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1. Introduction

Let Q(x) be a measurable function on R™ satisfying the following conditions:

Q(Az) = Q(z); forany A >0 and z € R"\{0}; (1.1)

/ Q(z)do(2") =0, (1.2)
S’Vl*l

where S"~1 is the unit sphere in R with normalized Lebesgue measure do. Let P(z) be a real
valued polynomial on R™. The oscillatory singular integral operator T is defined on the test
function space S(R"™) by
Tf(x)= p.v./ eip(w_y)?x(xi_yﬁl)f(y)dy. (1.3)
Ricci and Stein in [1] proved that if Q@ € C1(S™~!) with the conditions (1.1) and (1.2), then T
is bounded on LP(R™) (1 < p < o0), and the norm of L?(R™) of T depends only on the degree of
P(z), not its coefficients. Later, Lu and Zhang in [2] improved the result under a weaker condition
Qe L"(S"1) (1 <r < o). Moreover, Fan and Pan in [3] proved if Q € H'(S"™1), then T is
still bounded on LP(R™) (1 < p < o0). On the other hand, the homogeneous Triebel-Lizorkin
space F;’Q(R") is a unified setting of many well-known function spaces, i.e., LP(R™) = F£’2(R"),
Sobolev spaces L (R™) = F;’2(R"), when 1 < p < o0, and Hardy spaces H?(R") = FZ?’Q(R")
when 0 < p < 1. Recently, Chen, Jia and Jiang in [4] showed that 7" is bounded on F*¢(R")
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under a further weaker condition Q € Llog™ L(S™~!). The following theorem is the main result
in [4]:

Theorem A Leta € R, 1 < p, ¢ < oo, P(z) be a polynomial with VP(0) = 0, and T be defined
as in (1.3). If Q € Llog"™ L(S™~!') and satisfies conditions (1.1) and (1.2), then T is bounded on
Fz‘j"q(R"), that is

1Tl gos < LA 120 g 10g pse 1)l

where C' is a constant which depends only on the degree of P(x) but not its coefficients.
When P(x) is of degree N = 0, the phase function in T is identically zero and T is the

classical singular integral operator of convolution type. In this case, it was proved that T is
bounded on F;"q(R") and Bg’q(R") in [5] as Q € H'(S"~!). With the following fact

U £7(5™1) € Liog* L(s™) € HY(s™Y),
r>1
it is natural to ask whether T" defined as in (1.3) is bounded on F;’Q(R") ornot as Q € H*(S"1).
In this paper, we will study this problem. It is commonly known that Triebel-Lizorkin spaces
are much harder to work with than Besov spaces due to their particular structure.
Suppose that P(s) = Py(s) is a real polynomial on R of degree N, the oscillatory singular
integral operator T, is defined on the test function space S(R"™) by

To,pf(z) =Dp.v. / . eiP(My')%Jc(wdy- (1.4)

Specially, for 5 € R, 8 # 0, 1, the oscillatory singular integral operator Tq is defined on the
test function space S(R"™) by
. Oz —
e (1.5)

n |z —y|™

In [6] and [7], Chanillo, Kurts and Sampson studied the LP(w) (1 < p < oo0) and weighted
weak type (1, 1) boundedness of operator T'f(z) = p.v.(1 + |- |)7leiHB * f(x), where w € A,,.
As shown in [7], the same results are also true for the operator defined in (1.5) with standard
C-Z kernel. In [8], Chen and Jiang showed that Tq g defined in (1.5) is bounded on F;“%R”) as
Q€ Llogt L(S").

The aim of this note is to investigate the boundedness of the oscillatory singular integral
operators T and T with the Hardy kernels on the Triebel-Lizorkin spaces and the Besov spaces.
Before stating our main results, we recall the definitions of the Triebel-Lizorkin spaces and the

Besov spaces.

