A Lower Bound for the Heegaard Genera of Annulus Sum ### Feng Ling LI, Feng Chun LEI* School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China **Abstract** Let M_i , i = 1, 2, be a compact orientable 3-manifold, and A_i an incompressible annulus on a component F_i of ∂M_i . Suppose A_1 is separating on F_1 and A_2 is non-separating on F_2 . Let M be the annulus sum of M_1 and M_2 along A_1 and A_2 . In the present paper, we give a lower bound for the genus of the annulus sum M in the condition of the Heegaard distances of the submanifolds M_1 and M_2 . Keywords genus; distance; annulus. Document code A MR(2010) Subject Classification 57N10; 57M50 Chinese Library Classification O189.1 ## 1. Introduction Let M_i be a compact connected orientable bordered 3-manifold, and A_i an incompressible annulus on ∂M_i , i = 1, 2. Let $h: A_1 \to A_2$ be a homeomorphism. The manifold M obtained by gluing M_1 and M_2 along A_1 and A_2 via h is called an *annulus sum* of M_1 and M_2 along A_1 and A_2 , and is denoted by $M_1 \cup_h M_2$ or $M_1 \cup_{A_1 = A_2} M_2$. Let $V_i \cup_{S_i} W_i$ be a Heegaard splitting of M_i for i = 1, 2, and $M = M_1 \cup_{A_1 = A_2} M_2$. Then from Schultens [13], we know that M has a natural Heegaard splitting $V \cup_S W$ induced from $V_1 \cup_{S_1} W_1$ and $V_2 \cup_{S_2} W_2$ with genus $g(S) = g(S_1) + g(S_2)$. So we always have $g(M) \leq g(M_1) + g(M_2)$. In the present paper, we suppose A_1 is separating on F_1 and A_2 is non-separating on F_2 , and we give a lower bound for the genus of the annulus sum M in the condition of the Heegaard distances of M_1 and M_2 . The main results are as follows: **Theorem 1** Let M_i , i=1,2, be a compact orientable 3-manifold, and A_i an incompressible annulus on a component F_i of ∂M_i . Suppose that A_1 is separating on F_1 and A_2 is non-separating on F_2 , and $M=M_1\cup_{A_1=A_2}M_2$. If M_i has a Heegaard splitting $V_i\cup_{S_i}W_i$ with $d(S_i)>2t_i+2g(F_{3-i})$ where $(g(M_i)-g(F_{3-i}))\leq t_i\leq g(M_i)$, i=1,2. Then $g(M)\geq t_1+t_2$. Furthermore, we have: Corollary 2 Let M_i , i = 1, 2, be a compact orientable 3-manifold, and A_i an incompressible Received November 27, 2009; Accepted April 27, 2010 Supported by the Fundamental Research Funds for the Central Universities and the Key Grant of National Natural Science Foundation of China (Grant No. 10931005). E-mail address: fenglingli@yahoo.com.cn (F. L. LI); ffcclei@yahoo.com.cn (F. C. LEI) ^{*} Corresponding author annulus on a component F_i of ∂M_i . Suppose that A_1 is separating on F_1 and A_2 is non-separating on F_2 , and $M = M_1 \cup_{A_1 = A_2} M_2$. If M_i has a Heegaard splitting $V_i \cup_{S_i} W_i$ with $d(S_i) > 2g(M_i) + 2g(F_{3-i})$ for i = 1, 2, then $g(M) = g(M_1) + g(M_2)$. The paper is organized as follows. In Section 2, we review some preliminaries which will be used later. In Section 3, we give the proof of the main results. #### 2. Preliminaries In this section, we will review some fundamental facts on surfaces in 3-manifolds. Definitions and terms which have not been defined are all standard, see [4]. A Heegaard splitting of a 3-manifold M is a decomposition $M = V \cup_S W$ in which V and W are compression bodies such that $V \cap W = \partial_+ V = \partial_+ W = S$ and $M = V \cup W$. S is called a Heegaard surface of M. $V \cup_S W$ is said to be weakly reducible if there are essential disks $D_1 \subset V$ and $D_2 \subset W$ with $\partial D_1 \cap \partial D_2 = \emptyset$. Otherwise, $V \cup_S W$ is strongly irreducible. A properly embedded surface is essential if it is incompressible and not ∂ -parallel. Let P be a properly embedded separating surface in a 3-manifold M which cuts M into two 3-manifolds M_1 and M_2 . Then P is bicompressible if P has