A Lower Bound for the Heegaard Genera of Annulus Sum

Feng Ling LI, Feng Chun LEI*
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

Let $M_{i}, i=1,2$, be a compact orientable 3-manifold, and A_{i} an incompressible annulus on a component F_{i} of ∂M_{i}. Suppose A_{1} is separating on F_{1} and A_{2} is non-separating on F_{2}. Let M be the annulus sum of M_{1} and M_{2} along A_{1} and A_{2}. In the present paper, we give a lower bound for the genus of the annulus sum M in the condition of the Heegaard distances of the submanifolds M_{1} and M_{2}.

Keywords genus; distance; annulus.
Document code A
MR(2010) Subject Classification 57N10; 57M50
Chinese Library Classification O189.1

1. Introduction

Let M_{i} be a compact connected orientable bordered 3-manifold, and A_{i} an incompressible annulus on $\partial M_{i}, i=1,2$. Let $h: A_{1} \rightarrow A_{2}$ be a homeomorphism. The manifold M obtained by gluing M_{1} and M_{2} along A_{1} and A_{2} via h is called an annulus sum of M_{1} and M_{2} along A_{1} and A_{2}, and is denoted by $M_{1} \cup_{h} M_{2}$ or $M_{1} \cup_{A_{1}=A_{2}} M_{2}$.

Let $V_{i} \cup_{S_{i}} W_{i}$ be a Heegaard splitting of M_{i} for $i=1,2$, and $M=M_{1} \cup_{A_{1}=A_{2}} M_{2}$. Then from Schultens [13], we know that M has a natural Heegaard splitting $V \cup_{S} W$ induced from $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$ with genus $g(S)=g\left(S_{1}\right)+g\left(S_{2}\right)$. So we always have $g(M) \leq g\left(M_{1}\right)+g\left(M_{2}\right)$.

In the present paper, we suppose A_{1} is separating on F_{1} and A_{2} is non-separating on F_{2}, and we give a lower bound for the genus of the annulus sum M in the condition of the Heegaard distances of M_{1} and M_{2}. The main results are as follows:

Theorem 1 Let $M_{i}, i=1,2$, be a compact orientable 3-manifold, and A_{i} an incompressible annulus on a component F_{i} of ∂M_{i}. Suppose that A_{1} is separating on F_{1} and A_{2} is nonseparating on F_{2}, and $M=M_{1} \cup_{A_{1}=A_{2}} M_{2}$. If M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with $d\left(S_{i}\right)>2 t_{i}+2 g\left(F_{3-i}\right)$ where $\left(g\left(M_{i}\right)-g\left(F_{3-i}\right)\right) \leq t_{i} \leq g\left(M_{i}\right), i=1,2$. Then $g(M) \geq t_{1}+t_{2}$.

Furthermore, we have:
Corollary 2 Let $M_{i}, i=1,2$, be a compact orientable 3-manifold, and A_{i} an incompressible

[^0]annulus on a component F_{i} of ∂M_{i}. Suppose that A_{1} is separating on F_{1} and A_{2} is nonseparating on F_{2}, and $M=M_{1} \cup_{A_{1}=A_{2}} M_{2}$. If M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with $d\left(S_{i}\right)>2 g\left(M_{i}\right)+2 g\left(F_{3-i}\right)$ for $i=1,2$, then $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$.

The paper is organized as follows. In Section 2, we review some preliminaries which will be used later. In Section 3, we give the proof of the main results.

2. Preliminaries

In this section, we will review some fundamental facts on surfaces in 3-manifolds. Definitions and terms which have not been defined are all standard, see [4].

A Heegaard splitting of a 3-manifold M is a decomposition $M=V \cup_{S} W$ in which V and W are compression bodies such that $V \cap W=\partial_{+} V=\partial_{+} W=S$ and $M=V \cup W . S$ is called a Heegaard surface of $M . V \cup_{S} W$ is said to be weakly reducible if there are essential disks $D_{1} \subset V$ and $D_{2} \subset W$ with $\partial D_{1} \cap \partial D_{2}=\emptyset$. Otherwise, $V \cup_{S} W$ is strongly irreducible.

A properly embedded surface is essential if it is incompressible and not ∂-parallel.
Let P be a properly embedded separating surface in a 3 -manifold M which cuts M into two 3-manifolds M_{1} and M_{2}. Then P is bicompressible if P has compressing disks in both M_{1} and $M_{2} . P$ is strongly irreducible if it is bicompressible and each compressing disk in M_{1} meets each compressing disk in M_{2}.

Now let P be a closed bicompressible surface in an irreducible 3-manifold M. By maximally compressing P in both sides of P and removing the possible 2-sphere components, we denote the resulting surfaces by P_{+}and P_{-}. Let H_{1}^{P} denote the closure of the region that lies between P and P_{+}and similarly define H_{2}^{P} to denote the closure of the region that lies between P and P_{-}. Then H_{1}^{P} and H_{2}^{P} are compression bodies. If P is strongly irreducible in M, then the Heegaard splitting $H_{1}^{P} \cup_{P} H_{2}^{P}$ is strongly irreducible. Two strongly irreducible surfaces P and Q are said to be well-separated in M if $H_{1}^{P} \cup_{P} H_{2}^{P}$ is disjoint from $H_{1}^{Q} \cup_{Q} H_{2}^{Q}$ by isotopy.