Definition 1.1 Let ¢ € C§°(R") and supp(¢) C {z : 1/2 < |z| < 2} such that 0 < ¢ < 1,
and ¢(x) > ¢ > 0, when 3/5 < |z| < 5/3. Write ¢y(z) = ¢(2'x) and 3;-°__ ¢?(x) = 1 when

x # 0. Denote S;f = ®; % f, where ®;(€) = ¢;(€). Let U € S(R™) with supp(¥) C {£ : |¢] < 2}

and [¥| > ¢ > 0 as [¢] < 5. Let P(R™) denote the class of polynomials on R™. Then the
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homogeneous Triebel-Lizorkin spaces are defined by

Bt = {f € S'(R)/P(R") : | ooy = | (27 %1u117)

l€eZ

< o0},
p

and the inhomogeneous Triebel-Lizorkin spaces are defined by

(R = (£ € 8'(R") Loy = [ (327 0I81417)
1>1

+1w e < 00},

And the homogeneous Besov spaces Bgﬂ(R") are defined by
BEO((RY) = {f € S'(RY)/P(R") : |f]l goagey = (3279 Sf]%,) * < oo},
l€eZ
and the inhomogeneous Besov spaces are defined by
Byi(R") = {f € S'(R"): | fllpgagmey = (327 Sif[14) 7 + 1€+ ] < o).
1>1
Let S be the dual operator of S;. It is easy to see that
W lligacny ~ || (327157 £1%) 7

l€eZ

P
The following properties of Triebel-Lizorkin spaces and the Besov spaces are well-known. Let
1<p,q<ooand%+ﬁ=l, %—i—%:l. Then we have
FZ?’Q =HPfor0<p<1, FZ?’Q = 32’2 =LP for 1 < p < oo and F&z = BMO;
Fgot ~ Bt (VL2 and ||| pgoa ~ || flloe + [ f]| ga, for @ > 0;
o~ BRaL? and | fllgge ~ |l +11f] g for o> 0
a)* = Fp_,a’q, and (l*}‘f"q)* = Ep_'mq,;
By)* = B;O"q and (Bp?)* = B;a’q ;

6) Fon C Fe® and FO0 C %, if g1 < go.

The main results of this note are in the following.

Theorem 1.1 Let « € R, 1 < p, ¢ < oo, and P(s) = Py(s) be a real polynomial on R of degree
N (N >2). If Q € H'(S"™1) and satisfies the conditions (1.1) and (1.2), then Tq p defined as
in (1.4) is bounded on F;ﬂ(R"), that is,

1Ta,pfllpga < Cllfll e, (1.6)

where C' is a constant which depends only on the degree of P but not its coefficients.
Since the operator T, p is bounded on LP(R™) (see [3]), by applying Theorem 1.1 and the
properties (2), (4), we have the following corollary about the inhomogeneous Triebel-Lizorkin

spaces.

Corollary 1.1 Leta € R, 1 < p, ¢ < co. Let T p, Q2 be defined as in Theorem 1.1. Then
Tq,p is bounded on FZ?“‘I(R”), that is,

ITo.pfllrge < Cllfllpga,

where C' is a constant which depends only on the degree of P(x) but not its coefficients.
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Theorem 1.2 Let a € R, 1 <p,q<o0, >0 (B8+#0,1). IfQ € H'(S" ') and satisfies the
conditions (1.1) and (1.2), then Tq g defined as in (1.5) is bounded on Fz‘j"q(R"), that is,

1T/l gor < ClTl o (L.7)
Noting the following fact
U Lr(Snfl) C Llog-‘r L(Snfl) C Hl(Snil),
r>1

we see that Theorem 1.2 improves Theorem 1.1 in [7].

Theorem 1.3 Let « € R, 1 < p, ¢ < oco. Let P(x) be a real valued polynomial on R™. If
Q€ HY(S" 1) and satisfies the conditions (1.1) and (1.2), then T defined as in (1.3) is bounded
on Bg’q(R"), that is,

ITfll gga < Cllfll ggoes

where C' is a constant which depends only on the degree of P(x) but not its coefficients.
Since the operator T' is bounded on LP(R™) (see [3]), by applying Theorem 1.3 and the

properties (3), (5), we have the following corollary about the inhomogeneous Besov spaces.

Corollary 1.2 Let « € R, 1 < p, ¢ < co. Let T, Q and P(x) be defined as in Theorem 1.3.
Then T is bounded on By+?(R™), that is,

1T fll g < Cllfll g,

where C' is a constant which depends only on the degree of P(x) but not its coefficients.
Noting that (F;‘“vqo,F;‘hql)gﬁq = Bg‘l*‘“ for 0 < 6 < 1, we can obtain the following results
from Theorem 1.2 and the properties (3), (5).

