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New Rapidly Convergent Series Concerning ((2k + 1)
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Abstract Values of new series
i": (2n —1)1¢(2n) o i (2n — 1)1¢(2n) g
(2n + 2k)! (2n+ 2k +1)!

are given concerning ((2k + 1), where k is a positive integer, a can be taken as 1, 1/2, 1/3, 2/3,
1/4, 3/4, 1/6, 5/6 and 8 can be taken as 1, 1/2. Some previous results are included as special
cases in the present paper and new series converges more rapidly than those exsiting results for
a=1/3,or a=1/4, or a =1/6.
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1. Introduction

Riemann zeta function is defined as follows

= Z %, Re(s) > 1. (1.1)
k=1

For Re(s) < 1, s # 1, ((s) is defined as the analytic continuation of (1.1). Therefore, ((s) is

analytic for all complex plane except for a simple pole at s = 1 with residue 1. Based on this,

we have )
1 97)2n
60 = -3, <<2n>=<—1>"‘1(2(§31>!32m n=123,...,
and
C(-2m) =0, ((~2m+1)= 222,

where the rational numbers Bs,, are the Bernoulli numbers, that is, ((2n) can be expressed as a
rational multiple of 72". There is no analogous closed evaluation for ¢(2n + 1), and various series

and integral representations have been found (for example see [1-3]).
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In 1978 Apéry proved another remarkable result that {(3) is an irrational number based on

rapidly converging series [4—6]

ot

- 1
=320

P 3

k
There exist related simple formulae for ¢(2) and ((4), but expressions for ((2n + 1), n > 2, are
much more complicated [5, 7, 8].
Ewell [9] found a new simple series
Am? - ¢(2k)
3) =——— 1.2
¢@) 7 1;0 (2k + 1)(2k + 2)22k° (12)

and Ewell [10] showed that there exists a multiple series representation of ¢(n) in the form

2n—272 i (—=1)™Agpn(n — 2)72™
on 1 2m + 2)! ’

m=0

n=34,5,..., (1.3)

((n) = -

where the coefficients Ag,,(n) are the finite sums which involve multinomial coefficients and the
Bernoulli numbers. Ewell’s method was modified by Zhang and Williams in [11]. They obtained
several series analogous to that in [3] and found a new formula for ((2n+1),n > 2. Although still
complicated, their representation is simpler than that given by [10]. Again Ewell [12] deduced a
new series representation for ((2n+ 1) in a determinantal form. Further, Cvijovi¢ and Klinowski

[13] found two series representations for ¢(2n + 1), n > 1, that is

C@2n+1)=(-1)"

R WL LS p LU

n(22n+1 —1 Pt w2k (2n — 2k)! — 22k(2k 4 2n)!
and
4(2m)*" &
2 1) =(-1)" Ry, (2k 1.5
(2n+1) = ( )(2n+122+1k< ), (1.5)
where
2n
2n (2n + 1)Baoy—m
Rons1p = L k=0,1,2,...,
2L = ) (m> 22k+m+1(2k +m 4 1)(m + 1)

m=0
which are of rapid convergence.

Now in the present paper, by taking the advantage of Fourier’s expansion

.0 >°, cosnf
log(2sm§) = —nz::l —, 0<f<2m (1.6)

and constructing integrals
/ (o — 2)*log(2sinmz)dz, k=1,2,3,...,
0

we give a family of new series

(2n—1'<2n = (2n —1)I¢(2n) ,
— 1.
; (2n + 2k)! ; 2n + 2k + 1)! ok (L.7)
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which concern ((214+1),1=1,2,3,..., k, where k is a positive integer, a can be taken as 1, 1/2,
1/3,2/3,1/4,3/4,1/6,5/6, and 8 can be taken as 1, 1/2. All main results in [9-13] are included
as our special cases and new series converges more rapidly than those in [9-13] for o =1/3, or
a=1/4, or a =1/6.
2. Results and proofs

The results and proofs are as follows.
Theorem 2.1 For any positive integral k and 0 < o < 1, we have the formula

i": 2n—D(2n) 5, 1 z’“: (- @+ Z cos(2nma)
(2n + 2k)! 2 (2ma)? (2K — 21) 27ra)2’C n2k+1

n=1

2k

ﬁ (log(27ra) =3 2;“) > . (2.1)