compressing disks in both M_1 and M_2 . P is strongly irreducible if it is bicompressible and each compressing disk in M_1 meets each compressing disk in M_2 . Now let P be a closed bicompressible surface in an irreducible 3-manifold M. By maximally compressing P in both sides of P and removing the possible 2-sphere components, we denote the resulting surfaces by P_+ and P_- . Let H_1^P denote the closure of the region that lies between P and P_+ and similarly define H_2^P to denote the closure of the region that lies between P and P_- . Then H_1^P and H_2^P are compression bodies. If P is strongly irreducible in M, then the Heegaard splitting $H_1^P \cup_P H_2^P$ is strongly irreducible. Two strongly irreducible surfaces P and Q are said to be well-separated in M if $H_1^P \cup_P H_2^P$ is disjoint from $H_1^Q \cup_Q H_2^Q$ by isotopy. Let $M = V \cup_S W$ be a Heegaard splitting, α and β be two essential simple closed curves in S. The distance $d(\alpha, \beta)$ of α and β is the smallest integer $n \geq 0$ such that there is a sequence of essential simple closed curves $\alpha = \alpha_0, \alpha_1, \ldots, \alpha_n = \beta$ in S with $\alpha_{i-1} \cap \alpha_i = \emptyset$, for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \cup_S W$ is defined to be $d(S) = \min\{d(\alpha, \beta)\}$, where α bounds an essential disk in V and β bounds an essential disk in W. d(S) was first defined by Hempel [3]. Scharlemann and Thompson [11] showed that any irreducible and ∂ -irreducible Heegaard splitting $M = V \cup_S W$ has an untelescoping as $$V \cup_S W = (V_1 \cup_{S_1} W_1) \cup_{F_1} (V_2 \cup_{S_2} W_2) \cup_{F_2} \cdots \cup_{F_{m-1}} (V_m \cup_{S_m} W_m),$$ such that each $V_i \cup_{S_i} W_i$ is a strongly irreducible Heegaard splitting with $F_i = \partial_- W_i \cap \partial_- V_{i+1}$, $1 \leq i \leq m-1$, $\partial_- V_1 = \partial_- V$, $\partial_- W_m = \partial_- W$, and for each i, each component of F_i is a closed incompressible surface of positive genus, and only one component of $M_i = V_i \cup_{S_i} W_i$ is not a product. It is easy to see that when $m \geq 2$, $g(S) \geq g(S_i) + 1 \geq g(F_i) + 2$ for each i. From $V_1 \cup_{S_1} W_1, \cdots, V_m \cup_{S_m} W_m$, we can get a Heegaard splitting of M by a process called amalgamation [14]. The following are some basic facts and results on Heegaard splittings. **Lemma 1** ([7]) Let V be a non-trivial compression body and \mathcal{A} be a collection of essential annuli properly embedded in V. Then there is an essential disk D in V with $D \cap \mathcal{A} = \emptyset$. **Lemma 2** ([2,9]) Let $V \cup_S W$ be a Heegaard splitting of M and F be an properly embedded incompressible surface (maybe not connected) in M. Then any component of F is parallel to ∂M or $d(S) \leq 2 - \chi(F)$. The following Lemma is a well known fact [13]. **Lemma 3** An incompressible surface F in a compression body V cuts V into compression bodies. **Lemma 4** ([12]) Let P and Q be strongly irreducible connected closed separating surfaces in a 3-manifold M. Then either - (1) P and Q are well-separated; - (2) P and Q are isotopic, or - (3) $d(P) \le 2g(Q)$. **Lemma 5** ([10]) Let V be a non-trivial compression body and \mathcal{A} be a collection of incompressible annuli properly embedded in V. If U is a component of $V \setminus \mathcal{A}$ with $U \cap \partial_{-} V \neq \emptyset$, then $\chi(U \cap \partial_{-} V) \geq \chi(U \cap \partial_{+} V)$. **Lemma 6** ([6]) Let N be a compact orientable 3-manifold which is not a compression body, $F = \partial N$. Suppose Q is a properly embedded connected separating surface in N with ∂Q essential in F, and Q cuts N into two compression bodies N_1 and N_2 with $Q = \partial_+ N_1 \cap \partial_+ N_2$ and $F \cap N_2$ is a collection