Theorem 1.4 Let a € R, 1 < p, g < co. Let Tqg, {2, and 3 be defined as in Theorem 1.2.
Then

() |Tosfllgss < Cllfllgoa, for a € R;

(ii) || Ta,pfllpse < C| fllpga, for a> 0.

In the next section we shall introduce some notations and lemmas which will be used in our

proofs. In the last section we shall give the proofs of Theorems 1.1 and 1.3.

2. Preliminary lemmas

Let us begin with recalling the definition of the Hardy space H'(S™~!). The Poisson kernel
on S"7! is defined by Py (z') = (1 —t?)/|ty’ — 2/|™ with 0 <t < 1 and 2/, € S"~!. Then the
Hardy space H!(S"™!) is defined by

H'(5" ) = {@ e L") s Pra@) = sw | [ () Pu(y)do(y)] € L'(s" )}

0<t<1 Jgn—1

with the norm ||(.D||H1(Snfl) =: HPJF(.DHLI(Snfl) for w € Hl(Snil).



Oscillatory singular integrals with Hardy kernel 513

An exceptional atom is an L function a(-) satisfying ||a||pe(sn-1) < 1. A regular g-atom is
an L7 (1 < ¢ < o0) function a(-) that satisfies:

supp(a) C ™! ﬂ{y ER™:|y—¢|<p forsome & € S and p € (0,1]}; (2.1)

/ a(z")do(z") = 0; (2.2)
Sn—1
and

lallg < ptn~DU/a=D, (2:3)

If Q € H'(S"1), then it has the following atomic decomposition [12]
Q=3 A @4
j=1

where E;)il IAj] < Ol g1(sn-1) and the a;’s are either exceptional atoms or regular g-atoms.
In particular, if Q € H'(S"™!) has the mean zero property (1.2), then all the atoms a; in (2.4)
can be chosen to be regular g-atoms for a fixed ¢, 1 < ¢ < 0.

In the rest of this paper, for any non-zero £ = (£1,&a,...,&,) € R™, we write £/|¢] = £ =
(€1,¢h,...,€) € S"7L. Let a(-) be a regular oc-atom in H'(S™~!) whose support satisfies
supp(a) C S" N B(¢, p). Set

Eo(s,€') = (1= %) 2x 11)(s) /5 als (1= s)2g)do(g), n>3,  (25)

and
eq(s,&)=(1- 52)71/2)((_1)1)(5) la(s, (1 — 52)1/2) +a(s,—(1— 52)1/2)], n=2.

The following lemmas are needed in the next section.

Lemma 2.1 ([13]) There exists a constant ¢ > 0, independent of a, such that E,(s,£’) is an

oo-atom on R. That is, cE, satisfies
[cEall < 1/7(€"),supp(E,) C (& —2r(&'), & + 2r(E))
and
/ E.(s,&)ds =0,
R
where r(€') = [€] 1| 4,€] and A4, (€) = (0C1, o, . pEn).

Lemma 2.2 ([13]) For 1 < ¢ < 2, there exists a constant ¢ > 0, independent of a, such

that ceq(s,&’) is a g-atom on R, the center of whose support is & and the radius r(§') =
€171 (ot + p7€3) "2
Lemma 2.3 ([1]) Let ¢(t) be real-valued and smooth function in (a,b) and |¢*) (t)| > 1 for all
t € (a,b). Then

\/beW(f)dﬂ < CpATE

holds when (i) k > 2 or (i) k = 1, ¢/ (t) is monotonic. The bound C}, is independent of ¢ and .
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Lemma 2.4 Denote oi,(z) = P00 |z|a(a")x (2" < |z| < 2F), where P(s) = Py(s) =
Zz;é Bms™ + sV is a real polynomial on R of degree N, a is an oco-atom. Then there exists a

positive constant 6 such that
7% (6)] < Cmin{|A,25¢)%, |A4,27¢[ /4, (2.6)
where C' is independent of k € Z, £ € R™ and p > 0, only depends on the degree of P but not

its coefficients.