Let $M=V \cup_{S} W$ be a Heegaard splitting, α and β be two essential simple closed curves in S. The distance $d(\alpha, \beta)$ of α and β is the smallest integer $n \geq 0$ such that there is a sequence of essential simple closed curves $\alpha=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}=\beta$ in S with $\alpha_{i-1} \cap \alpha_{i}=\emptyset$, for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \cup_{S} W$ is defined to be $d(S)=\min \{d(\alpha, \beta)\}$, where α bounds an essential disk in V and β bounds an essential disk in $W . d(S)$ was first defined by Hempel [3].

Scharlemann and Thompson [11] showed that any irreducible and ∂-irreducible Heegaard splitting $M=V \cup_{S} W$ has an untelescoping as

$$
V \cup_{S} W=\left(V_{1} \cup_{S_{1}} W_{1}\right) \cup_{F_{1}}\left(V_{2} \cup_{S_{2}} W_{2}\right) \cup_{F_{2}} \cdots \cup_{F_{m-1}}\left(V_{m} \cup_{S_{m}} W_{m}\right)
$$

such that each $V_{i} \cup_{S_{i}} W_{i}$ is a strongly irreducible Heegaard splitting with $F_{i}=\partial_{-} W_{i} \cap \partial_{-} V_{i+1}$, $1 \leq i \leq m-1, \partial_{-} V_{1}=\partial_{-} V, \partial_{-} W_{m}=\partial_{-} W$, and for each i, each component of F_{i} is a closed incompressible surface of positive genus, and only one component of $M_{i}=V_{i} \cup_{S_{i}} W_{i}$ is not a product. It is easy to see that when $m \geq 2, g(S) \geq g\left(S_{i}\right)+1 \geq g\left(F_{i}\right)+2$ for each i. From $V_{1} \cup_{S_{1}} W_{1}, \cdots, V_{m} \cup_{S_{m}} W_{m}$, we can get a Heegaard splitting of M by a process called amalgamation [14].

The following are some basic facts and results on Heegaard splittings.
Lemma 1 ([7]) Let V be a non-trivial compression body and \mathcal{A} be a collection of essential annuli properly embedded in V. Then there is an essential disk D in V with $D \cap \mathcal{A}=\emptyset$.

Lemma $2([2,9])$ Let $V \cup_{S} W$ be a Heegaard splitting of M and F be an properly embedded incompressible surface (maybe not connected) in M. Then any component of F is parallel to ∂M or $d(S) \leq 2-\chi(F)$.

The following Lemma is a well known fact [13].
Lemma 3 An incompressible surface F in a compression body V cuts V into compression bodies.

Lemma 4 ([12]) Let P and Q be strongly irreducible connected closed separating surfaces in a 3 -manifold M. Then either
(1) P and Q are well-separated;
(2) P and Q are isotopic, or
(3) $d(P) \leq 2 g(Q)$.

Lemma 5 ([10]) Let V be a non-trivial compression body and \mathcal{A} be a collection of incompressible annuli properly embedded in V. If U is a component of $V \backslash \mathcal{A}$ with $U \cap \partial_{-} V \neq \emptyset$, then $\chi(U \cap$ $\left.\partial_{-} V\right) \geq \chi\left(U \cap \partial_{+} V\right)$.

Lemma 6 ([6]) Let N be a compact orientable 3-manifold which is not a compression body, $F=\partial N$. Suppose Q is a properly embedded connected separating surface in N with ∂Q essential in F, and Q cuts N into two compression bodies N_{1} and N_{2} with $Q=\partial_{+} N_{1} \cap \partial_{+} N_{2}$ and $F \cap N_{2}$ is a collection of annuli. If Q is compressible in both N_{1} and N_{2}, and Q can be compressed to Q^{*} in N_{1} such that any component of Q^{*} is ∂-parallel in N, then N has a Heegaard splitting $V \cup_{S} W$ with $d(S) \leq 2$ and $g(S)=1-\frac{1}{2} \chi(Q)$.

3. Proof of the main results

In $M=M_{1} \cup_{h} M_{2}$, let $A=A_{2}=h\left(A_{1}\right)$ and F_{i} be the component of ∂M_{i} in which A_{i} lies, $i=$ 1, 2. We denote the two components of $F_{1}-i n t A$ by F_{1}^{1} and F_{1}^{2}, and let $F_{3}=F_{1}^{1} \cup\left(F_{2}-i n t A\right) \cup F_{1}^{2}$. Then F_{3} is a boundary component of M. Let $I=[0,1]$ and $F_{i} \times I$ be a regular neighborhood of F_{i} in M_{i} with $F_{i}=F_{i} \times\{0\}$. We denote by F^{i} the surface $F_{i} \times\{1\}$. Let $M^{i}=M_{i}-F_{i} \times[0,1)$ for $i=1,2$, and $M^{0}=F_{1} \times I \cup_{A} F_{2} \times I$. Then $M=M^{1} \cup_{F^{1}} M^{0} \cup_{F^{2}} M^{2}$.

Note that M^{0} contains three boundary components F^{1}, F^{2} and F_{3}. By [8, Lemma 2.3], M^{0} contains two essential closed surfaces up to isotopy, we denote them by F_{1}^{*} and F_{2}^{*}, then $F_{1}^{*}=X_{1} \cup X_{2} \cup X_{3}$ such that X_{1} and X_{3} are isotopic to F_{1}^{1}, and X_{2} is a copy of $F_{2}-i n t A$. And $F_{2}^{*}=X_{1} \cup X_{2} \cup X_{3}$ such that X_{1} and X_{3} are isotopic to F_{1}^{2}, and X_{2} is a copy of $F_{2}-i n t A$.