=1

Proof Recalling Euler’s formula
sinmz = 7x H(l—ﬁ), 0<z<l, (2.2)

and taking logarithms on both sides of (2.2), we have

log(2sinmrx) — log(2mx) Z log(1 Z Z nk2n

k=1n=1
—_Z<Zk2n)%__§:1W' (2:3)

Multiplying (o — x)2*~1 in both sides of (2.3), and integrating from x = 0 to x = «, we have

/a(a — x)** Nog(2sinmz)dx — /a(a — x)** Nog(2rz)dx
0 0
= — ¢ o —T 2k—1 - M €T
- /0 (a—2) ;::1 =, (2.4)

0
where 0 < @ < 1 and k is a positive integer. By Fourier expansion (1.6), replacing x by o and
T

integrating by parts, we deduce that
(o7
/ (o — )**~Nog(2sinmz)dx
0

2T 0
= — / (2ma — 9)2k*110g(2sm5)d9
0

1 o g1 cosn9
= _(27T)2k/0 (2ma — Z

1 2ma oh—1 sinnd
=~ G /0 (27 — 6) d(z —)

n=1
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2k —1 [ k9 1 N COSNO
= T /O (2ma — 0)*F2d() —)

n=1

7_(2]{3—1)042}%_2 (2k —1)! Zmor o — 0)23( = smn9
- @)+ e by

(27)2 (27)2k (2k — 3)! nt
k
L2k —D)IC21+1) oo (=1)F 22k — 1)! <= cos(2nma)
- Z 27T 202k —21)! @ + (2m)2k Z n2k+1l (2.5)

~

=1 n=1

and

- /Oa(a — z)* Nog(2nz)dz = 2_1k /004 log(2mz)d[(or — )% — o2F]

- _O;_t <1og(2m) + i(—l)lrl (21k>) : (2.6)

=1

On the other hand, integrating by parts, we deduce that

. — 22"((2 — (2n—1)1(2
—/0 (a—w)zkflzx Cn(n 2(2k —1)! Z n2n+2<k n)a2”+2k. (2.7)

Combining (2.4), (2.5), (2.6) and (2.7) gives the formula (2.1).

Theorem 2.2 For any positive integral k and 0 < 8 < 1, we have the formula

i (2n — 1)I¢ 2n)62n 1 z’“: (—1)i=1¢(2L + 1) Z sin(2nmf) |
—(2n+2k+1)17 2  (2m )% (2k — 20 + 1) 27r5 2k+1 n2k+2

2k+1
m (1og(27rﬁ) + (=t (%;r 1)) : (2.8)

=1
Proof Similarly to Theorem 2.1, multiplying (8 — 2)?* in both sides of (2.3), and integrating
from x = 0 to x = 3, we deduce that Theorem 2.2 holds.
Noting that

i cos(2nm) —2k+1),

— n2k+1

Socstnm) 2ok ),

n=1

3o coslnnfs) g costinm/) 3 Lo,

n=1 n=1

PRI SR )

n=1 n=1

> enfs) - ol L B DD ok ),
n=1 n=1

and making o = 1, 5,3, 5,7, 3,5 and ¢ in (2.1), and making 3 = 1, % in (2.8), we obtain the

following formulas.
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Corollary 2.1 For any positive integral k, we have

[e%S) k—l

(2n—1)¢(2n) _ 1 “<2l+1) 1 oyt (2
Z (2n+2k)! 2 )2 2k — 20)! 2(%)! 10g27r+l;(—1)l L)) 29)

n=1 =1

where the finite sum on the right-hand side is 0 when k =1,

Z (2n — 1)I¢(2n)

1 (—=D)71¢@20+1)  (=1)F 122k —1)¢(2k + 1)
221(2n + 2k)] 2 +

72 (2k — 2])! 2(2m)2F

HM:T

=1

1k: (logﬂ + Z ( )), (2.10)
(2n—DER) 1K (D3RI | (CD)FE* - 12k + 1)
Z:: 327(2n + 2k)1 2 ; (2m)2L(2k — 21)! 4(27)2* +
1
BT ( =L Z ( )) (2.11)

=L 227(2n — 1)!1¢(2n)

1 (=1)132¢(20+ 1) (—1)F=1(3%F —1)¢(2k + 1)
P(on t2k) 2 +

(4m)2 (2K — 21)! A(4m)2*

ot o Fore(2)

(—1)122¢(204+1) (=122 —1)¢(2k + 1)
w22k — 21)! 4(2m)2k +

g o).

