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Abstract Let Mi, i = 1, 2, be a compact orientable 3-manifold, and Ai an incompressible

annulus on a component Fi of ∂Mi. Suppose A1 is separating on F1 and A2 is non-separating on

F2. Let M be the annulus sum of M1 and M2 along A1 and A2. In the present paper, we give a

lower bound for the genus of the annulus sum M in the condition of the Heegaard distances of

the submanifolds M1 and M2.
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1. Introduction

Let Mi be a compact connected orientable bordered 3-manifold, and Ai an incompressible

annulus on ∂Mi, i = 1, 2. Let h : A1 → A2 be a homeomorphism. The manifold M obtained by

gluing M1 and M2 along A1 and A2 via h is called an annulus sum of M1 and M2 along A1 and

A2, and is denoted by M1 ∪h M2 or M1 ∪A1=A2
M2.

Let Vi∪Si
Wi be a Heegaard splitting of Mi for i = 1, 2, and M = M1∪A1=A2

M2. Then from

Schultens [13], we know that M has a natural Heegaard splitting V ∪S W induced from V1∪S1
W1

and V2 ∪S2
W2 with genus g(S) = g(S1) + g(S2). So we always have g(M) ≤ g(M1) + g(M2).

In the present paper, we suppose A1 is separating on F1 and A2 is non-separating on F2,

and we give a lower bound for the genus of the annulus sum M in the condition of the Heegaard

distances of M1 and M2. The main results are as follows:

Theorem 1 Let Mi, i = 1, 2, be a compact orientable 3-manifold, and Ai an incompressible

annulus on a component Fi of ∂Mi. Suppose that A1 is separating on F1 and A2 is non-

separating on F2, and M = M1 ∪A1=A2
M2. If Mi has a Heegaard splitting Vi ∪Si

Wi with

d(Si) > 2ti + 2g(F3−i) where (g(Mi) − g(F3−i)) ≤ ti ≤ g(Mi), i = 1, 2. Then g(M) ≥ t1 + t2.

Furthermore, we have:

Corollary 2 Let Mi, i = 1, 2, be a compact orientable 3-manifold, and Ai an incompressible
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annulus on a component Fi of ∂Mi. Suppose that A1 is separating on F1 and A2 is non-

separating on F2, and M = M1 ∪A1=A2
M2. If Mi has a Heegaard splitting Vi ∪Si

Wi with

d(Si) > 2g(Mi) + 2g(F3−i) for i = 1, 2, then g(M) = g(M1) + g(M2).

The paper is organized as follows. In Section 2, we review some preliminaries which will be

used later. In Section 3, we give the proof of the main results.

2. Preliminaries

In this section, we will review some fundamental facts on surfaces in 3-manifolds. Definitions

and terms which have not been defined are all standard, see [4].

A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S W in which V and

W are compression bodies such that V ∩ W = ∂+V = ∂+W = S and M=V ∪ W . S is called a

Heegaard surface of M . V ∪S W is said to be weakly reducible if there are essential disks D1 ⊂ V

and D2 ⊂ W with ∂D1 ∩ ∂D2 = ∅. Otherwise, V ∪S W is strongly irreducible.

A properly embedded surface is essential if it is incompressible and not ∂-parallel.

Let P be a properly embedded separating surface in a 3-manifold M which cuts M into two

3-manifolds M1 and M2. Then P is bicompressible if P has compressing disks in both M1 and

M2. P is strongly irreducible if it is bicompressible and each compressing disk in M1 meets each

compressing disk in M2.

Now let P be a closed bicompressible surface in an irreducible 3-manifold M . By maximally

compressing P in both sides of P and removing the possible 2-sphere components, we denote the

resulting surfaces by P+ and P−. Let HP
1 denote the closure of the region that lies between P

and P+ and similarly define HP
2 to denote the closure of the region that lies between P and P−.

Then HP
1 and HP

2 are compression bodies. If P is strongly irreducible in M , then the Heegaard

splitting HP
1 ∪P HP

2 is strongly irreducible. Two strongly irreducible surfaces P and Q are said

to be well-separated in M if HP
1 ∪P HP

2 is disjoint from H
Q
1 ∪Q H

Q
2 by isotopy.

Let M = V ∪S W be a Heegaard splitting, α and β be two essential simple closed curves in

S. The distance d(α, β) of α and β is the smallest integer n ≥ 0 such that there is a sequence

of essential simple closed curves α = α0, α1, . . . , αn = β in S with αi−1 ∩ αi = ∅, for 1 ≤ i ≤ n.