Now we come to the proof of Theorem 1.
Proof of Theorem 1 Let us suppose for a contradiction that $g(M)<t_{1}+t_{2}$. Then there exists a minimal Heegaard splitting $V \cup_{S} W$ of M with $g(S) \leq t_{1}+t_{2}-1$.

Now if $V \cup_{S} W$ is strongly irreducible, $S \cap A \neq \emptyset$ since F^{1} is essential in M and there is no closed essential surface in a compression body. By [13, Lemma 6], we may assume that each component of $S \cap A$ is essential in both S and A, and $|S \cap A|$ is minimal. Since A is an essential annulus in M, by Lemma 1 , we assume that all components of $S \backslash A$ are incompressible except exactly one bicompressible component in $M \backslash A$.

Claim $1 \chi\left(S \cap M_{1}\right) \leq-2 t_{1}$.
Proof Now if $S \cap M_{1}$ is incompressible in M_{1}, it is essential in M_{1}. Otherwise, any component of $S \cap M_{1}$ is ∂-parallel in M_{1}, which means that M_{1} is a compression body, a contradiction to $d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right)$. By Lemma 2, $2-\chi\left(S \cap M_{1}\right) \geq d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right)$, thus $\chi\left(S \cap M_{1}\right)<$ $2-2 t_{1}-2 g\left(F_{2}\right) \leq-2 t_{1}$.

Next we assume $S \cap M_{1}$ is bicompressible. We denote the bicompressible component of $S \cap M_{1}$ by P. In fact, P is strongly irreducible in $M_{1} . \chi(P) \leq-2$. If not, P is either a disk, an annulus, a pair of pants, or a once punctured torus, in each case we conclude that a component of ∂P bounds a disk in M_{1}, therefore A is compressible in M_{1}, a contradiction. If there exists an incompressible component Q of $S \cap M_{1}$ which is essential in M_{1}, by Lemma $2,2-\chi(Q) \geq d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right)$, then $\chi\left(S \cap M_{1}\right) \leq \chi(Q)+\chi(P) \leq-2 t_{1}-2 g\left(F_{2}\right)<-2 t_{1}$. Hence in the following we may assume that the incompressible components of $S \cap M_{1}$ are all ∂-parallel in M_{1}. Let P^{V} be the surface obtained by maximally compressing P in V and removing all possible 2 -sphere components. Since P is strongly irreducible, P^{V} is incompressible in M_{1}. Now if P^{V} is essential in M_{1}, by Lemma 2, $2-\chi\left(P^{V}\right) \geq d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right)$, then $\chi\left(S \cap M_{1}\right) \leq \chi(P) \leq \chi\left(P^{V}\right)-2 \leq-2 t_{1}-2 g\left(F_{2}\right)<-2 t_{1}$. Then we may assume that each component of P^{V} is ∂-parallel in M_{1}.

Since A is an essential annulus in M and by Lemma 3, each component of $V \cap M_{1}$ and $W \cap M_{1}$ is a compression body. Let U_{1} be the component of $V \cap M_{1}$ containing P and U_{2} be the component of $W \cap M_{1}$ containing P. Then by parallelism $U_{1} \cup_{P} U_{2} \cong M_{1}$ and $\partial_{+} U_{1} \cap \partial_{+} U_{2}=P$. Since M_{1} is not a compression body and A is an annulus, by Lemma 6 , there exists a Heegaard surface S^{1} of M_{1} with $d\left(S^{1}\right) \leq 2$ and $g\left(S^{1}\right) \leq 1-\frac{1}{2} \chi(P)$. Now $d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right) \geq 2 g\left(M_{1}\right)$, then by [5, Lemma 3.3], S_{1} is the unique minimal Heegaard surface of M_{1}. But $d\left(S^{1}\right) \leq 2$, hence S^{1} is not isotopic to S_{1}. Then we have $g\left(S^{1}\right) \geq g\left(M_{1}\right)+1$. Hence $\chi\left(S \cap M_{1}\right) \leq \chi(P) \leq$ $2-2 g\left(S^{1}\right) \leq-2 g\left(M_{1}\right) \leq-2 t_{1}$.

This completes the proof of Claim 1.
Then by Claim 1, we have $\chi\left(S \cap M_{1}\right) \leq-2 t_{1}, \chi\left(S \cap M_{2}\right)<-2 t_{2}$. Then $2 g(S)=2-\chi(S \cap$ $\left.M_{1}\right)-\chi\left(S \cap M_{2}\right)>2 t_{1}+2 t_{2}+2$, a contradiction.

Hence $V \cup_{S} W$ is weakly reducible, then $V \cup_{S} W$ has an untelescoping as

$$
V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}} \cdots \cup_{H_{m-1}}\left(V_{m}^{\prime} \cup_{S_{m}^{\prime}} W_{m}^{\prime}\right),
$$

where $m \geq 2$, and for each i, each component of H_{i} is a closed essential surface in M. Let $\mathcal{F}=\left\{H_{1}, \ldots, H_{m-1}\right\}$.

Claim 2 Let H_{i} be a component of \mathcal{F}. Suppose H_{i} is a boundary component of $N_{i}=V_{i}^{\prime} \cup_{S_{i}^{\prime}} W_{i}^{\prime}$ in the untelescoping. If $H_{i} \cap M_{1}$ is essential in M_{1}, then $\chi\left(S_{i}^{\prime} \cap M_{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$.

