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Abstract Let X = E(n) be the relatively minimal elliptic surface with rational base, where

n ≥ 2. In this paper, several pseudofree, homologically trivial, symplectic cyclic actions by
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1. Introduction

Let G = Zp be the cyclic group of order p, where p = 2, 3, 5 or 7. Let X = E(n) be

the relatively minimal elliptic surface with rational base, and n ≥ 2 in this paper unless we

announce particularly. The elliptic surface E(n) is defined as the n-fold fiber sum of copies of

E(1), where E(1) is CP 2 ♯ 9CP 2 being equipped with an elliptic fibration. The second Betti

number of X is denoted by b2(X), the signature of X by σ(X), and the Euler characteristic of

X by χ(X). We also denote by σ(X/G) and χ(X/G) the signature and Euler characteristic of

the quotient manifold respectively. An elliptic surface is Kähler, and can be equipped with a

symplectic structure which is provided by the complex structure and the Kähler metric. The

elliptic surfaces are minimal [8].

When studying actions on manifold of a finite group, one can consider an induced action on

some algebraic invariants associated with the manifold, and it is often important and beneficial.

Furthermore, a central problem is to describe the structure of the fixed-point set and the action

around it. Since the G-signature theorem of Atiyah-Singer [1] imposes restrictions on the symme-

tries of 4-manifolds through the fixed-point set and the action around it, it is useful to consider

the fixed-point set together with the G-signature theorem. For a spin manifold, the G-index

theorem for Dirac operators can be used to do calculation. In [3], Chen and Kwasik determined

the structure of the fixed-point set for a symplectic cyclic action of prime order on a minimal

symplectic 4-manifold M with c2
1 = 0 and b+

2 ≥ 2, which induces a trivial action on H2(M ; Q).

Recall that a symplectic action means a smooth finite group action which preserves some sym-

plectic structure on the 4-manifold [3]. In this paper, the symplectic Zp-actions of prime orders
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no more than 7 on elliptic surfaces under certain conditions are studied. We can see that the

action is trivial if the order of the cyclic group is 2. It is showed that not every simply connected

4-manifold admits pseudofree and homologically trivial Z3-actions by the G-signature theorem

in [6], then we have the non-existent result. We also describe the fixed-point set structure when

the order of the action is 5. It can be seen that there exist a locally linear, pseudofree Z5-action

to realize the corresponding fixed point data by using the realization theorem of Edmonds and

Ewing in [7]. When p = 7, we attempt to determine the fixed-point set of the action in example

3.3, and more conditions may be needed. Our main results are stated as follows.

Theorem 1.1 Let G = Zp.

1) For p = 2, if an elliptic surface X = E(n) admits a homologically trivial (over Q coeffi-

cients), pseudofree, symplectic G-action. Then the action is trivial.

2) For p = 3, there is no homologically trivial (over Q coefficients), pseudofree, symplectic

G-action on X .

Theorem 1.2 Let G = Z5, and X = E(n) be an elliptic surface, and let X admit a nontrivial,

pseudofree action of G, such that the symplectic structure is preserved under the action and the

induced action on H2(X ; Q) is trivial. Then the fixed-point set of the G-action consists of 4n

fixed points, each with local representation (z1, z2) 7→ (µk
5z1, µ

2k
5 z2) and 8n fixed points, each

with local representation (z1, z2) 7→ (µ−k
5 z1, µ

4k
5 z2) for some k 6= 0 mod 5.

2. Preliminaries and tools

In this section we collect some G-index theorems and some results which will be used (See

[4] for more details of G-index theorems). The formulas in G-index theorems allow us to relate

the fixed-point set structure of the group action with the induced representation on the rational

cohomology of the manifold. We need to make use of a result of Chen and Kwasik in [3] which

is a complete description of the structure of the fixed-point set for a symplectic cyclic action

of prime order on a minimal symplectic 4-manifold under some conditions. We list it below as

Theorem 2.5.

Let X be a closed, oriented smooth 4-manifold, and let cyclic group G ≡ Zp of prime order

act on X effectively via orientation-preserving diffeomorphisms. Then the fixed-point set F , if

nonempty, will consist of isolated points and surfaces. If a generator g of G is fixed, each fixed

point m ∈ F is associated with a nonzero integers pair (am, bm), where −p < am, bm < p, and

they are uniquely determined up to a change of order or a change of sign simultaneously, such

that the induced g-action on the tangent space at m is given by the complex linear transformation

(z1, z2) 7→ (µam
p z1, µ

bm
p z2), where µp = exp(2πi

p
). For each connected surface Y ⊂ F , the action

of g on the normal bundle of Y in X is given by z 7→ µcY
p z for an integer cY with 0 < cY < p,

which is uniquely determined up to a sign modulo p.

