dσ(y′)dt,

where Ik = [2k−1, 2k], O−1 is the inverse of O. Now a(O−1y′) is again an ∞-atom with support

in B(ξ′, ρ) ∩ Sn−1. Therefore, we get

σ̂k(ξ) =

∫

Ik

t−1

∫

R

Ea(s, ξ′)e−it|ξ|s+iPN (t)dsdt,

where Ea(s, ξ′) is a function defined as (2.5). By Lemma 2.1, without loss of generality we

may assume that Ea(s, ξ′) is a q-atom with support in (−2r(ξ′), 2r(ξ′)) for 1 < q < 2. Thus

A(s) = r(ξ′)Ea(r(ξ′)s, ξ′) is a q-atom with support in the interval (−1, 1). After changing

variables, we have

σ̂k(ξ) =

∫

Ik

t−1

∫

R

A(s)e−itr(ξ′)|ξ|s+iPN (t)dsdt. (2.7)

From (2.7) and Hölder’s inequality, we have

|σ̂k(ξ)| ≤ C2−k/2
{∫

Ik

∣∣
∫

R

A(s)e−itr(ξ′)|ξ||sds
∣∣2dt

}1/2

.

Let

Nk =
{∫

Ik

∣∣
∫

R

A(s)e−itr(ξ′)|ξ|sds
∣∣2dt

}1/2

.

To estimate Nk, we choose a function ψ ∈ C∞(R) satisfying ψ(t) ≡ 1 for |t| ≤ 1, ψ(t) ≡ 0 for

|t| > 2. Define Tk by

(Tkf)(t) = χIk
(t)

∫

R

e−itr(ξ′)|ξ|sψ(s)f(s)ds.

Then

TkT
∗
k f(t) =

∫

R

L(t, s)f(s)ds,

where

L(t, s) =

∫

R

e−iv[(s−t)r(ξ′)|ξ|]ψ(v)2dvχIk
(t)χIk

(s).
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We can easily get

|L(t, s)| ≤ CχIk
(t)χIk

(s). (2.8)

On the other hand, by integration by parts, we have

|L(t, s)| ≤ C(|s− t|r(ξ′)|ξ|)−1χIk
(t)χIk

(s). (2.9)

Thus, by (2.8) and (2.9), we have

|L(t, s)| ≤ C(|s− t|r(ξ′)|ξ|)−1/2χIk
(t)χIk

(s).

Therefore,

sup
s>0

∫

R

|L(t, s)|dt ∼= sup
t>0

∫

R

|L(t, s)|ds ∼= 2k(2kr(ξ′)|ξ|)−1/2. (2.10)

It follows that

‖Tk‖2 ≤ C2k/2(2k|Aρξ|)
−1/4.

Thus

|σ̂k(ξ)| ≤ C(2k|Aρξ|)
−1/4.

By using Hölder’s inequality, we have

|σ̂k(ξ)| ≤ C
{ ∫

Ik

∣∣
∫

R

A(s)e−itr(ξ′))|ξ||sds
∣∣2dt

}1/2

.

We have from (2.8) and (2.10),

|σ̂k(ξ)| ≤ C2k/2. (2.11)

Therefore, after changing variables and by the cancelation property of A(.), we obtain that

σ̂k(ξ) =

∫

Ik

∫

R

A(s)eiPN (t){e−itr(ξ′)|ξ|s − 1}dst−1dt

=

∫ 2

1

ei(
∑ N−1

m=0
βm(2kt)m+(2kt)N )

∫

R

A(s){e−i2ktr(ξ′)|ξ|s − 1}dst−1dt

=

∫

R

∫ 2

1

ei(
∑ N−1

m=0
βm(2kt)m+(2kt)N+2ktr(ξ′)|ξ|τs)dtA(s)2kr(ξ′)|ξ|sids.

Noting that

(
∂

∂t
)N

( N−1∑

m=0

βm(2kt)m + (2kt)N + 2ktr(ξ′)|ξ|τs
)
≥ C2k,

where τ ∈ (0, 1) and C is a constant depending on N , by Lemma 2.3, we obtain

|σ̂k(ξ)| ≤

∫

R

∣∣∣
∫ 2

1

ei(
∑ N−1

m=0
βm(2kt)m+(2kt)N+2ktr(ξ′|ξ|τs)dt

∣∣∣A(s)2kr(ξ′|ξ||s|ds

≤ C2k(−1/N)2k|Aρξ| ≤ C2k(1−1/N)|Aρξ|.