of annuli. If Q is compressible in both N_1 and N_2 , and Q can be compressed to Q^* in N_1 such that any component of Q^* is ∂ -parallel in N, then N has a Heegaard splitting $V \cup_S W$ with $d(S) \leq 2$ and $g(S) = 1 - \frac{1}{2}\chi(Q)$. # 3. Proof of the main results In $M = M_1 \cup_h M_2$, let $A = A_2 = h(A_1)$ and F_i be the component of ∂M_i in which A_i lies, i = 1, 2. We denote the two components of $F_1 - intA$ by F_1^1 and F_1^2 , and let $F_3 = F_1^1 \cup (F_2 - intA) \cup F_1^2$. Then F_3 is a boundary component of M. Let I = [0, 1] and $F_i \times I$ be a regular neighborhood of F_i in M_i with $F_i = F_i \times \{0\}$. We denote by F^i the surface $F_i \times \{1\}$. Let $M^i = M_i - F_i \times [0, 1)$ for i = 1, 2, and $M^0 = F_1 \times I \cup_A F_2 \times I$. Then $M = M^1 \cup_{F^1} M^0 \cup_{F^2} M^2$. Note that M^0 contains three boundary components F^1 , F^2 and F_3 . By [8, Lemma 2.3], M^0 contains two essential closed surfaces up to isotopy, we denote them by F_1^* and F_2^* , then $F_1^* = X_1 \cup X_2 \cup X_3$ such that X_1 and X_3 are isotopic to F_1^1 , and X_2 is a copy of $F_2 - intA$. And $F_2^* = X_1 \cup X_2 \cup X_3$ such that X_1 and X_3 are isotopic to F_1^2 , and X_2 is a copy of $F_2 - intA$. Now we come to the proof of Theorem 1. **Proof of Theorem 1** Let us suppose for a contradiction that $g(M) < t_1 + t_2$. Then there exists a minimal Heegaard splitting $V \cup_S W$ of M with $g(S) \le t_1 + t_2 - 1$. Now if $V \cup_S W$ is strongly irreducible, $S \cap A \neq \emptyset$ since F^1 is essential in M and there is no closed essential surface in a compression body. By [13, Lemma 6], we may assume that each component of $S \cap A$ is essential in both S and A, and $|S \cap A|$ is minimal. Since A is an essential annulus in M, by Lemma 1, we assume that all components of $S \setminus A$ are incompressible except exactly one bicompressible component in $M \setminus A$. Claim 1 $$\chi(S \cap M_1) \leq -2t_1$$. **Proof** Now if $S \cap M_1$ is incompressible in M_1 , it is essential in M_1 . Otherwise, any component of $S \cap M_1$ is ∂ -parallel in M_1 , which means that M_1 is a compression body, a contradiction to $d(S_1) > 2t_1 + 2g(F_2)$. By Lemma 2, $2 - \chi(S \cap M_1) \ge d(S_1) > 2t_1 + 2g(F_2)$, thus $\chi(S \cap M_1) < 2 - 2t_1 - 2g(F_2) \le -2t_1$. Next we assume $S \cap M_1$ is bicompressible. We denote the bicompressible component of $S \cap M_1$ by P. In fact, P is strongly irreducible in M_1 . $\chi(P) \leq -2$. If not, P is either a disk, an annulus, a pair of pants, or a once punctured torus, in each case we conclude that a component of ∂P bounds a disk in M_1 , therefore A is compressible in M_1 , a contradiction. If there exists an incompressible component Q of $S \cap M_1$ which is essential in M_1 , by Lemma 2, $2 - \chi(Q) \geq d(S_1) > 2t_1 + 2g(F_2)$, then $\chi(S \cap M_1) \leq \chi(Q) + \chi(P) \leq -2t_1 - 2g(F_2) < -2t_1$. Hence in the following we may assume that the incompressible components of $S \cap M_1$ are all ∂ -parallel in M_1 . Let P^V be the surface obtained by maximally compressing P in V and removing all possible 2-sphere components. Since P is strongly irreducible, P^V is incompressible in M_1 . Now if P^V is essential in M_1 , by Lemma 2, $2 - \chi(P^V) \geq d(S_1) > 2t_1 + 2g(F_2)$, then $\chi(S \cap M_1) \leq \chi(P) \leq \chi(P^V) - 2 \leq -2t_1 - 2g(F_2) < -2t_1$. Then we may assume that each component of P^V is ∂ -parallel in M_1 . Since A is an essential annulus in M and by Lemma 3, each component of $V \cap M_1$ and $W \cap M_1$ is a compression body. Let U_1 be the component of $V \cap M_1$ containing P and U_2 be the component of $W \cap M_1$ containing P. Then by parallelism $U_1 \cup_P U_2 \cong M_1$ and $\partial_+ U_1 \cap \partial_+ U_2 = P$. Since M_1 is not a compression body and A is an annulus, by Lemma 6, there exists a Heegaard surface S^1 of M_1 with $d(S^1) \leq 2$ and $g(S^1) \leq 1 - \frac{1}{2}\chi(P)$. Now $d(S_1) > 2t_1 + 2g(F_2) \geq 2g(M_1)$, then by [5, Lemma 3.3], S_1 is the unique minimal Heegaard surface of M_1 . But $d(S^1) \leq 2$, hence S^1 is not isotopic to S_1 . Then we have $g(S^1) \geq g(M_1) + 1$. Hence $\chi(S \cap M_1) \leq \chi(P) \leq 2 - 2g(S^1) \leq -2g(M_1) \leq -2t_1$. This completes the proof of Claim 1. \square Then by Claim 1, we have $\chi(S \cap M_1) \leq -2t_1$, $\chi(S \cap M_2) < -2t_2$. Then $2g(S) = 2 - \chi(S \cap M_1) - \chi(S \cap M_2) > 2t_1 + 2t_2 + 2$, a contradiction. Hence $V \cup_S W$ is weakly reducible, then $V \cup_S W$ has an untelescoping as $$V \cup_{S} W = (V_{1}^{'} \cup_{S_{1}^{'}} W_{1}^{'}) \cup_{H_{1}} \cdots \cup_{H_{m-1}} (V_{m}^{'} \cup_{S_{m}^{'}} W_{m}^{'}),$$ where $m \geq 2$, and for each i, each component of H_i is a closed essential surface in M. Let $\mathcal{F} = \{H_1, \dots, H_{m-1}\}.$ Claim 2 Let H_i be a component of \mathcal{F} . Suppose H_i is a boundary component of $N_i = V_i^{'} \cup_{S_i^{'}} W_i^{'}$ in the untelescoping. If $H_i \cap M_1$ is essential in M_1 , then $\chi(S_i^{'} \cap M_1) < 2 - 2t_1 - 2g(F_2)$. **Proof** Since $H_i \cap M_1$ is essential in M_1 , let Q^* be an essential component of $H_i \cap M_1$. By Lemma 2, $2 - \chi(Q^*) \ge d(S_1) > 2t_1 + 2g(F_2)$. If we denote the component of $V_i^{'} \cap M_1$ or $W_i^{'} \cap M_1$ which contains Q^* as part of boundary component by U, since A is an essential annulus in M, by Lemma 5, we have $\chi(S_i^{'} \cap M_1) \le \chi(U \cap (S_i^{'} \cap M_1)) \le \chi(U \cap Q^*) = \chi(Q^*) < 2 - 2t_1 - 2g(F_2)$. This completes the proof of Claim 2. \square Claim 3 For any $i \in \{2, ..., m-1\}$, there are no two components H_{i-1} , H_i in \mathcal{F} so that $H_{i-1} \cap M_1$ is essential in M_1 and $H_i \cap M_2$ is essential in M_2 whether $H_{i-1} \cap M_1$ and $H_i \cap M_2$ are with boundary or not. **Proof** Suppose there exist two components of \mathcal{F} so that $H_{i-1} \cap M_1$ is essential in M_1 and $H_i \cap M_2$ is essential in M_2 . Suppose $V_i^{'} \cup_{S_i^{'}} W_i^{'}$ is the Heegaard splitting in the untelescoping between them. Then by Claim 2, we have $\chi(S_i^{'} \cap M_1) < 2 - 2t_1 - 2g(F_2)$, and $\chi(S_i^{'} \cap M_2) < 2 - 2t_2 - 2g(F_1)$. Hence $2g(S) \geq 4 - \chi(S_i^{'}) > 2t_1 + 2t_2 + 2g(F_1) + 2g(F_2)$, a contradiction. This completes the proof of Claim 3. \square We now divide the proof into the following four cases to discuss. Case 1 Any component of \mathcal{F} is not ∂ -parallel in M_1 or M_2 , and $A \cap \mathcal{F} = \emptyset$. In this case, by Claim 3 and the assumption, we may assume that any component of \mathcal{F} is contained in M_1 . Let H be an outermost component of \mathcal{F} in M_1 , H is essential in M_1 . Suppose $A \subset N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. A is essential in M, so is in N_j . Since H is essential in M_1 , by Claim 2, we have $\chi(S_j^{'} \cap M_1) < 2 - 2t_1 - 2g(F_2)$. Now $N_j \cap M_2 = M_2$, by Claim 1, we have $\chi(S_j^{'} \cap M_2) \leq -2t_2$, then $2g(S) \geq 4 - \chi(S_j^{'}) > 2t_1 + 2t_2 + 2g(F_2)$, a contradiction. Case 2 Any component of \mathcal{F} is not ∂ -parallel in M_1 or M_2 , and $A \cap \mathcal{F} \neq \emptyset$. In this case, we may assume that any component of $\mathcal{F} \cap A$ is essential in both A and \mathcal{F} , and $|\mathcal{F} \cap A|$ is minimal. There are three subcases. **Subcase 2.1** The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is essential in M_1 but ∂ -parallel in M_2 . By Claim 3, we may assume that each component of $\mathcal{F} \cap M_1$ with boundary is essential in M_1 and each component of $\mathcal{F} \cap M_2$ with boundary is ∂ -parallel in M_2 . Among the surfaces of $\mathcal{F} \cap M_2$, let B be the innermost one, that is, B cuts M_2 into two pieces M'_2 and M''_2 , where $M'_2 \cong M_2$ and $M''_2 \cong B \times I$, and the interior of M'_2 contains no component of $\mathcal{F} \cap M_2$. B lies in a component, say H_r , of \mathcal{F} . Hence $H_r \cap M_1$ is essential in M_1 and $H_r \cap M_2$ is ∂ -parallel in M_2 , see Figure 1(a). We may assume that M_2' is contained in the submanifold $N_r = V_r' \cup_{S_r'} W_r'$ of the untelescoping. Since $H_r \cap M_1$ is essential in M_1 , by Claim 2, $\chi(S_r' \cap M_1) < 2 - 2t_1 - 2g(F_2)$. Note that $N_r \cap M_2 \cong M_2$, by Claim 1, we have $\chi(S_r' \cap M_2) \leq -2t_2$, then $2g(S) \geq 4 - \chi(S_r') > 2t_1 + 2t_2 + 2g(F_2)$, a contradiction. **Subcase 2.2** The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is essential in M_2 but ∂ -parallel in M_1 . There are two sub-subcases. **Sub-subcase 2.2.1** Each component of $H \cap M_1$ is parallel to the same one of F_1^1 or F_1^2 , say F_1^1 , in M_1 . We denote the Heegaard splitting in the untelescoping between F_3 and H by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. See Figure 1(b). Note that $N_j \cap M_1 \cong M_1$, by Claim 1, we have $\chi(S_j^{'} \cap M_1) \leq -2t_1$. Since $H \cap M_2$ is essential in M_2 , by Claim 2, $\chi(S_j^{'} \cap M_2) < 2 - 2t_2 - 2g(F_1)$. Then $2g(S) \geq 4 - \chi(S_j^{'}) > 2t_1 + 2t_2 + 2g(F_1)$, a contradiction. **Sub-subcase 2.2.2** At least one component of $H \cap M_1$ is parallel to F_1^1 and at least one component of $H \cap M_1$ is parallel to F_1^2 in M_1 . By Claim 3, we may assume that each component of $\mathcal{F} \cap M_1$ with boundary is ∂ -parallel in M_1 . Among the surfaces of $\mathcal{F} \cap M_1$ which is parallel to F_1^i , let B_i be the innermost one, i=1,2. Then B_1 and B_2 cut M_1 into three pieces M_1' , M_1'' and M_1''' with $M_1'\cong B_1\times I$, $M_1''\cong M_1$ and $M_1'''\cong B_2\times I$, and the interior of M_1'' contains no component of $\mathcal{F} \cap M_1$. B_2 lies in a component, say H_j , of \mathcal{F} . Hence by Claim 3, we have that $H_j \cap M_1$ is ∂ -parallel in M_1 and $H_j \cap M_2$ is essential in M_2 . We may assume that M_1'' is contained in the submanifold $N_j = V_j' \cup_{S_j'} W_j'$ of the untelescoping, see Figure 1(c). Since $H_j \cap M_2$ is essential in M_2 , by Claim 2, $\chi(S_j' \cap M_2) < 2 - 2t_2 - 2g(F_1)$. Note that $N_j \cap M_1 \cong M_1$, by Claim 1, we have $\chi(S_j' \cap M_1) \leq -2t_1$, then $2g(S) \geq 4 - \chi(S_j') > 2t_1 + 2t_2 + 2g(F_1)$, a contradiction. Figure 1 Surfaces intersecting A **Subcase 2.3** The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is isotopic to F_1^* or F_2^* , say, F_1^* . We denote the Heegaard splitting in the untelescoping between F_3 and F_1^* by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. Let $S_j^1 = S_j^{'} \cap M_1$ and $S_j^2 = S_j^{'} \cap M_2$. Now if N_j has some other boundary component H^* , then by assumption $H^* \cap A = \emptyset$, i.e., H^* is a closed essential surface in M_1 or M_2 . Now $N_j \cap M_2 \cong (F_2 - \operatorname{int} A) \times I$, hence $H^* \subset M_1$. Since H^* is an essential surface in M_1 , by Claim 2, we have $\chi(S_j^1) < 2 - 2t_1 - 2g(F_2)$. If N_j has no other boundary component, then $N_j \cap M_1 \cong M_1$. By Claim 1, we have $\chi(S_j^1) \leq -2t_1$. Claim 4 In either case, $\chi(S_i^2) \leq \chi(F_2)$. **Proof** In either case, $N_j \cap M_2 \cong (F_2 - \operatorname{int} A) \times I$. Now if S_j^2 is incompressible in $F_2 \times I$, since the incompressible and ∂ -incompressible