Theorem 2.1 (Lefschetz Fixed Point Theorem) Let T : X → X generate an action of Zp

on X , a closed, simply-connected 4-manifold. Then L(T, X) = χ(F ), where χ(F ) is the Euler
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characteristic of the fixed-point set F and L(T, X) is the Lefschetz number of the map T , which

is defined by

L(T, X) =

4
∑

k=0

(−1)ktr(g)|Hk(X;R).

For our cases in this paper, the formula in the theorem can be written as

χ(F ) = 2 + trace[T∗ : H2(X) → H2(X)] = 2 + b2(X) = χ(X).

Theorem 2.2 (G-signature Theorem) Set

σ(g, X) = tr(g)|H2,+(X;R) − tr(g)|H2,−(X;R),

then

σ(g, X) =
∑

m∈F

− cot(
amπ

p
) · cot(

bmπ

p
) +

∑

Y ⊂F

csc2(
cY π

p
) · (Y · Y ),

where Y · Y denotes the self-intersection number of Y .

The weaker version of the G-Signature Theorem is more often used since it is convenient for

calculation [4, 10].

Theorem 2.3 (G-signature Theorem - the weaker version) Set

|G| · σ(X/G) = σ(X) +
∑

m∈F

defm +
∑

Y ⊂F

defY ,

where the terms defm and defY are called signature defects. They are given by the following

formulae:

defm =

p−1
∑

k=1

(1 + µk
p)(1 + µkq

p )

(1 − µk
p)(1 − µkq

p )

if the local representation of G at m is given by (z1, z2) 7→ (µk
pz1, µ

kq
p z2), and

defY =
p2 − 1

3
· (Y · Y ).

Note that the G-signature theorem is also valid for locally linear, topological actions of prime

orders in dimension 4 ([6, 9]). In our case of pseudofree actions on E(n), the terms defY in the

formula vanish.

If the 4-manifold X is spin, and the G-action on X lifts to the spin structures on X . The

index of Dirac operator D is a useful tool for our aim. For each g ∈ G, one can define the

Spin-number of g by

Spin(g, X) = tr(g)|KerD − tr(g)|CokerD.

Let Vk
+, Vk

− be the eigenspaces of g on KerD and CokerD with eigenvalue µk
p, respectively. We

can write KerD =
⊕p−1

k=0 Vk
+, CokerD =

⊕p−1
k=0 Vk

−, then

Spin(g, X) =

p−1
∑

k=0

dkµk
p,

where dk ≡ dimCV +
k − dimCV −

k . Note that d0 is even, and dk = dp−k for 1 ≤ k ≤ p − 1 when

the order of group G is odd.
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Theorem 2.4 (G-index theorem for Dirac operators [1]) Assume further that the action of G

on X is spin and that there are only isolated fixed points. Then the Spin-number Spin(g, X) =
∑p−1

k=0 dkµk
p is given in terms of the fixed point set structure by the following formula

Spin(g, X) = −
∑

m∈F

ǫ(g, X) ·
1

4
csc(

amπ

p
) · csc(

bmπ

p
),

where ǫ(g, X) = ±1 depends on the fixed point m and the lifting of the action of g to the spin

structure. Precisely, if the action of G preserves an almost complex structure on X (e.g. the

action of G is via symplectic symmetries), then ǫ(g, X) is given by

ǫ(g, X) = (−1)k(g,m),

where k(g, m) is defined by the equation

k(g, m) · p = 2rm + am + bm,

for some rm satisfying 0 ≤ rm < p.

The structure of the fixed-point set for a symplectic cyclic action of prime order on a minimal

symplectic 4-manifold X with c2
1 = 0 and b+

2 ≥ 2, which induces a trival action on H2(X ; Q),

was described by Chen and Kwasik [3]. We invoke the result for the case of pseudofree actions

below.

Theorem 2.5 ([3]) Let X be a minimal symplectic 4-manifold with c2
1 = 0 and b+

2 ≥ 2, which

admits a nontrival, pseudofree action of G = Zp, where p is a prime, such that the symplectic

structure is preserved under the action and the induced action on H2(X ; Q) is trival. Then the

set of fixed points of G can be divided into groups, each of which belongs to the following five

possible types.

1) One fixed point with local representation (z1, z2) 7→ (µk
pz1, µ

−k
p z2) for some k 6= 0 mod p,

i.e., with representation contained in SL2(C).

2) Two fixed points with local representation (z1, z2) 7→ (µ2k
p z1, µ

3k
p z2), (z1, z2) 7→ (µ−k

p z1, µ
6k
p z2)

for some k 6= 0 mod p, respectively. This type of fixed points occurs only when p > 5.