Proof We will only prove the case n > 3, since the proof for n = 2 is essentially the same (using
Lemma 2.2 instead of Lemma 2.1).

Firstly, we verify that oy (£) satisfies
71 (6)] < C|A,2%e[ 1.
For any ¢ # 0, we choose a rotation O such that O(¢) = |¢]1 = |£[(1,0,...,0). Let ¢/ =
(s, Y5, Y%, -, yp). Then it is easy to see that
() = [ [ a0y e Oy,
X -

where I, = [28=1 2%], O~ is the inverse of O. Now a(O~1y’) is again an co-atom with support
in B(¢,p) N S™~ L. Therefore, we get

62(5):/ t—l/ E,(s,&")e MElsHiPN (1) q5q¢,
Iy R

where F,(s,&’) is a function defined as (2.5). By Lemma 2.1, without loss of generality we
may assume that F,(s,{') is a g-atom with support in (—2r(¢'),2r(¢’)) for 1 < ¢ < 2. Thus
A(s) = r(&)Eq.(r(¢)s, &) is a ¢g-atom with support in the interval (—1,1). After changing

variables, we have

oAk(é“):/l t*l/RA(s)e*i"@')'ilsﬂpN<t>dsdt. (2.7)
k

From (2.7) and Hoélder’s inequality, we have

T - —itr(¢’ s 1/2
lox(§)] < C2 k/z{/l ’/RA(s)e tr€lell d3’2dt} :
k

e = {/ ‘/ A(S)e—itr(ﬁ/)\5\sds‘2dt}1/2'
Iy R

To estimate Ny, we choose a function ¢ € C°°(R) satisfying ¢(¢t) = 1 for [¢t| < 1, ¢(¢) = 0 for
[t| > 2. Define T}, by

Let

(Tof)(t) = x1, (1) /R ¢~ EIEls ) (5) £ (5)ds.
Then
Ty £ (1) = / L(t,5)f(s)ds,

R
where

L(t,s) = / e~ EIElly(v) Ao, (£)x1, (5)-
R
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We can easily get

IL(t, s)| < Oxr, (t)x1, (5)- (2.8)
On the other hand, by integration by parts, we have
L(t,8)| < C(ls — t]r(€)[EN ™ xn (D)xr, (5)- (2.9)

Thus, by (2.8) and (2.9), we have

|L(t,5)] < C(ls = t|r(€)EN ™ xr, (D)xr, (5)-
Therefore,

Sup/ |L(t78)|dfgsup/ |L(t, s)|ds = 2" (2" (&) |e])~1/2. (2.10)
t>0 JR

s>0JR
It follows that
I Twll2 < C25/2 (2| A )~ /%,

Thus
TR (&) < C(2¥(4,¢)) 1"

By using Holder’s inequality, we have

) <C /|/ e—itr(€ )‘E“Sds|2dt}l/2_

We have from (2.8) and (2.10),
7r ()] < C2M2. (2.11)

Therefore, after changing variables and by the cancelation property of A(.), we obtain that

// )P (D) fo=itx(€lels _ 11qsp1ds
Iy

- / SN B (2 )™+ (2 ) / Als) {2 ElEls _ 1y dgpdt
1 R

= / /2 e (Zm=0 B (2D + 2N 42" x(E)IEITS) gy A (5) 2k (€7) €| sids.
Noting that
()" ( D Bu(@ )™+ (RN + 25w () [¢|7s) > C2F,
where 7 € (0,1) and C is a constant depending on N, by Lemma 2.3, we obtain
lor ()] < / ‘ /2 e m=o Bm(2"t)m+(2"t)N+2ktr(5/|5|Ts)dt‘A(S)2kT(§/|§||S|d8
< 02’“<—11/N>2’“|Ap5| < O 1A,

It follows that
R(€)] < C2FA-1N)| 4 ¢|. (2.12)

Therefore, by (2.11) and (2.12), for § = N/(N + 2) € (0,1), we have
[Gn(£)] < C2R=1/NE)| 4 ¢|69lk(1=6)/2],
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Thus,
[7%(€)] < C(2%|A,€))",

where § = N/(N + 2). So the proof of Lemma 2.4 is completed. O

Lemma 2.5 Denote o},(x) = ei|m|ﬁ|x|_"a(:v')x (21 < |z| < 2%), where a is an co-atom and

B>0(8+#1). Then
[07.(6)] < Cmin{|4,2%], |4,2¢¢[ 7/},

where C' is independent of k € Z, £ € R™ and p > 0, only depends on (3.