The distance of the Heegaard splitting V ∪S W is defined to be d(S) = min {d(α, β)}, where α

bounds an essential disk in V and β bounds an essential disk in W . d(S) was first defined by

Hempel [3].

Scharlemann and Thompson [11] showed that any irreducible and ∂-irreducible Heegaard

splitting M = V ∪S W has an untelescoping as

V ∪S W = (V1 ∪S1
W1) ∪F1

(V2 ∪S2
W2) ∪F2

· · · ∪Fm−1
(Vm ∪Sm

Wm),

such that each Vi ∪Si
Wi is a strongly irreducible Heegaard splitting with Fi = ∂−Wi ∩ ∂−Vi+1,

1 ≤ i ≤ m − 1, ∂−V1 = ∂−V , ∂−Wm = ∂−W , and for each i, each component of Fi is a

closed incompressible surface of positive genus, and only one component of Mi = Vi ∪Si
Wi is

not a product. It is easy to see that when m ≥ 2, g(S) ≥ g(Si) + 1 ≥ g(Fi) + 2 for each i.

From V1 ∪S1
W1, · · ·, Vm ∪Sm

Wm, we can get a Heegaard splitting of M by a process called

amalgamation [14].
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The following are some basic facts and results on Heegaard splittings.

Lemma 1 ([7]) Let V be a non-trivial compression body and A be a collection of essential

annuli properly embedded in V . Then there is an essential disk D in V with D ∩ A = ∅.

Lemma 2 ([2, 9]) Let V ∪S W be a Heegaard splitting of M and F be an properly embedded

incompressible surface (maybe not connected) in M . Then any component of F is parallel to

∂M or d(S) ≤ 2 − χ(F ).

The following Lemma is a well known fact [13].

Lemma 3 An incompressible surface F in a compression body V cuts V into compression

bodies.

Lemma 4 ([12]) Let P and Q be strongly irreducible connected closed separating surfaces in a

3-manifold M . Then either

(1) P and Q are well-separated;

(2) P and Q are isotopic, or

(3) d(P ) ≤ 2g(Q).

Lemma 5 ([10]) Let V be a non-trivial compression body and A be a collection of incompressible

annuli properly embedded in V . If U is a component of V \A with U ∩ ∂−V 6= ∅, then χ(U ∩

∂−V ) ≥ χ(U ∩ ∂+V ).

Lemma 6 ([6]) Let N be a compact orientable 3-manifold which is not a compression body,

F = ∂N . Suppose Q is a properly embedded connected separating surface in N with ∂Q essential

in F , and Q cuts N into two compression bodies N1 and N2 with Q = ∂+N1 ∩∂+N2 and F ∩N2

is a collection of annuli. If Q is compressible in both N1 and N2, and Q can be compressed to

Q∗ in N1 such that any component of Q∗ is ∂-parallel in N , then N has a Heegaard splitting

V ∪S W with d(S) ≤ 2 and g(S) = 1 − 1

2
χ(Q).

3. Proof of the main results

In M = M1∪h M2, let A = A2 = h(A1) and Fi be the component of ∂Mi in which Ai lies, i =

1, 2. We denote the two components of F1−intA by F 1
1 and F 2

1 , and let F3 = F 1
1 ∪(F2−intA)∪F 2

1 .

Then F3 is a boundary component of M . Let I = [0, 1] and Fi × I be a regular neighborhood of

Fi in Mi with Fi = Fi × {0}. We denote by F i the surface Fi × {1}. Let M i = Mi − Fi × [0, 1)

for i = 1, 2, and M0 = F1 × I ∪A F2 × I. Then M = M1 ∪F 1 M0 ∪F 2 M2.

Note that M0 contains three boundary components F 1, F 2 and F3. By [8, Lemma 2.3],

M0 contains two essential closed surfaces up to isotopy, we denote them by F ∗

1 and F ∗

2 , then

F ∗

1 = X1 ∪X2 ∪X3 such that X1 and X3 are isotopic to F 1
1 , and X2 is a copy of F2 − intA. And

F ∗

2 = X1 ∪ X2 ∪ X3 such that X1 and X3 are isotopic to F 2
1 , and X2 is a copy of F2 − intA.

Now we come to the proof of Theorem 1.