surface in a trivial compression body is just spanning annulus, by [9, Lemma 2.3], any component of S_j^2 is parallel to $F_2 \setminus A_2$ in M_2 , hence $\chi(S_j^2) \leq \chi(F_2)$. Now if S_j^2 is bicompressible in $F_2 \times I$, by maximally compressing it in V_j' , we obtain a surface S_j^{2*} . Then by [9, Lemma 2.3], any component of S_j^{2*} is parallel to $F_2 \setminus A_2$ in M_2 , hence $\chi(S_j^2) \leq \chi(S_j^{2*}) - 2 \leq \chi(F_2) - 2 < \chi(F_2)$. This completes the proof of Claim 4. \square Hence whether N_j has some other boundary component or not, we have $\chi(S_j^1) = \chi(S_j^1) + \chi(S_j^2) \le 2 - 2t_1 - 2g(F_2)$. We denote the Heegaard splitting in the untelescoping on the other side of F_1^* which has F_1^* as a boundary component by $N_r = V_r^{'} \cup_{S^{'}} W_r^{'}$. Let $S_r^i = S_r^{'} \cap M_i$, i = 1, 2. There are three sub-subcases. **Sub-subcase 2.3.1** N_r has another boundary component $H^{'}$ of \mathcal{F} with $H^{'} \cap M_1$ essential in M_1 . In this case, if $H^{'} \cap M_2 = \emptyset$, then $H^{'} \subset (F_1^1 \times I)$, which means that a compression body contains a closed essential surface, a contradiction. Hence $H^{'} \cap M_2 \neq \emptyset$, then all components of $H^{'} \cap M_2$ are ∂ -parallel in M_2 , and furthermore, by Claim 3, we may assume that each component of $(\mathcal{F} - \{F_1^*\}) \cap M_1$ with boundary is essential in M_1 and each component of $\mathcal{F} \cap M_2$ with boundary is ∂ -parallel in M_2 . The following arguments are in some sense similar to those of subcase 2.1. Take the innermost component B of $\mathcal{F} \cap M_2$, that is, B cuts M_2 into two pieces M_2' and M_2'' , where $M_2' \cong M_2$ and $M_2'' \cong B \times I$, and the interior of M_2' contains no component of $\mathcal{F} \cap M_2$. B lies in a component, say H_i , of \mathcal{F} . Hence $H_i \cap M_1$ is essential in M_1 and $H_i \cap M_2$ is ∂ -parallel in M_2 . We may assume that M_2' is contained in the submanifold $N_i = V_i' \cup_{S_i'} W_i'$ of the untelescoping. Since $H_i \cap M_1$ is essential in M_1 , by Claim 2, $\chi(S_i' \cap M_1) < 2 - 2t_1 - 2g(F_2)$. Note that $N_i \cap M_2 \cong M_2$, by Claim 1, $\chi(S_i' \cap M_2) \leq -2t_2$, then $2g(S) \geq 4 - \chi(S_i') > 2t_1 + 2t_2 + 2g(F_2)$, a contradiction. **Sub-subcase 2.3.2** N_r has another boundary component $H^{'}$ of \mathcal{F} with $H^{'} \cap M_2$ essential in M_2 . In this case, $H' \cap M_2$ is essential in M_2 . By Claim 2, we have that $\chi(S_r^2) < 2 - 2t_2 - 2g(F_1)$. Whether $H' \cap M_1 = \emptyset$ or not, since S_2' is separating in N_2 , $|S_2' \cap A|$ is even while $|\partial F_1^1| = 1$. This means that $S_2' \cap (F_1 \times I)$ has at least two components. Then by Claim 4, we have that $\chi(S_r^1) \leq 2\chi(F_1^1)$. Hence $2g(S) \geq 2 - \chi(S_r') - \chi(S_j') + \chi(F_1^*) > 2t_1 + 2t_2 + 2g(F_1)$, a contradiction. **Sub-subcase 2.3.3** N_r has no other boundary component. In this case, $N_r \cap M_2 \cong M_2$. By Claim 1, we have $\chi(S_r^1) \leq 2\chi(F_1^1)$, $\chi(S_r^2) \leq -2t_2$. Hence $2g(S) = 2 - \chi(S_r^{'}) - \chi(S_j^{'}) + \chi(F_1^*) \geq 2t_1 + 2t_2 + 2$, a contradiction. Case 3 There exists one component of \mathcal{F} which is ∂ -parallel in M_1 or M_2 , and $A \cap \mathcal{F} = \emptyset$. In this case, without loss of generality, we may assume that $F^1 \subset \mathcal{F}$. Now whether there exists some component of \mathcal{F} in $intM^1$ or not, by amalgamating the Heegaard splittings in the untelescoping contained in M^1 , we get a generalized Heegaard splitting $M^1 = V_1^* \cup_{S_1^*} W_1^*$ with $g(S_1^*) \ge g(M_1).