Proof Similarly to the proof of Lemma 2.4, we have @(5) satisfies
07 ()] < ClA 2871,

By Holder’s inequality, we have

|0/'Z(€)| SO{/I ‘/I%A(s)eztr(f,)fst‘th}lh
k

Similarly to estimate (2.11), we have

o7, (6)] < C242. (2.13)
Since 5
(52020 = tlelrs) > G242,
where 7 € (0,1) and C is a constant depending on 5. So by the cancelation property of A(-), we
have
;Z(f) :/ / A(s)e'’ {eitlEls — 11 dst—dt
1. JR
= / / eitﬁ_t‘f‘TSth(s)i|§|sds.
RrRJI,
Since 5
(5220 — tlelrs) > G242,

where 7 € (0,1) and C is a constant depending on 3. Therefore, by Lemma 2.3, we obtain

o< [

R| 2k

2k+1

eitﬁ__t|g|‘rsdt|A(S)|§||S|ds < C2k(1—ﬁ/2)|Ap€|.

It follows that
TR(€)| < C2F0-5/2)14 ¢, (2.14)

Therefore, by (2.13) and (2.14) for 6 = /(8 +4) € (0,1), we have
01 ()] < C2MO0/0) P2k =0 /2,

That is,
o7, (£)] < C(2%|A,€))°,

where 6 = 3/(8 + 4). Thus, the proof of Lemma 2.5 is completed. O
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Lemma 2.6 ([5]) Ify € S(R™) with supp(¢) C {z : 1/2 < |z| < 2} and for k € Z, define the

multiplier S, by §lc\f(§) = (2K€) f(€). Then for 1 < p, ¢ < 0o, we have
H(Z > |Skfj|2)q/2)l/qHLp = OH(Z |fj|q)l/q L
JjEZ

JEZ keZ

where C' is independent of j and k.

Lemma 2.7 ([5]) Suppose ¢ € S(R™) with supp(¢) C {x : 1/2 < |z| < 2}. Denote A,z =

(p*z1,px1, ..., prs) for p> 0 and x € R™. Define the multiplier S, by S’/kﬁ(x)
where k € Z and 1y, ,(§) = 1/1(2’“14,)33). Then for 1 < p, g < 00,

[ (X ISk i ™) <CHZ|f| Y.,

JEZ keZ

where C' is independent of j, p and k.
Let Mg denote the rough maximal operator with € L!(S"~1) defined by
1
Mq f(x) = sup — 1QQ)IIf (z — y)|dy.
r>0 T Jiy|<r

Lemma 2.8 ([5]) Let 1 <p, q < oo, {fj} € LP(19) and Q € L'(S"~'). Then

|2 ez (1)
JEZ JEZ

where C' is independent of Q0 and {f;}.

<l

)

Lr

Lemma 2.9 Let 1 < p, ¢ < 0o, h(z) be a function on R*. Denote
ok(x) = M7 Q ) [ (25 < Jaf < 27).

Suppose {(X ez lgk,;13)/?}; € LP(17) and Q € L'(S™~'). Then

|2 (X Jow s gua)™™)™|| < ]| (30 (3 lanat®) )

JEZ keZ JEZ keZ

where C' is independent of 2 and {gx ;}.

Proof Note that
sup |og * gr,j| < sup |og| * [gk,;] < Ma(sup |gk,;|)-
keZ keZ keZ

Therefore, we have

1/q

H SU.plUk *gk,_]')q) L

< H ( Z (Mg(zug |gk,j|))q)l/q
JEZ €

By Lemma 2.8, we have

_ql/qH < oln H ng
H(;(iglak*gk,al)) 1 O (3 (sup o)

On the other hand, there exists a sequence {h;} € L? (1) such that

12 (X Jonwgra))™|

JEZ k€Z keZ

e

—}Z/an*gM ()]

Lr

)