Proof Since $H_{i} \cap M_{1}$ is essential in M_{1}, let Q^{*} be an essential component of $H_{i} \cap M_{1}$. By Lemma $2,2-\chi\left(Q^{*}\right) \geq d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right)$. If we denote the component of $V_{i}^{\prime} \cap M_{1}$ or $W_{i}^{\prime} \cap M_{1}$ which contains Q^{*} as part of boundary component by U, since A is an essential annulus in M, by Lemma 5, we have $\chi\left(S_{i}^{\prime} \cap M_{1}\right) \leq \chi\left(U \cap\left(S_{i}^{\prime} \cap M_{1}\right)\right) \leq \chi\left(U \cap Q^{*}\right)=\chi\left(Q^{*}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$.

This completes the proof of Claim 2.
Claim 3 For any $i \in\{2, \ldots, m-1\}$, there are no two components H_{i-1}, H_{i} in \mathcal{F} so that $H_{i-1} \cap M_{1}$ is essential in M_{1} and $H_{i} \cap M_{2}$ is essential in M_{2} whether $H_{i-1} \cap M_{1}$ and $H_{i} \cap M_{2}$ are with boundary or not.

Proof Suppose there exist two components of \mathcal{F} so that $H_{i-1} \cap M_{1}$ is essential in M_{1} and $H_{i} \cap M_{2}$ is essential in M_{2}. Suppose $V_{i}^{\prime} \cup_{S_{i}^{\prime}} W_{i}^{\prime}$ is the Heegaard splitting in the untelescoping between them. Then by Claim 2, we have $\chi\left(S_{i}^{\prime} \cap M_{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$, and $\chi\left(S_{i}^{\prime} \cap M_{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. Hence $2 g(S) \geq 4-\chi\left(S_{i}^{\prime}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{1}\right)+2 g\left(F_{2}\right)$, a contradiction.

This completes the proof of Claim 3 .
We now divide the proof into the following four cases to discuss.
Case 1 Any component of \mathcal{F} is not ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F}=\emptyset$.
In this case, by Claim 3 and the assumption, we may assume that any component of \mathcal{F} is contained in M_{1}. Let H be an outermost component of \mathcal{F} in M_{1}, H is essential in M_{1}.

Suppose $A \subset N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime} . A$ is essential in M, so is in N_{j}. Since H is essential in M_{1}, by Claim 2, we have $\chi\left(S_{j}^{\prime} \cap M_{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$. Now $N_{j} \cap M_{2}=M_{2}$, by Claim 1, we have $\chi\left(S_{j}^{\prime} \cap M_{2}\right) \leq-2 t_{2}$, then $2 g(S) \geq 4-\chi\left(S_{j}^{\prime}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{2}\right)$, a contradiction.

Case 2 Any component of \mathcal{F} is not ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F} \neq \emptyset$.
In this case, we may assume that any component of $\mathcal{F} \cap A$ is essential in both A and \mathcal{F}, and $|\mathcal{F} \cap A|$ is minimal. There are three subcases.

Subcase 2.1 The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is essential in M_{1} but ∂-parallel in M_{2}.

By Claim 3, we may assume that each component of $\mathcal{F} \cap M_{1}$ with boundary is essential in M_{1} and each component of $\mathcal{F} \cap M_{2}$ with boundary is ∂-parallel in M_{2}. Among the surfaces of $\mathcal{F} \cap M_{2}$, let B be the innermost one, that is, B cuts M_{2} into two pieces M_{2}^{\prime} and $M_{2}^{\prime \prime}$, where $M_{2}^{\prime} \cong M_{2}$ and $M_{2}^{\prime \prime} \cong B \times I$, and the interior of M_{2}^{\prime} contains no component of $\mathcal{F} \cap M_{2}$. B lies in a component, say H_{r}, of \mathcal{F}. Hence $H_{r} \cap M_{1}$ is essential in M_{1} and $H_{r} \cap M_{2}$ is ∂-parallel in M_{2}, see Figure 1(a).

We may assume that M_{2}^{\prime} is contained in the submanifold $N_{r}=V_{r}^{\prime} \cup_{S_{r}^{\prime}} W_{r}^{\prime}$ of the untelescoping. Since $H_{r} \cap M_{1}$ is essential in M_{1}, by Claim 2, $\chi\left(S_{r}^{\prime} \cap M_{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$. Note that $N_{r} \cap M_{2} \cong$ M_{2}, by Claim 1, we have $\chi\left(S_{r}^{\prime} \cap M_{2}\right) \leq-2 t_{2}$, then $2 g(S) \geq 4-\chi\left(S_{r}^{\prime}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{2}\right)$, a contradiction.

Subcase 2.2 The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is essential in M_{2} but ∂-parallel in M_{1}.

There are two sub-subcases.
Sub-subcase 2.2.1 Each component of $H \cap M_{1}$ is parallel to the same one of F_{1}^{1} or F_{1}^{2}, say F_{1}^{1}, in M_{1}.

We denote the Heegaard splitting in the untelescoping between F_{3} and H by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. See Figure $1(b)$. Note that $N_{j} \cap M_{1} \cong M_{1}$, by Claim 1, we have $\chi\left(S_{j}^{\prime} \cap M_{1}\right) \leq-2 t_{1}$. Since $H \cap M_{2}$ is essential in M_{2}, by Claim $2, \chi\left(S_{j}^{\prime} \cap M_{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. Then $2 g(S) \geq 4-\chi\left(S_{j}^{\prime}\right)>$ $2 t_{1}+2 t_{2}+2 g\left(F_{1}\right)$, a contradiction.