It follows that

|σ̂k(ξ)| ≤ C2k(1−1/N)|Aρξ|. (2.12)

Therefore, by (2.11) and (2.12), for θ = N/(N + 2) ∈ (0, 1), we have

|σ̂k(ξ)| ≤ C2k(1−1/N)θ |Aρξ|
θ2[k(1−θ)/2].
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Thus,

|σ̂k(ξ)| ≤ C(2k|Aρξ|)
θ,

where θ = N/(N + 2). So the proof of Lemma 2.4 is completed. 2

Lemma 2.5 Denote σ′
k(x) = ei|x|β |x|−na(x′)χ (2k−1 < |x| ≤ 2k), where a is an ∞-atom and

β > 0 (β 6= 1). Then

|σ̂′
k(ξ)| ≤ Cmin{|Aρ2

kξ|, |Aρ2
kξ|−1/4},

where C is independent of k ∈ Z, ξ ∈ Rn and ρ > 0, only depends on β.

Proof Similarly to the proof of Lemma 2.4, we have σ̂′
k(ξ) satisfies

|σ̂′
k(ξ)| ≤ C|Aρ2

kξ|−1/4.

By Hölder’s inequality, we have

|σ̂′
k(ξ)| ≤ C

{ ∫

Ik

∣∣
∫

R

A(s)e−itr(ξ′)|ξ||sds
∣∣2dt

}1/2

.

Similarly to estimate (2.11), we have

|σ̂′
k(ξ)| ≤ C2k/2. (2.13)

Since

(
∂

∂t
)2(tβ − t|ξ|τs) ≥ C2k(β−2),

where τ ∈ (0, 1) and C is a constant depending on β. So by the cancelation property of A(·), we

have

σ̂′
k(ξ) =

∫

Ik

∫

R

A(s)eitβ

{e−it|ξ|s − 1}dst−1dt

=

∫

R

∫

Ik

eitβ−t|ξ|τsdtA(s)i|ξ|sds.

Since

(
∂

∂t
)2(tβ − t|ξ|τs) ≥ C2k(β−2),

where τ ∈ (0, 1) and C is a constant depending on β. Therefore, by Lemma 2.3, we obtain

|σ̂′
k(ξ)| ≤

∫

R

∣∣
∫ 2k+1

2k

eitβ−−t|ξ|τsdt
∣∣A(s)|ξ||s|ds ≤ C2k(1−β/2)|Aρξ|.

It follows that

|σ̂k(ξ)| ≤ C2k(1−β/2)|Aρξ|. (2.14)

Therefore, by (2.13) and (2.14) for θ = β/(β + 4) ∈ (0, 1), we have

|σ̂′
k(ξ)| ≤ C2k(1−β/2)θ|Aρξ|

θ2[k(1−θ)/2].

That is,

|σ̂′
k(ξ)| ≤ C(2k|Aρξ|)

θ,

where θ = β/(β + 4). Thus, the proof of Lemma 2.5 is completed. 2
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Lemma 2.6 ([5]) If ψ ∈ S(Rn) with supp(ψ) ⊂ {x : 1/2 ≤ |x| ≤ 2} and for k ∈ Z, define the

multiplier Sk by Ŝkf(ξ) = ψ(2kξ)f̂(ξ). Then for 1 < p, q <∞, we have
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|Skfj |
2
)q/2)1/q

∥∥∥
Lp

≤ C
∥∥∥
( ∑

j∈Z

|fj|
q
)1/q

∥∥∥
Lp
,

where C is independent of j and k.

Lemma 2.7 ([5]) Suppose ψ ∈ S(Rn) with supp(ψ) ⊂ {x : 1/2 ≤ |x| ≤ 2}. Denote Aρx =

(ρ2x1, ρx1, . . . , ρxn) for ρ > 0 and x ∈ Rn. Define the multiplier Sk,ρ by Ŝk,ρf(x) = ψk,ρ(x)f̂(x),

where k ∈ Z and ψk,ρ(ξ) = ψ(2kAρx). Then for 1 < p, q <∞,
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|Sk,ρfj |
2
)q/2)1/q

∥∥∥
Lp

≤ C
∥∥∥
( ∑

j∈Z

|fj|
q
)1/q

∥∥∥
Lp
,

where C is independent of j, ρ and k.

Let MΩ denote the rough maximal operator with Ω ∈ L1(Sn−1) defined by

MΩf(x) = sup
r>0

1

rn

∫

|y|<r

|Ω(y)||f(x− y)|dy.