Proof of Theorem 1 Let us suppose for a contradiction that g(M) < t1 + t2. Then there

exists a minimal Heegaard splitting V ∪S W of M with g(S) ≤ t1 + t2 − 1.
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Now if V ∪S W is strongly irreducible, S ∩ A 6= ∅ since F 1 is essential in M and there is

no closed essential surface in a compression body. By [13, Lemma 6], we may assume that each

component of S ∩A is essential in both S and A, and |S ∩A| is minimal. Since A is an essential

annulus in M , by Lemma 1, we assume that all components of S\A are incompressible except

exactly one bicompressible component in M\A.

Claim 1 χ(S ∩ M1) ≤ −2t1.

Proof Now if S ∩M1 is incompressible in M1, it is essential in M1. Otherwise, any component

of S ∩ M1 is ∂-parallel in M1, which means that M1 is a compression body, a contradiction to

d(S1) > 2t1 + 2g(F2). By Lemma 2, 2 − χ(S ∩ M1) ≥ d(S1) > 2t1 + 2g(F2), thus χ(S ∩ M1) <

2 − 2t1 − 2g(F2) ≤ −2t1.

Next we assume S∩M1 is bicompressible. We denote the bicompressible component of S∩M1

by P . In fact, P is strongly irreducible in M1. χ(P ) ≤ −2. If not, P is either a disk, an annulus, a

pair of pants, or a once punctured torus, in each case we conclude that a component of ∂P bounds

a disk in M1, therefore A is compressible in M1, a contradiction. If there exists an incompressible

component Q of S ∩M1 which is essential in M1, by Lemma 2, 2−χ(Q) ≥ d(S1) > 2t1 +2g(F2),

then χ(S ∩M1) ≤ χ(Q) +χ(P ) ≤ −2t1 − 2g(F2) < −2t1. Hence in the following we may assume

that the incompressible components of S ∩ M1 are all ∂-parallel in M1. Let PV be the surface

obtained by maximally compressing P in V and removing all possible 2-sphere components. Since

P is strongly irreducible, PV is incompressible in M1. Now if PV is essential in M1, by Lemma 2,

2−χ(PV ) ≥ d(S1) > 2t1+2g(F2), then χ(S∩M1) ≤ χ(P ) ≤ χ(PV )−2 ≤ −2t1−2g(F2) < −2t1.

Then we may assume that each component of PV is ∂-parallel in M1.

Since A is an essential annulus in M and by Lemma 3, each component of V ∩ M1 and

W ∩M1 is a compression body. Let U1 be the component of V ∩M1 containing P and U2 be the

component of W ∩M1 containing P . Then by parallelism U1∪P U2
∼= M1 and ∂+U1∩∂+U2 = P .

Since M1 is not a compression body and A is an annulus, by Lemma 6, there exists a Heegaard

surface S1 of M1 with d(S1) ≤ 2 and g(S1) ≤ 1 − 1

2
χ(P ). Now d(S1) > 2t1 + 2g(F2) ≥ 2g(M1),

then by [5, Lemma 3.3], S1 is the unique minimal Heegaard surface of M1. But d(S1) ≤ 2,

hence S1 is not isotopic to S1. Then we have g(S1) ≥ g(M1) + 1. Hence χ(S ∩ M1) ≤ χ(P ) ≤

2 − 2g(S1) ≤ −2g(M1) ≤ −2t1.

This completes the proof of Claim 1. 2

Then by Claim 1, we have χ(S ∩ M1) ≤ −2t1, χ(S ∩ M2) < −2t2. Then 2g(S) = 2 − χ(S ∩

M1) − χ(S ∩ M2) > 2t1 + 2t2 + 2, a contradiction.

Hence V ∪S W is weakly reducible, then V ∪S W has an untelescoping as

V ∪S W = (V
′

1 ∪
S

′

1

W
′

1) ∪H1
· · · ∪Hm−1

(V
′

m ∪S
′

m
W

′

m),

where m ≥ 2, and for each i, each component of Hi is a closed essential surface in M . Let

F = {H1, . . . , Hm−1}.