Sub-subcase 2.2.2 At least one component of $H \cap M_{1}$ is parallel to F_{1}^{1} and at least one component of $H \cap M_{1}$ is parallel to F_{1}^{2} in M_{1}.

By Claim 3, we may assume that each component of $\mathcal{F} \cap M_{1}$ with boundary is ∂-parallel in M_{1}. Among the surfaces of $\mathcal{F} \cap M_{1}$ which is parallel to F_{1}^{i}, let B_{i} be the innermost one, $i=1,2$. Then B_{1} and B_{2} cut M_{1} into three pieces $M_{1}^{\prime}, M_{1}^{\prime \prime}$ and $M_{1}^{\prime \prime \prime}$ with $M_{1}^{\prime} \cong B_{1} \times I$, $M_{1}^{\prime \prime} \cong M_{1}$ and $M_{1}^{\prime \prime \prime} \cong B_{2} \times I$, and the interior of $M_{1}^{\prime \prime}$ contains no component of $\mathcal{F} \cap M_{1} . B_{2}$ lies in a component, say H_{j}, of \mathcal{F}. Hence by Claim 3, we have that $H_{j} \cap M_{1}$ is ∂-parallel in M_{1} and $H_{j} \cap M_{2}$ is essential in M_{2}. We may assume that $M_{1}^{\prime \prime}$ is contained in the submanifold $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$ of the untelescoping, see Figure $1(\mathrm{c})$. Since $H_{j} \cap M_{2}$ is essential in M_{2}, by Claim 2, $\chi\left(S_{j}^{\prime} \cap M_{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. Note that $N_{j} \cap M_{1} \cong M_{1}$, by Claim 1, we have $\chi\left(S_{j}^{\prime} \cap M_{1}\right) \leq-2 t_{1}$, then $2 g(S) \geq 4-\chi\left(S_{j}^{\prime}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{1}\right)$, a contradiction.

Figure 1 Surfaces intersecting A
Subcase 2.3 The outermost component H of \mathcal{F} with $H \cap A \neq \emptyset$ is isotopic to F_{1}^{*} or F_{2}^{*}, say, F_{1}^{*}.

We denote the Heegaard splitting in the untelescoping between F_{3} and F_{1}^{*} by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. Let $S_{j}^{1}=S_{j}^{\prime} \cap M_{1}$ and $S_{j}^{2}=S_{j}^{\prime} \cap M_{2}$. Now if N_{j} has some other boundary component H^{*}, then by assumption $H^{*} \cap A=\emptyset$, i.e., H^{*} is a closed essential surface in M_{1} or M_{2}. Now $N_{j} \cap M_{2} \cong\left(F_{2}-\operatorname{int} A\right) \times I$, hence $H^{*} \subset M_{1}$. Since H^{*} is an essential surface in M_{1}, by Claim 2, we have $\chi\left(S_{j}^{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$. If N_{j} has no other boundary component, then $N_{j} \cap M_{1} \cong M_{1}$. By Claim 1, we have $\chi\left(S_{j}^{1}\right) \leq-2 t_{1}$.

Claim 4 In either case, $\chi\left(S_{j}^{2}\right) \leq \chi\left(F_{2}\right)$.
Proof In either case, $N_{j} \cap M_{2} \cong\left(F_{2}-\operatorname{int} A\right) \times I$. Now if S_{j}^{2} is incompressible in $F_{2} \times I$, since
the incompressible and ∂-incompressible surface in a trivial compression body is just spanning annulus, by [9, Lemma 2.3], any component of S_{j}^{2} is parallel to $F_{2} \backslash A_{2}$ in M_{2}, hence $\chi\left(S_{j}^{2}\right) \leq$ $\chi\left(F_{2}\right)$.

Now if S_{j}^{2} is bicompressible in $F_{2} \times I$, by maximally compressing it in V_{j}^{\prime}, we obtain a surface $S_{j}^{2 *}$. Then by [9, Lemma 2.3], any component of $S_{j}^{2 *}$ is parallel to $F_{2} \backslash A_{2}$ in M_{2}, hence $\chi\left(S_{j}^{2}\right) \leq \chi\left(S_{j}^{2 *}\right)-2 \leq \chi\left(F_{2}\right)-2<\chi\left(F_{2}\right)$.

This completes the proof of Claim 4.
Hence whether N_{j} has some other boundary component or not, we have $\chi\left(S_{j}^{\prime}\right)=\chi\left(S_{j}^{1}\right)+$ $\chi\left(S_{j}^{2}\right) \leq 2-2 t_{1}-2 g\left(F_{2}\right)$.

We denote the Heegaard splitting in the untelescoping on the other side of F_{1}^{*} which has F_{1}^{*} as a boundary component by $N_{r}=V_{r}^{\prime} \cup_{S_{r}^{\prime}} W_{r}^{\prime}$. Let $S_{r}^{i}=S_{r}^{\prime} \cap M_{i}, i=1,2$.

There are three sub-subcases.
Sub-subcase 2.3.1 N_{r} has another boundary component H^{\prime} of \mathcal{F} with $H^{\prime} \cap M_{1}$ essential in M_{1}.

In this case, if $H^{\prime} \cap M_{2}=\emptyset$, then $H^{\prime} \subset\left(F_{1}^{1} \times I\right)$, which means that a compression body contains a closed essential surface, a contradiction. Hence $H^{\prime} \cap M_{2} \neq \emptyset$, then all components of $H^{\prime} \cap M_{2}$ are ∂-parallel in M_{2}, and furthermore, by Claim 3, we may assume that each component of $\left(\mathcal{F}-\left\{F_{1}^{*}\right\}\right) \cap M_{1}$ with boundary is essential in M_{1} and each component of $\mathcal{F} \cap M_{2}$ with boundary is ∂-parallel in M_{2}.