Lemma 2.8 ([5]) Let 1 < p, q <∞, {fj} ∈ Lp(lq) and Ω ∈ L1(Sn−1). Then

∥∥∥
( ∑

j∈Z

|MΩfj|
q
)1/q

∥∥∥
Lp

≤ C‖Ω‖1

∥∥∥∥∥
( ∑

j∈Z

|fj |
q
)1/q

∥∥∥
Lp
,

where C is independent of Ω and {fj}.

Lemma 2.9 Let 1 < p, q <∞, h(x) be a function on R+. Denote

σk(x) = eih(|x|)|x|−n|Ω(x′)|χ(2k−1 < |x| ≤ 2k).

Suppose {(
∑

k∈Z
|gk,j |

2)1/2}j ∈ Lp(lq) and Ω ∈ L1(Sn−1). Then
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|σk ∗ gk,j |
2
)q/2)1/q

∥∥∥
Lp

≤ C‖Ω‖1

∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|gk,j |
2
)q/2)1/q

∥∥∥
Lp
,

where C is independent of Ω and {gk,j}.

Proof Note that

sup
k∈Z

|σk ∗ gk,j | ≤ sup
k∈Z

|σk| ∗ |gk,j | ≤MΩ(sup
k∈Z

|gk,j |).

Therefore, we have
∥∥∥
( ∑

j∈Z

(
sup
k∈Z

|σk ∗ gk,j |
)q)1/q

∥∥∥
Lp

≤
∥∥∥
( ∑

j∈Z

(
MΩ(sup

k∈Z

|gk,j |)
)q)1/q

∥∥∥
Lp
.

By Lemma 2.8, we have
∥∥∥
( ∑

j∈Z

(
sup
k∈Z

|σk ∗ gk,j |
)q)1/q

∥∥∥
Lp

≤ C‖Ω‖1

∥∥∥
( ∑

j∈Z

(
sup
k∈Z

|gk,j |
)q)1/q

∥∥∥
Lp
. (2.15)

On the other hand, there exists a sequence {hj} ∈ Lp′

(lq
′

) such that
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|σk ∗ gk,j |
)q)1/q

∥∥∥
Lp

=
∣∣∣
∑

j∈Z

∫

Rn

∑

k∈Z

|σk ∗ gk,j |(x)hj(x)dx
∣∣∣
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≤
∑

j∈Z

∫

Rn

∑

k∈Z

|gk,j |(x) sup
k∈Z

|σ̃k ∗ |hj |(x)dx

≤ C
∑

j∈Z

∫

Rn

∑

k∈Z

|gk,j(x)||MΩ̃hj(x)|dx,

where σ̃k(x) = σk(−x) and Ω̃(x) = Ω(−x). By Hölder’s inequality and (2.4), we have
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|σk ∗ gk,j |
)q)1/q

∥∥∥
Lp

≤ C
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|gk,j |
)q)1/q

∥∥∥
Lp

∥∥∥
( ∑

j∈Z

|MΩ̃hj|
)q′)1/q′

∥∥∥
Lp′

≤ C‖Ω‖1

∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|gk,j |
)q)1/q

∥∥∥
Lp

∥∥∥
( ∑

j∈Z

|hj |
)q′)1/q′

∥∥∥
Lp′

.

It follows that
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|σk ∗ gk,j |
)q)1/q

∥∥∥
Lp

≤ C‖Ω‖1

∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|gk,j |
)q)1/q

∥∥∥
Lp
. (2.16)

By an interpolating between (2.15) and (2.16) [14], we obtain
∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|σk ∗ gk,j |
2
)q/2)1/q

∥∥∥
Lp

≤ C‖Ω‖1

∥∥∥
( ∑

j∈Z

( ∑

k∈Z

|gk,j |
2
)q/2)1/q

∥∥∥
Lp
.

Thus, the proof of Lemma 2.9 is completed. 2

3. Proofs of theorems

Proof of Theorem 1.1 For the given polynomial P (s) = PN (s) =
∑N

m=0 βms
m, without loss

of generality we may assume that βN = 1. Otherwise, let A = |βN |
1
N . Write

PN (|x|) =
N∑

m=0

βm

Am
(A|x|)m := Q(A|x|).

Then by making a change of variable, we have

TΩ,P f(
x

A
) = p.v.

∫

Rn

eiQ(|x−y|) Ω(x − y)

|x− y|n
f(
y

A
)dy.

Noticing that ‖f( ·
A )‖Ḟ α,q

p
∼ A−α+ p

n ‖f(·)‖Ḟ α,q
p

, thus we only need considering the case A = 1.