Claim 2 Let Hi be a component of F . Suppose Hi is a boundary component of Ni = V
′

i ∪S
′

i
W

′

i

in the untelescoping. If Hi ∩ M1 is essential in M1, then χ(S
′

i ∩ M1) < 2 − 2t1 − 2g(F2).
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Proof Since Hi ∩ M1 is essential in M1, let Q∗ be an essential component of Hi ∩ M1. By

Lemma 2, 2−χ(Q∗) ≥ d(S1) > 2t1 +2g(F2). If we denote the component of V
′

i ∩M1 or W
′

i ∩M1

which contains Q∗ as part of boundary component by U , since A is an essential annulus in M ,

by Lemma 5, we have χ(S
′

i ∩M1) ≤ χ(U ∩ (S
′

i ∩ M1)) ≤ χ(U ∩Q∗) = χ(Q∗) < 2− 2t1 − 2g(F2).

This completes the proof of Claim 2. 2

Claim 3 For any i ∈ {2, . . . , m − 1}, there are no two components Hi−1, Hi in F so that

Hi−1 ∩ M1 is essential in M1 and Hi ∩ M2 is essential in M2 whether Hi−1 ∩ M1 and Hi ∩ M2

are with boundary or not.

Proof Suppose there exist two components of F so that Hi−1∩M1 is essential in M1 and Hi∩M2

is essential in M2. Suppose V
′

i ∪S
′

i
W

′

i is the Heegaard splitting in the untelescoping between

them. Then by Claim 2, we have χ(S
′

i∩M1) < 2−2t1−2g(F2), and χ(S
′

i∩M2) < 2−2t2−2g(F1).

Hence 2g(S) ≥ 4 − χ(S
′

i) > 2t1 + 2t2 + 2g(F1) + 2g(F2), a contradiction.

This completes the proof of Claim 3. 2

We now divide the proof into the following four cases to discuss.

Case 1 Any component of F is not ∂-parallel in M1 or M2, and A ∩ F = ∅.

In this case, by Claim 3 and the assumption, we may assume that any component of F is

contained in M1. Let H be an outermost component of F in M1, H is essential in M1.

Suppose A ⊂ Nj = V
′

j ∪S
′

j
W

′

j . A is essential in M , so is in Nj . Since H is essential in M1,

by Claim 2, we have χ(S
′

j ∩ M1) < 2 − 2t1 − 2g(F2). Now Nj ∩ M2 = M2, by Claim 1, we have

χ(S
′

j ∩ M2) ≤ −2t2, then 2g(S) ≥ 4 − χ(S
′

j) > 2t1 + 2t2 + 2g(F2), a contradiction.

Case 2 Any component of F is not ∂-parallel in M1 or M2, and A ∩ F 6= ∅.

In this case, we may assume that any component of F ∩A is essential in both A and F , and

|F∩A| is minimal. There are three subcases.

Subcase 2.1 The outermost component H of F with H∩A 6= ∅ is essential in M1 but ∂-parallel

in M2.

By Claim 3, we may assume that each component of F ∩ M1 with boundary is essential in

M1 and each component of F ∩ M2 with boundary is ∂-parallel in M2. Among the surfaces of

F ∩ M2, let B be the innermost one, that is, B cuts M2 into two pieces M ′

2 and M ′′

2 , where

M ′

2
∼= M2 and M ′′

2
∼= B × I, and the interior of M ′

2 contains no component of F ∩M2. B lies in

a component, say Hr, of F . Hence Hr ∩ M1 is essential in M1 and Hr ∩ M2 is ∂-parallel in M2,

see Figure 1(a).

We may assume that M
′

2 is contained in the submanifold Nr = V
′

r ∪S
′

r
W

′

r of the untelescoping.

Since Hr∩M1 is essential in M1, by Claim 2, χ(S
′

r∩M1) < 2−2t1−2g(F2). Note that Nr∩M2
∼=

M2, by Claim 1, we have χ(S
′

r ∩ M2) ≤ −2t2, then 2g(S) ≥ 4 − χ(S
′

r) > 2t1 + 2t2 + 2g(F2), a

contradiction.

Subcase 2.2 The outermost component H of F with H∩A 6= ∅ is essential in M2 but ∂-parallel

in M1.
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There are two sub-subcases.

Sub-subcase 2.2.1 Each component of H ∩ M1 is parallel to the same one of F 1
1 or F 2

1 , say

F 1
1 , in M1.

We denote the Heegaard splitting in the untelescoping between F3 and H by Nj = V
′

j ∪S
′

j

W
′

j .

See Figure 1(b). Note that Nj ∩ M1
∼= M1, by Claim 1, we have χ(S

′

j ∩ M1) ≤ −2t1. Since

H ∩M2 is essential in M2, by Claim 2, χ(S
′

j ∩M2) < 2−2t2−2g(F1). Then 2g(S) ≥ 4−χ(S
′

j) >

2t1 + 2t2 + 2g(F1), a contradiction.