The following arguments are in some sense similar to those of subcase 2.1. Take the innermost component B of $\mathcal{F} \cap M_{2}$, that is, B cuts M_{2} into two pieces M_{2}^{\prime} and $M_{2}^{\prime \prime}$, where $M_{2}^{\prime} \cong M_{2}$ and $M_{2}^{\prime \prime} \cong B \times I$, and the interior of M_{2}^{\prime} contains no component of $\mathcal{F} \cap M_{2}$. B lies in a component, say H_{i}, of \mathcal{F}. Hence $H_{i} \cap M_{1}$ is essential in M_{1} and $H_{i} \cap M_{2}$ is ∂-parallel in M_{2}. We may assume that M_{2}^{\prime} is contained in the submanifold $N_{i}=V_{i}^{\prime} \cup_{S_{i}^{\prime}} W_{i}^{\prime}$ of the untelescoping. Since $H_{i} \cap M_{1}$ is essential in M_{1}, by Claim 2, $\chi\left(S_{i}^{\prime} \cap M_{1}\right)<2-2 t_{1}-2 g\left(F_{2}\right)$. Note that $N_{i} \cap M_{2} \cong M_{2}$, by Claim 1, $\chi\left(S_{i}^{\prime} \cap M_{2}\right) \leq-2 t_{2}$, then $2 g(S) \geq 4-\chi\left(S_{i}^{\prime}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{2}\right)$, a contradiction.

Sub-subcase 2.3.2 N_{r} has another boundary component H^{\prime} of \mathcal{F} with $H^{\prime} \cap M_{2}$ essential in M_{2}.

In this case, $H^{\prime} \cap M_{2}$ is essential in M_{2}. By Claim 2, we have that $\chi\left(S_{r}^{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. Whether $H^{\prime} \cap M_{1}=\emptyset$ or not, since S_{2}^{\prime} is separating in $N_{2},\left|S_{2}^{\prime} \cap A\right|$ is even while $\left|\partial F_{1}^{1}\right|=1$. This means that $S_{2}^{\prime} \cap\left(F_{1} \times I\right)$ has at least two components. Then by Claim 4, we have that $\chi\left(S_{r}^{1}\right) \leq 2 \chi\left(F_{1}^{1}\right)$. Hence $2 g(S) \geq 2-\chi\left(S_{r}^{\prime}\right)-\chi\left(S_{j}^{\prime}\right)+\chi\left(F_{1}^{*}\right)>2 t_{1}+2 t_{2}+2 g\left(F_{1}\right)$, a contradiction.

Sub-subcase 2.3.3 N_{r} has no other boundary component.
In this case, $N_{r} \cap M_{2} \cong M_{2}$. By Claim 1, we have $\chi\left(S_{r}^{1}\right) \leq 2 \chi\left(F_{1}^{1}\right), \chi\left(S_{r}^{2}\right) \leq-2 t_{2}$. Hence $2 g(S)=2-\chi\left(S_{r}^{\prime}\right)-\chi\left(S_{j}^{\prime}\right)+\chi\left(F_{1}^{*}\right) \geq 2 t_{1}+2 t_{2}+2$, a contradiction.

Case 3 There exists one component of \mathcal{F} which is ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F}=\emptyset$.
In this case, without loss of generality, we may assume that $F^{1} \subset \mathcal{F}$. Now whether there exists some component of \mathcal{F} in int M^{1} or not, by amalgamating the Heegaard splittings in the untelescoping contained in M^{1}, we get a generalized Heegaard splitting $M^{1}=V_{1}^{*} \cup_{S_{1}^{*}} W_{1}^{*}$ with
$g\left(S_{1}^{*}\right) \geq g\left(M_{1}\right)$.
If there is no other component of \mathcal{F} in M_{2}, we denote the Heegaard splitting of $M^{0} \cup_{F^{2}} M^{2}$ in the untelescoping by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. Since S_{j}^{\prime} is a Heegaard surface of $M^{0} \cup_{F^{2}} M^{2}$ while S_{2} is a Heegaard surface of M_{2}, S_{j}^{\prime} is not isotopic to S_{2}, and furthermore, they are not wellseparated. Then by Lemma 4 , we have $d\left(S_{2}\right) \leq 2 g\left(S_{j}^{\prime}\right)$, hence $g\left(S_{j}^{\prime}\right)>t_{2}+g\left(F_{1}\right)$. Then we have $g(S) \geq g\left(S_{1}^{*}\right)+g\left(S_{j}^{\prime}\right)-g\left(F_{1}\right)>g\left(M_{1}\right)+t_{2} \geq t_{1}+t_{2}$, a contradiction. Hence there is some other component of \mathcal{F} in M_{2}, let F_{*} be the outermost one. If F_{*} is essential in M_{2}, we denote the Heegaard splitting in the untelescoping between F^{1}, F_{*} and F_{3} by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. Now by Claim 2, we have $\chi\left(S_{j}^{\prime} \cap M_{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. Since $\chi\left(S_{j}^{\prime} \cap M_{1}\right) \leq 0$, we have $g(S) \geq g\left(S_{1}^{*}\right)+g\left(S_{j}^{\prime}\right)-g\left(F_{1}\right)+1>g\left(M_{1}\right)+t_{2} \geq t_{1}+t_{2}$, a contradiction. Hence F_{*} is ∂-parallel in M_{2}.