$ If there is no other component of \mathcal{F} in M_2 , we denote the Heegaard splitting of $M^0 \cup_{F^2} M^2$ in the untelescoping by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. Since $S_j^{'}$ is a Heegaard surface of $M^0 \cup_{F^2} M^2$ while S_2 is a Heegaard surface of M_2 , $S_j^{'}$ is not isotopic to S_2 , and furthermore, they are not well-separated. Then by Lemma 4, we have $d(S_2) \leq 2g(S_j^{'})$, hence $g(S_j^{'}) > t_2 + g(F_1)$. Then we have $g(S) \geq g(S_1^*) + g(S_j^{'}) - g(F_1) > g(M_1) + t_2 \geq t_1 + t_2$, a contradiction. Hence there is some other component of \mathcal{F} in M_2 , let F_* be the outermost one. If F_* is essential in M_2 , we denote the Heegaard splitting in the untelescoping between F^1 , F_* and F_3 by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. Now by Claim 2, we have $\chi(S_j^{'} \cap M_2) < 2 - 2t_2 - 2g(F_1)$. Since $\chi(S_j^{'} \cap M_1) \leq 0$, we have $g(S) \geq g(S_1^*) + g(S_j^{'}) - g(F_1) + 1 > g(M_1) + t_2 \geq t_1 + t_2$, a contradiction. Hence F_* is ∂ -parallel in M_2 . Then we get a generalized Heegaard splitting as: $V \cup_S W = (V_1^{'} \cup_{S_1^{'}} W_1^{'}) \cup_{H_1} (V_2^{'} \cup_{S_2^{'}} W_2^{'}) \cup_{H_2} (V_3^{'} \cup_{S_3^{'}} W_3^{'})$, and H_1 is isotopic to F^1 , H_2 is isotopic to F^2 . We may further assume that $V_1^{'} \cup_{S_1^{'}} W_1^{'}$ is a Heegaard splitting of M^0 , and $V_3^{'} \cup_{S_3^{'}} W_3^{'}$ is a Heegaard splitting of M^2 . Since A is separating on F_1 and non-separating on F_2 , M^0 contains only three boundary components F^1 , F^2 and F_3 . Note that $g(F_3) = g(F_1) + g(F_2) - 1$, hence $g(S_2^{'}) \geq g(M^0) \geq g(F_1) + g(F_2)$. Then we have $g(S) = g(S_1^{'}) + g(S_2^{'}) + g(S_3^{'}) - g(H_1) - g(H_2) \geq g(M_1) + g(M_2) \geq t_1 + t_2$, a contradiction. Case 4 There exists one component of \mathcal{F} which is ∂ -parallel in M_1 or M_2 , and $A \cap \mathcal{F} \neq \emptyset$. Now there are two subcases. ## Subcase 4.1 $F^2 \subset \mathcal{F}$. let H be a component of \mathcal{F} with $H \cap A \neq \emptyset$. If $H \cap M_1$ is essential in M_1 and $H \cap (F_2 \times I)$ is ∂ -parallel in $F_2 \times I$, by Lemma 2, $2 - \chi(H \cap M_1) \geq d(S_1) > 2t_1 + 2g(F_2)$, $\chi(H \cap (F_2 \times I)) \leq \chi(F_2)$, then $g(S) \geq g(M_2) + g(H) + 1 - g(F_2) > t_1 + g(M_2)$, a contradiction. Hence if $H \cap A \neq \emptyset$, $H \cap M_1$ is ∂ -parallel in M_1 and $H \cap (F_2 \times I)$ is ∂ -parallel in $F_2 \times I$. Then H can be isotoped to be an essential closed surface in M^0 , hence H is isotopic to either F_1^* or F_2^* . We may assume that H is isotopic to F_1^* . If there is no other component of \mathcal{F} in M_1 , we denote the Heegaard splitting in the untelescoping between F_1^* and F_3 by $N_1 = V_1^{'} \cup_{S_1^{'}} W_1^{'}$. Note that $N_1 \cap M_1 \cong M_1$ and $N_1 \cap M_2 \cong F_2 \times I$. By Claim 1, we have $\chi(S_1^{'} \cap M_1) \leq -2t_1$, $\chi(S_1^{'} \cap (F_2 \times I)) \leq \chi(F_2)$. Then $g(S) \geq g(M_2) + g(S_1^{'}) + 1 - g(F_2) \geq t_1 + g(M_2)$, a contradiction. Hence one component of \mathcal{F} must be parallel to F^1 in M_1 . Then by the same arguments as the last paragraph of case 3, we get a contradiction. # Subcase 4.2 $F^1 \subset \mathcal{F}$. Let $\mathcal{H} = \{\mathcal{H} : \mathcal{H} \subset \mathcal{F} \text{ and } H \cap M_2 \text{ is essential in } M_2\}$. If some component $H^{'}$ of \mathcal{H} and F^1 cobound a Heegaard splitting in the untelescoping, we denote the Heegaard splitting between $H^{'}$ and F^1 by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. Since $H^{'} \cap M_2$ is essential in M_2 , by Claim 2, we have $\chi(S_j^{'} \cap M_2) < 2 - 2t_2 - 2g(F_1), \chi(S_j^{'} \cap (F_1 \times I)) \leq 0$, then we have $g(S) \geq g(M_1) + g(S_j^{'}) - g(F_1) > g(M_1) + t_2$, a contradiction. Hence the outermost component