By (2.4), we have

TΩ,P f(x) =

∞∑

j=1

λjTjf(x), (3.1)

where

Tjf(x) = eiP (|·|) a(·)

| · |n
∗ f(x).

Therefore,

Tjf(x) =
∑

k∈Z

σk ∗ f(x),

where σk(x) = eiP (|x|) aj(x
′)

|x|n χ(2k−1 < |x| ≤ 2k). We take ψ ∈ S(Rn) with supp(ψ) ⊂ {x ∈

Rn1/2 ≤ |x| ≤ 2}. In addition, we may claim ψ to satisfy
∑

k∈Z
(ψ(2kξ))2 = 1 for ξ 6= 0.
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Therefore by the definition of Sk,ρ, f =
∑

k∈Z
Sk,ρ(Sk,ρf) for any f ∈ S(Rn). We have

Tjf(x) =
∑

k∈Z

σk ∗ (
∑

i∈Z

Si+k,ρ(Si+k,ρf))

=
∑

i∈Z

∑

k∈Z

Si+k,ρ(σk ∗ Si+k,ρf) =:
∑

i∈Z

Bif(x).

It follows that

‖Tjf‖Ḟ α,q
p

≤
∑

i∈Z

‖Bif‖Ḟ α,q
p
. (3.2)

With a similar argument to the proof of Theorem 1 in [5], by Lemmas 2.6, 2.7 and 2.9, we easily

get ∥∥∥
( ∑

l

|Bifl|
q
)1/q

∥∥∥
Lp

≤ C
∥∥∥
( ∑

l

|fl|
q
)1/q

∥∥∥
Lp
, (3.3)

where 1 < p, q <∞, α ∈ R and C is independent of i, l and ρ. Therefore by (3.3), we have

‖Bif‖Ḟ α,q
p

≤
∥∥∥
( ∑

l∈Z

2−lαq|Φl ∗Bif)|q
) 1

q

∥∥∥
Lp

≤
∥∥∥
( ∑

l∈Z

|Bi(2
−lαΦl ∗ f |

q
) 1

q

∥∥∥
Lp

≤ C
∥∥∥
(∑

l∈Z

2−lαq|Φl ∗ f)|q
) 1

q

∥∥∥
Lp
.

It follows that

‖Bif‖Ḟ α,q
p

≤ C‖f‖Ḟ α,q
p
. (3.4)

By properties (1), Lemma 2.4 and Plancherel’s theorem, we obtain

‖Bif‖F 0,2
2

≤ C2−δ|i|‖f‖F 0,2
2

, (3.5)

where C is independent of i and ρ.

Therefore, by an interpolating between (3.4) and (3.5), there exists η > 0 such that

‖Bif‖Ḟ α,q
p

≤ C2−η|i|‖f‖Ḟ α,q
p
. (3.6)

By (3.1), (3.2) and (3.6), we have

‖TΩ,P f‖Ḟ α,q
p

≤
∞∑

j=1

λj‖Tjf‖Ḟ α,q
p

≤

∞∑

j=1

λj

∑

i∈Z

‖Bif‖Ḟ α,q
p

≤ C

∞∑

j=1

λj

∑

i∈Z

‖f‖Ḟ α,q
p

≤ C‖Ω‖H1(Sn−1)‖f‖Ḟ α,q
p
.

This completes the proof of Theorem 1.1. 2

From the proof of Theorem 1.1, by Lemmas 2.5, 2.6, 2.7 and 2.9, Theorem 1.2 can be easily

proved. Here, we omit the details.
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Proof of Theorem 1.3 By Theorem 9.1 in [3], we know T is Lp boundedness for 1 < p <∞.

Therefore, for 1 < p, q <∞, we have

( ∑

l∈Z

‖Tfl‖
q
p

)1/q
≤ C

( ∑

l∈Z

‖fl‖
q
p

)1/q
.

We take Φl as Definition 1.1. Therefore, for any 1 < p, q <∞ and α ∈ R, we obtain

‖Tf‖Ḃα,q
p

=
( ∑

l∈Z

2−lαq‖Φl ∗ Tf‖
q
p

)1/q
≤

( ∑

l∈Z

‖T (2−lαΦl ∗ f)‖q
p

)1/q

≤ C
( ∑

l∈Z

2−lαq‖Φl ∗ f‖
q
p

)1/q
= C‖f‖Ḃα,q

p
.

This completes the proof of Theorem 1.3. 2
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