= wk,P(x)f(‘T)7

(2.15)
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= Z/ > lgkl(@) 2‘613'55* || (z)dz

JEZ keZ
< CZ/ Z |gk,;(2)|[ Mg hj(z)|dz,
JEZ kEZ

where oy, (z) = ox(—2z) and Q(z) = Q(—z). By Hélder’s inequality and (2.4), we have

H(Z (Z ok ng')q)l/q Le = CH(Z (Z |9k,j 1/‘1 H |Mszh |) )1/‘1 e’
JEZ keZ iez ke
<clel| (> Zmﬂlm 'y
JEZ keZ
It follows that
[ (S ow e aa)™| < e[ (32 lansh ™| 2.16)

JEZ keZ JEZ keZ
By an interpolating between (2.15) and (2.16) [14], we obtain

(S (S o0y, = CO0(S (S sy

JEZ keZ JEZ keZ

2)q/2)1/q

e

Thus, the proof of Lemma 2.9 is completed. O

3. Proofs of theorems

Proof of Theorem 1.1 For the given polynomial P(s) = Py(s) = Z%:o Bms™, without loss
of generality we may assume that By = 1. Otherwise, let A = |ﬁN|%. Write

Pulle) = 3 22 (alal) = Qe

m=0

Then by making a change of variable, we have

TQ,Pf(%)Zp.V./n Q- 2T =Y) ¥

|z —y["

Noticing that || f ()l o0 ~ A” ot | £(- )l e, thus we only need considering the case A = 1.
By (2.4), we have

To.pf(x Z/\ T f(x (3.1)

where

13f() = P < (o),

1= o f(x)

keZ

Therefore,

where oy (z) = eip(m)a'jx(—ﬁ:)x@k_l < |z| < 2%). We take ¢ € S(R") with supp(y)) C {z €

R"1/2 < |z| < 2}. In addition, we may claim t to satisfy >, ., (1¥(28¢))? = 1 for £ # 0.
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Therefore by the definition of Sy ,, f = >, cz k,»(Sk,pf) for any f € S(R"). We have
Tif(@) = or* (O Sitkp(Sithnf))

keZ i€Z
=3 Sitkplon* Siyrpf) = > Bif(x).
i€Z keZ i€Z
It follows that
T fll o <D I Bif | pova- (3.2)

i€z

With a similar argument to the proof of Theorem 1 in [5], by Lemmas 2.6, 2.7 and 2.9, we easily

1/q 1/q
B; f) < CH q
H(lel (DR PR (OMILIR
where 1 < p, ¢ < 0o, @ € R and C is independent of 4, [ and p. Therefore by (3.3), we have
1
1Bif o < || (0272400 x Bp)I?)

get

. (3.3)

leEZ Le
<[ (X itz g
leZ Lr
< CH(ZQ*IC“?@Z IO
leZ Ly
It follows that
Bifllpoa < Cllf o (3.4)

By properties (1), Lemma 2.4 and Plancherel’s theorem, we obtain
I1Bif |l goz < C27° M| £l o2, (3.5)

where C' is independent of ¢ and p.

Therefore, by an interpolating between (3.4) and (3.5), there exists 1 > 0 such that
1Bifll g < €27 ] e (3.6)

By (3.1), (3.2) and (3.6), we have

ITo,pflliee <D AT poa

j=1
<D A IBifllje
j=1

icZ
A S s
1 icZ
< CllQ g sn-1) 1 f | proa-
This completes the proof of Theorem 1.1. O
From the proof of Theorem 1.1, by Lemmas 2.5, 2.6, 2.7 and 2.9, Theorem 1.2 can be easily

proved. Here, we omit the details.

oo

<C
J
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Proof of Theorem 1.3 By Theorem 9.1 in [3], we know T is L? boundedness for 1 < p < co.
Therefore, for 1 < p, ¢ < oo, we have

(CITRI" < (X 1"

l€eZ l€eZ

We take ®; as Definition 1.1. Therefore, for any 1 < p,q¢ < oo and o € R, we obtain

IT fll e = (3 270y« TA(2)" < (3D IT@ @0+ £)l12)

leZ leZ
—la 1/
<C(D 27" fIIE) " = Cllf |l pgea-
ez

This completes the proof of Theorem 1.3. O
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