3) Three fixed points, one with local representation (z1, z2) 7→ (µk
pz1, µ

2k
p z2) and the other

two with local representation (z1, z2) 7→ (µ−k
p z1, µ

4k
p z2) for some k 6= 0 mod p. This type of fixed

points occurs only when p > 3.

4) Four fixed points, one with local representation (z1, z2) 7→ (µk
pz1, µ

k
pz2) and the other

three with local representation (z1, z2) 7→ (µ−k
p z1, µ

3k
p z2) for some k 6= 0 mod p. This type of

fixed points occurs only when p > 3.

5) Three fixed points, each with local representation (z1, z2) 7→ (µk
pz1, µ

k
pz2) for some k 6=

0 mod p. This type of fixed points occurs only when p = 3.

The rigidity for the corresponding homologically trivial actions is as follows, and it shows

that symplectic symmetries are more restrictive than topological ones.

Theorem 2.6 ([3]) Let X be a minimal symplectic 4-manifold with c2
1 = 0 and b+

2 ≥ 2, which

admits a homologically trivial (over Q coefficients), pseudofree, symplectic Zp-action for a prime
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p. Then the following conclusions hold.

(a) The action is trivial if p 6= 1 mod 4, p 6= 1 mod 6, and the signature of X is nonzero,

then for infinitely many primes p the manifold X does not admit any such nontrivial Zp-actions.

(b) The action is trivial as long as there is a fixed point of type 1) in Theorem 2.5.

3. Symplectic cyclic actions

In this section we prove Theorems 1.1 and 1.2, and we consider a symplectic cyclic action of

order 7 on the elliptic surfaces.

Proof of Theorem 1.1 1) Recall that the elliptic surface E(n) is the minimal symplectic

4-manifold with c2
1 = 0 and b+

2 ≥ 2. If it admits a homologically trivial (over Q coefficients),

pseudofree, symplectic Z2-action, then the Z2-action is trivial by Theorem 2.6.

2) If X = E(n) admits such a Z3-action. The fixed-point set will consist of two types of

points under the consideration of local representation. We denote by x1 the number of points

of type (1,1) and x2 the number of points of type (1,2). Let m and n be one fixed point of

type (1,1) and (1,2). Then defm = − 1
3 , defn = 1

3 . The formula in Theorem 2.3 is rewritten as

2 · σ(X) = 2
3 (x2 − x1). Together with the Lefschetz fixed point theorem, we have the following

inequality, 3|σ(X)| ≤ χ(F ) = χ(X) = 2 + b2(X), or |σ(X)| ≤ (b2(X)+2)
3 . Obviously, the elliptic

surfaces do not satisfy it. 2

Remark 3.1 Edmonds pointed out that many closed, simply-connected 4-manifolds do not sup-

port pseudofree, homologically trivial, locally linear Z3-actions in [6]. Such as the E8 manifold,

the Kummer surface, a connected sum of n > 1 copies of +CP 2 or +Ch, etc.

Lemma 3.2 ([3]) Let def(k) be the total signature defect contributed by one group of fixed

points of type (k) in Theorem 2.5, where k = 1, . . . , 4. Then we have

1) def(1) = 1
3 (p − 1)(p − 2) for all p > 1.

2) def(2) = −8r if p = 6r + 1, def(2) = 8r + 8 if p = 6r + 5.

3) def(3) = −8r if p = 4r + 1, def(3) = 2 if p = 4r + 3.

4) def(4) = −8r if p = 3r + 1, def(4) = −4r if p = 3r + 2.

Proof of Theorem 1.2 By the assumption that the G-action on X = E(n) is pseudofree and

with the G-signature theorem, we have

|G| · σ(X/G) = σ(X) +
∑

m∈F

defm,

where G = Z5, and F = XG denotes the fixed-point set.

The induced action on H2(X ; Q) is trivial, then σ(X/G) = σ(X) and the Lefschetz fixed

point theorem leads to χ(F ) = χ(X). The fixed-point set may consist of types 1), 3) and 4)

fixed points in Theorem 2.5, actually there are no type 1) fixed points by the assumption that

the action is nontrivial and Theorem 2.6. Let a3, a4 be the numbers of groups of fixed points of



576 C. T. XUE and X. M. LIU

types 3) and 4), respectively. Then we have
{

−32n = −8a3 − 4a4,

12n = 3a3 + 4a4.
(1)