with $H \cap A \neq \emptyset$ must be ∂ -parallel in M_2 . We may assume that H is isotopic to F_1^* . Let $N_1 = V_1^{'} \cup_{S_1^{'}} W_1^{'}$ be the Heegaard splitting bounded by F^1 , F_1^* and F_3 in the untelescoping. Then $g(N_1) \geq \min\{g(F_1) + g(F_1^*), g(F_1) + g(F_3), g(F_1^*) + g(F_3)\}$. Note that $g(F_3) = g(F_1) + g(F_2) - 1$ and $g(F_1^*) = g(F_2) + 2g(F_1^1) - 1$, hence $g(S_1^{'}) \geq g(N_1) \geq g(F_1) + g(F_2)$. If there is no other component of \mathcal{F} , we denote the Heegaard splitting in the untelescoping bounded by F_1^* by $N_j = V_j^{'} \cup_{S_j^{'}} W_j^{'}$. A is essential in M, so is in N_j . Note that $N_j \cap M_1 \cong F_1^1 \times I$ and $N_j \cap M_2 \cong M_2$. By Claim 1, we have $\chi(S_j^{'} \cap M_2) \leq -2t_2$, and by Claim 4, $\chi(S_2^{'} \cap (F_1 \times I)) \leq 2\chi(F_1^1)$. Then we have $g(S) \geq g(M_1) + g(S_1^{'}) + g(S_1^{'}) - g(F_1) - g(F_1^*) \geq g(M_1) + t_2$, a contradiction. Hence there is some other component F^* of \mathcal{F} . If $F^* \cap M_2$ is essential in M_2 , we denote the Heegaard splitting in the untelescoping between F_1^* and F^* by $N_2 = V_2^{'} \cup_{S_2^{'}} W_2^{'}$. Then by Claim 2, we have $\chi(S_2^{'} \cap M_2) < 2 - 2t_2 - 2g(F_1)$. By Claim 4, we have $\chi(S_2^{'} \cap (F_1 \times I)) \leq 2\chi(F_1^1)$. Then $g(S) \geq g(M_1) + g(S_1^{'}) + g(S_2^{'}) - g(F_1) - g(F_1^*) + 1 > g(M_1) + t_2$, a contradiction. Hence one component of \mathcal{F} must be parallel to F^2 in M_2 . Then by the same arguments as the last paragraph of Case 3, we get a contradiction. Therefore, the required equation holds. This finishes the proof of Theorem 1. \Box We now come to the proof of Corollary 2. **Proof of Corollary 2** Now let $t_i = g(M_i)$, i = 1, 2. Then by the results of Theorem 1, we have $g(M) \ge g(M_1) + g(M_2)$. Since M is the annulus sum of M_1 and M_2 , by the result of Schultens [13], we have $g(M) \le g(M_1) + g(M_2)$. Hence $g(M) = g(M_1) + g(M_2)$. #### References - [1] CASSON A J, GORDON C M. Reducing Heegaard splittings [J]. Topology Appl., 1987, 27(3): 275–283. - [2] HARTSHORN K. Heegaard splittings of Haken manifolds have bounded distance [J]. Pacific J. Math., 2002, 204(1): 61-75. - [3] HEMPEL J. 3-manifolds as viewed from the curve complex [J]. Topology, 2001, 40(3): 631-657. - [4] JACO W. Lectures on Three-Manifold Topology [M]. American Mathematical Society, Providence, R.I., 1980. - KOBAYASHI T, QIU Ruifeng. The amalgamation of high distance Heegaard splittings is always efficient [J]. Math. Ann., 2008, 341(3): 707–715. - [6] LI Fengling, YANG Guoqiu, LEI Fengchun. Heegaard genera of high distance are additive under annulus sum [J]. Topology Appl., 2010, 157(7): 1188-1194. - [7] MORIMOTO K. Tunnel number, connected sum and meridional essential surfaces [J]. Topology, 2000, 39(3): 469–485. - [8] QIU Ruifeng, DU Kun, MA Jiming, et al. Distance and the Heegaard genera of annular 3-manifolds [J]. J. Knot Theory Ramifications, to appear. - [9] SCHARLEMANN M. Proximity in the curve complex: boundary reduction and bicompressible surfaces [J]. Pacific J. Math., 2006, 228(2): 325–348. - [10] SCHARLEMANN M, SCHULTENS J. The tunnel number of the sum of nn knots is at least n [J]. Topology, 1999, 38(2): 265–270. - [11] SCHARLEMANN M, THOMPSON A. Thin Position for 3-Manifolds [M]. Contemp. Math., 164, Amer. Math. Soc., Providence, RI, 1994. - [12] SCHARLEMANN M, TOMOVA M. Alternate Heegaard genus bounds distance [J]. Geom. Topol., 2006, 10: 593-617. - [13] SCHULTENS J. Additivity of tunnel number for small knots [J]. Comment. Math. Helv., 2000, **75**(3): 353–367. - [14] SCHULTENS J. The classification of Heegaard splittings for (compact orientable surface)×S¹ [J]. Proc. London Math. Soc. (3), 1993, **67**(2): 425–448.