Then we get a generalized Heegaard splitting as: $V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}}\left(V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}\right) \cup_{H_{2}}$ $\left(V_{3}^{\prime} \cup_{S_{3}^{\prime}} W_{3}^{\prime}\right)$, and H_{1} is isotopic to F^{1}, H_{2} is isotopic to F^{2}. We may further assume that $V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$ is a Heegaard splitting of $M^{1}, V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}$ is a Heegaard splitting of M^{0}, and $V_{3}^{\prime} \cup_{S_{3}^{\prime}} W_{3}^{\prime}$ is a Heegaard splitting of M^{2}. Since A is separating on F_{1} and non-separating on $F_{2}, M^{0^{3}}$ contains only three boundary components F^{1}, F^{2} and F_{3}. Note that $g\left(F_{3}\right)=g\left(F_{1}\right)+g\left(F_{2}\right)-1$, hence $g\left(S_{2}^{\prime}\right) \geq g\left(M^{0}\right) \geq g\left(F_{1}\right)+g\left(F_{2}\right)$. Then we have $g(S)=g\left(S_{1}^{\prime}\right)+g\left(S_{2}^{\prime}\right)+g\left(S_{3}^{\prime}\right)-g\left(H_{1}\right)-g\left(H_{2}\right) \geq$ $g\left(M_{1}\right)+g\left(M_{2}\right) \geq t_{1}+t_{2}$, a contradiction.

Case 4 There exists one component of \mathcal{F} which is ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F} \neq \emptyset$.
Now there are two subcases.
Subcase $4.1 F^{2} \subset \mathcal{F}$.
let H be a component of \mathcal{F} with $H \cap A \neq \emptyset$. If $H \cap M_{1}$ is essential in M_{1} and $H \cap\left(F_{2} \times I\right)$ is ∂ parallel in $F_{2} \times I$, by Lemma $2,2-\chi\left(H \cap M_{1}\right) \geq d\left(S_{1}\right)>2 t_{1}+2 g\left(F_{2}\right), \chi\left(H \cap\left(F_{2} \times I\right)\right) \leq \chi\left(F_{2}\right)$, then $g(S) \geq g\left(M_{2}\right)+g(H)+1-g\left(F_{2}\right)>t_{1}+g\left(M_{2}\right)$, a contradiction.

Hence if $H \cap A \neq \emptyset, H \cap M_{1}$ is ∂-parallel in M_{1} and $H \cap\left(F_{2} \times I\right)$ is ∂-parallel in $F_{2} \times I$. Then H can be isotoped to be an essential closed surface in M^{0}, hence H is isotopic to either F_{1}^{*} or F_{2}^{*}. We may assume that H is isotopic to F_{1}^{*}.

If there is no other component of \mathcal{F} in M_{1}, we denote the Heegaard splitting in the untelescoping between F_{1}^{*} and F_{3} by $N_{1}=V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$. Note that $N_{1} \cap M_{1} \cong M_{1}$ and $N_{1} \cap M_{2} \cong F_{2} \times I$. By Claim 1, we have $\chi\left(S_{1}^{\prime} \cap M_{1}\right) \leq-2 t_{1}, \chi\left(S_{1}^{\prime} \cap\left(F_{2} \times I\right)\right) \leq \chi\left(F_{2}\right)$. Then $g(S) \geq g\left(M_{2}\right)+$ $g\left(S_{1}^{\prime}\right)+1-g\left(F_{2}\right) \geq t_{1}+g\left(M_{2}\right)$, a contradiction.

Hence one component of \mathcal{F} must be parallel to F^{1} in M_{1}. Then by the same arguments as the last paragraph of case 3 , we get a contradiction.

Subcase $4.2 F^{1} \subset \mathcal{F}$.
Let $\mathcal{H}=\left\{\mathcal{H}: \mathcal{H} \subset \mathcal{F}\right.$ and $H \cap M_{2}$ is essential in $\left.M_{2}\right\}$. If some component H^{\prime} of \mathcal{H} and F^{1} cobound a Heegaard splitting in the untelescoping, we denote the Heegaard splitting between H^{\prime} and F^{1} by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. Since $H^{\prime} \cap M_{2}$ is essential in M_{2}, by Claim 2, we have $\chi\left(S_{j}^{\prime} \cap M_{2}\right)<$ $2-2 t_{2}-2 g\left(F_{1}\right), \chi\left(S_{j}^{\prime} \cap\left(F_{1} \times I\right)\right) \leq 0$, then we have $g(S) \geq g\left(M_{1}\right)+g\left(S_{j}^{\prime}\right)-g\left(F_{1}\right)>g\left(M_{1}\right)+t_{2}$,
a contradiction.
Hence the outermost component with $H \cap A \neq \emptyset$ must be ∂-parallel in M_{2}. We may assume that H is isotopic to F_{1}^{*}. Let $N_{1}=V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$ be the Heegaard splitting bounded by F^{1}, F_{1}^{*} and F_{3} in the untelescoping. Then $g\left(N_{1}\right) \geq \min \left\{g\left(F_{1}\right)+g\left(F_{1}^{*}\right), g\left(F_{1}\right)+g\left(F_{3}\right), g\left(F_{1}^{*}\right)+g\left(F_{3}\right)\right\}$. Note that $g\left(F_{3}\right)=g\left(F_{1}\right)+g\left(F_{2}\right)-1$ and $g\left(F_{1}^{*}\right)=g\left(F_{2}\right)+2 g\left(F_{1}^{1}\right)-1$, hence $g\left(S_{1}^{\prime}\right) \geq g\left(N_{1}\right) \geq g\left(F_{1}\right)+g\left(F_{2}\right)$.