Here we use the fact that def(3) = −8 and def(4) = −4. The solutions for a3, a4 are a3 = 4n and

a4 = 0. Then the fixed-point set consists of 4n groups of type 3) fixed points in Theorem 2.5,

then the theorem follows. 2

If a set of ordered pairs of nonzero elements is given which satisfies REP, GSM, and TOR

conditions in [7], then it can be realized as the fixed point data of some locally linear, pseudofree

G action on a closed, oriented, simply connected, topological 4-manifold. By the consideration of

Edmonds and Ewing, we can see that there exists a locally linear, pseudofree topological Z5-action

on E(n) with the fixed-point set consisting entirely of the fixed points in Theorem 1.2. Note that

the fixed-point set consists of 12n fixed points. Divide them into n groups, and assign the points

in each group with local representations (z1, z2) 7→ (µk
pz1, µ

2k
p z2), (z1, z2) 7→ (µ−k

p z1, µ
4k
p z2), and

(z1, z2) 7→ (µ−k
p z1, µ

4k
p z2), evaluated at k = 1, 2, 3, 4. Now, we get a set of 12n ordered pairs

of nonzero elements, denoted by D . In order to realize the set D as the fixed-point data of

some locally linear, pseudofree Z5-action on E(n), we need to check the REP, GSM and TOR

conditions. For p = 5, GSM condition is the only condition needed for the realization of the

fixed-point data by a homologically trivial action ([7], Corollary 3.2 and [3]). The GSM condition

becomes n·def(3) = σ(g, X), ∀g ∈ Z5. We use the fact that σ(g, X) = σ(X) = −8n for any g ∈ Z5

and def(3) = −8 to verify the GSM condition. Consequently, there is a locally linear topological

action of Z5 on X = E(n) with the fixed-point set consisting of fixed points in Theorem 1.2

entirely.

The cyclic actions of the other orders on elliptic surface can be considered similarly. The

fixed-point set may be determined, and sometimes more assumptions may be needed.

Example 3.3 If X = E(n) admits a nontrivial, pseudofree action of G = Z7, such that the

symplectic structure is preserved under the action and the induced action on H2(X ; Q) is trivial,

furthermore suppose that X is spin (or equivalently, n is even). The fixed-point set may consist

of types 2), 3) and 4) fixed points in Theorem 2.5, and let a2, a3, a4 be the numbers of groups

of fixed points of types 2), 3) and 4), respectively. Similarly, we have
{

−48n = −8a2 + 2a3 − 16a4,

12n = 2a2 + 3a3 + 4a4,
(2)

here we use the fact that def(2) = −8, def(3) = 2 and def(4) = −16. By a calculation we have

a3 = 0, a2 + 2a4 = 6n. To obtain a2 and a4, we consider the Spin-number in Theorem 2.4. In

our case, the fixed-point set consists of a2 groups of fixed points and a4 groups of fixed points in

Theorem 2.5. Recall that

Spin(g, X) = −
∑

m∈F

ǫ(g, X) ·
1

4
csc(

amπ

7
) · csc(

bmπ

7
),

for each g ∈ G.
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Let ν2, ν4 be the total contribution to the Spin-number Spin(g,X) of a group of fixed points

of types 2) and 4), respectively. All the possible values of them (in approximations) are listed

below, taken at k = 1, 2, 3, respectively.

• ν2 = −1, − 1, − 1,

• ν4 = −0.44504, 1.80194, − 1.24698.

Now, the Spin-number can be written as

Spin(g, X) = −a2+the total contribution of fixed points of type 4).

Denote by δ the total contribution of fixed points of type 4), and suppose that x1, x2, x3 groups

of fixed points of type 4) contribute −0.44504, 1.80194, − 1.24698 respectively, then we have
{

δ = 0.44504x1 + 1.80194x2 − 1.24698x3,

a4 = x1 + x2 + x3.
(3)

The Spin-number can be written as Spin(g, X) =
∑6

i=0 diµ
i
7, so

(a2 + d0 − δ) + d1µ7 + d2µ
2
7 + d3µ

3
7 + d4µ

4
7 + d5µ

5
7 + d6µ

6
7 = 0.

Then we have a2+d0−δ = dk, where k = 1, . . . , 6. Together with the relation
∑6

i=0 di = −σ
8 = n,

we have

7d0 + 6a2 − 6δ = n.

If we let x1 = x2 = x3 in (3), then δ = a4

3 . Further if d0 = 0, one can get 6a2 − 2a4 = 6n. Note

that a2 + 2a4 = 6n, so a2 = n and a4 = 5n
2 . Precisely, the fixed-point set of the Z7-action on

E(n) consists of n groups of fixed points of type 2) and 5n
2 groups of fixed points of type 4) in

Theorem 2.5. 2
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