(—1)=122¢(204+1) (=1 1(2% —1)¢(2k + 1)
30 (2k — 20)! 1(6m)2F +

o Fore ()

(—1)=1320¢(20 4+ 1)  (=1)F(2%F — 1)(3%F — 1)¢(2k + 1)
(2% — 20)) 1(2m)2 +

(B ()

(=1)=1320¢(20 4+ 1) (=1)%(2%F — 1)(3%F — 1)¢(2k + 1)
B2 2k — 20)] 2(107)2% +

Mk

n=1 =1

[

2(2

o0

@n—-1I¢(2n) 1
42n(2n + 2k) 2

M?T:r

n=1 =1

2

MwM

=32 (2n — 1)I¢(2n) 1
2720 1 2k) 2

n=1 =1

—_

2(2

— 62”2n—|—2k 2

= HM:T e

2(2

M”?v

Z 52’“ — 1)!¢(2n)

1
— 2n+2k) 51

T (10g—+z ( )) (2.16)

1

=




526 C. L. ZHOU and Y. F. WU
and
XL (20— 1)I¢(2n) lz’“: (—1)!=1¢(20 4+ 1)
~ 2n+2k—|—1 2 £ (2m)%(2k — 21+ 1)!
2k+1
2k +1
2(2k+1 (10g27r+ Z ( )) (2.17)
i (2n-1i@2n) 1 i (—1D)¢@l+1)
=220+ 2k + 1)) 2  m2l(2k — 21 + 1)
2k+1
2k +1
(2k—|—1 (10g7r+ Z ( )) (2.18)
Corollary 2.2 For any positive integral k, we have
[eS) k—1
2n)1¢(2 —D4¢r+1 —1)FE(2%+ —1)¢(2k + 1 1
Z (2n)!¢(2n) :Z( l)C( +)+( )"k( k)C( +1 C(219)
£ 920(2n + 2)! 720 (2k — 21)! (27)2 2(2k)!
where the finite sum on the right-hand side is 0 when k = 1.
Proof Replacing k by k£ — 1 in (2.18), we have
i 2n—1I2n) 12 (=D"¢@I+1)
=220+ 2k —1)! 2 — m2l(2k — 21 - 1)!
2k—1 1
(2k (logw + Z ( )) (2.20)
Noting that
2n—-1!  2k2n-1)!  (2n)!
(2n+2k—1)!  (2n+2k)!  (2n+ 2k)!
with (2.10) and (2.20), we obtain (2.19).
As special case for (2.9)—(2.19), we get a family of {(3):
> ¢(2n) 1 25
=272 — —log2m + = 2.21
¢(3) =2m <nz_: nn+)mt2)ent DEnts) 68t n) (221)
212 [ ¢(2n) 3
(B3 ==~ ( Z:: Pt )Entl) 5T 3) (222)
2% [ & ¢(2n) 2 3
¢@) T 13 (; 32p(n+1)(2n+1) log? + 5)’ (2:23)
872 [ 22n¢(2n) 4t 3
B =13 (nz_:l Pt Nen 1) 3 T 5)’ (224)
472 [ & ¢(2n) T 3
=— —log= + = 2.2
¢B3) =35 <nz_:1 P+ ent1) g2t 2)’ (225)
3672 [ 327¢(2n) 3r 3
_ —log— + = 2.2
B =735 <Z Pinnf Dent1) 2 T 2>’ (2:26)
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¢@) :g (i 62"n(ni-(217;z2n +1) logg + g) (227)
¢@) :2?;2 <7§:1 62"n(i2:<1()2(7;)n T log . + ;) (228)
¢@) :2”2(21 nn + 1)(5222)1)(271 T3 glog2r + %) ! (2.29)
@) :%2 (g 22nn(n + 1)C((22n7ﬂ:)L D@2n+3) %log” + %) ’ (2:30)
@) =- % < i 22n(2n 55217;2271 +2) > ’ (2:31)

n=0

(2.31) is (1.4). So does ((5), and so on. O

Remark We note that (2.19) is exactly (1.4). Also, making another form combining (2.10) and
(2.18), we get (1.5). For example, combining (2.22) and (2.30), we deduce that

¥t & ¢(2n)
@) =-—5 n; 220 (20 + 1)(2n 4 2)(2n + 3) (2:32)
Combining (2.31) and (2.32) gives
I (2n + 5)¢(2n)
@) = _?; 227 (2n 4+ 1)(2n + 2)(2n + 3)” (2.33)

that is (17a) in [13].
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