If there is no other component of \mathcal{F}, we denote the Heegaard splitting in the untelescoping bounded by F_{1}^{*} by $N_{j}=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$. A is essential in M, so is in N_{j}. Note that $N_{j} \cap M_{1} \cong F_{1}^{1} \times I$ and $N_{j} \cap M_{2} \cong M_{2}$. By Claim 1, we have $\chi\left(S_{j}^{\prime} \cap M_{2}\right) \leq-2 t_{2}$, and by Claim 4, $\chi\left(S_{2}^{\prime} \cap\left(F_{1} \times I\right)\right) \leq$ $2 \chi\left(F_{1}^{1}\right)$. Then we have $g(S) \geq g\left(M_{1}\right)+g\left(S_{1}^{\prime}\right)+g\left(S_{j}^{\prime}\right)-g\left(F_{1}\right)-g\left(F_{1}^{*}\right) \geq g\left(M_{1}\right)+t_{2}$, a contradiction.

Hence there is some other component F^{*} of \mathcal{F}. If $F^{*} \cap M_{2}$ is essential in M_{2}, we denote the Heegaard splitting in the untelescoping between F_{1}^{*} and F^{*} by $N_{2}=V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}$. Then by Claim 2, we have $\chi\left(S_{2}^{\prime} \cap M_{2}\right)<2-2 t_{2}-2 g\left(F_{1}\right)$. By Claim 4, we have $\chi\left(S_{2}^{\prime} \cap\left(F_{1} \times I\right)\right) \leq 2 \chi\left(F_{1}^{1}\right)$. Then $g(S) \geq g\left(M_{1}\right)+g\left(S_{1}^{\prime}\right)+g\left(S_{2}^{\prime}\right)-g\left(F_{1}\right)-g\left(F_{1}^{*}\right)+1>g\left(M_{1}\right)+t_{2}$, a contradiction.

Hence one component of \mathcal{F} must be parallel to F^{2} in M_{2}. Then by the same arguments as the last paragraph of Case 3, we get a contradiction.

Therefore, the required equation holds. This finishes the proof of Theorem 1.
We now come to the proof of Corollary 2.
Proof of Corollary 2 Now let $t_{i}=g\left(M_{i}\right), i=1,2$. Then by the results of Theorem 1 , we have $g(M) \geq g\left(M_{1}\right)+g\left(M_{2}\right)$. Since M is the annulus sum of M_{1} and M_{2}, by the result of Schultens [13], we have $g(M) \leq g\left(M_{1}\right)+g\left(M_{2}\right)$. Hence $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$.

References

[1] CASSON A J, GORDON C M. Reducing Heegaard splittings [J]. Topology Appl., 1987, 27(3): 275-283.
[2] HARTSHORN K. Heegaard splittings of Haken manifolds have bounded distance [J]. Pacific J. Math., 2002, 204(1): 61-75.
[3] HEMPEL J. 3-manifolds as viewed from the curve complex [J]. Topology, 2001, 40(3): 631-657.
[4] JACO W. Lectures on Three-Manifold Topology [M]. American Mathematical Society, Providence, R.I., 1980.
[5] KOBAYASHI T, QIU Ruifeng. The amalgamation of high distance Heegaard splittings is always efficient [J]. Math. Ann., 2008, 341(3): 707-715.
[6] LI Fengling, YANG Guoqiu, LEI Fengchun. Heegaard genera of high distance are additive under annulus sum [J]. Topology Appl., 2010, 157(7): 1188-1194.
[7] MORIMOTO K. Tunnel number, connected sum and meridional essential surfaces [J]. Topology, 2000, 39(3): 469-485.
[8] QIU Ruifeng, DU Kun, MA Jiming, et al. Distance and the Heegaard genera of annular 3-manifolds [J]. J. Knot Theory Ramifications, to appear.
[9] SCHARLEMANN M. Proximity in the curve complex: boundary reduction and bicompressible surfaces [J]. Pacific J. Math., 2006, 228(2): 325-348.
[10] SCHARLEMANN M, SCHULTENS J. The tunnel number of the sum of nn knots is at least n [J]. Topology, 1999, 38(2): 265-270.
[11] SCHARLEMANN M, THOMPSON A. Thin Position for 3-Manifolds [M]. Contemp. Math., 164, Amer. Math. Soc., Providence, RI, 1994.
[12] SCHARLEMANN M, TOMOVA M. Alternate Heegaard genus bounds distance [J]. Geom. Topol., 2006, 10: 593-617.
[13] SCHULTENS J. Additivity of tunnel number for small knots [J]. Comment. Math. Helv., 2000, 75(3): 353-367.
[14] SCHULTENS J. The classification of Heegaard splittings for (compact orientable surface) $\times S^{1}$ [J]. Proc. London Math. Soc. (3), 1993, 67 (2): 425-448.

[^0]: Received November 27, 2009; Accepted April 27, 2010
 Supported by the Fundamental Research Funds for the Central Universities and the Key Grant of National Natural Science Foundation of China (Grant No. 10931005).

 * Corresponding author

 E-mail address: fenglingli@yahoo.com.cn (F. L. LI); ffcclei@yahoo.com.cn (F. C. LEI)