Sub-subcase 2.2.2 At least one component of H ∩ M1 is parallel to F 1
1 and at least one

component of H ∩ M1 is parallel to F 2
1 in M1.

By Claim 3, we may assume that each component of F ∩ M1 with boundary is ∂-parallel

in M1. Among the surfaces of F ∩ M1 which is parallel to F i
1, let Bi be the innermost one,

i = 1, 2. Then B1 and B2 cut M1 into three pieces M
′

1, M
′′

1 and M
′′′

1 with M
′

1
∼= B1 × I,

M
′′

1
∼= M1 and M

′′′

1
∼= B2 × I, and the interior of M

′′

1 contains no component of F ∩ M1. B2

lies in a component, say Hj , of F . Hence by Claim 3, we have that Hj ∩ M1 is ∂-parallel in

M1 and Hj ∩ M2 is essential in M2. We may assume that M
′′

1 is contained in the submanifold

Nj = V
′

j ∪
S

′

j

W
′

j of the untelescoping, see Figure 1(c). Since Hj ∩ M2 is essential in M2, by

Claim 2, χ(S
′

j ∩ M2) < 2 − 2t2 − 2g(F1). Note that Nj ∩ M1
∼= M1, by Claim 1, we have

χ(S
′

j ∩ M1) ≤ −2t1, then 2g(S) ≥ 4 − χ(S
′

j) > 2t1 + 2t2 + 2g(F1), a contradiction.

H

B
rH

1M

2MA

'

rS

( )a

1M
2M

'

jS

A

H( )b

1M
A 2M

'

jS

( )c

H

2B

1B

jH

Figure 1 Surfaces intersecting A

Subcase 2.3 The outermost component H of F with H ∩ A 6= ∅ is isotopic to F ∗

1 or F ∗

2 , say,

F ∗

1 .

We denote the Heegaard splitting in the untelescoping between F3 and F ∗

1 by Nj = V
′

j ∪S
′

j

W
′

j .

Let S1
j = S

′

j ∩ M1 and S2
j = S

′

j ∩ M2. Now if Nj has some other boundary component H∗,

then by assumption H∗ ∩ A = ∅, i.e., H∗ is a closed essential surface in M1 or M2. Now

Nj ∩M2
∼= (F2 − intA)× I, hence H∗ ⊂ M1. Since H∗ is an essential surface in M1, by Claim 2,

we have χ(S1
j ) < 2−2t1−2g(F2). If Nj has no other boundary component, then Nj ∩M1

∼= M1.

By Claim 1, we have χ(S1
j ) ≤ −2t1.

Claim 4 In either case, χ(S2
j ) ≤ χ(F2).

Proof In either case, Nj ∩ M2
∼= (F2 − intA) × I. Now if S2

j is incompressible in F2 × I, since
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the incompressible and ∂-incompressible surface in a trivial compression body is just spanning

annulus, by [9, Lemma 2.3], any component of S2
j is parallel to F2\A2 in M2, hence χ(S2

j ) ≤

χ(F2).

Now if S2
j is bicompressible in F2 × I, by maximally compressing it in V

′

j , we obtain a

surface S2∗
j . Then by [9, Lemma 2.3], any component of S2∗

j is parallel to F2\A2 in M2, hence

χ(S2
j ) ≤ χ(S2∗

j ) − 2 ≤ χ(F2) − 2 < χ(F2).

This completes the proof of Claim 4. 2

Hence whether Nj has some other boundary component or not, we have χ(S
′

j) = χ(S1
j ) +

χ(S2
j ) ≤ 2 − 2t1 − 2g(F2).

We denote the Heegaard splitting in the untelescoping on the other side of F ∗

1 which has F ∗

1

as a boundary component by Nr = V
′

r ∪S
′

r
W

′

r . Let Si
r = S

′

r ∩ Mi, i = 1, 2.

There are three sub-subcases.

Sub-subcase 2.3.1 Nr has another boundary component H
′

of F with H
′

∩ M1 essential in

M1.

In this case, if H
′

∩ M2 = ∅, then H
′

⊂ (F 1
1 × I), which means that a compression body

contains a closed essential surface, a contradiction. Hence H
′

∩ M2 6= ∅, then all components of

H
′

∩M2 are ∂-parallel in M2, and furthermore, by Claim 3, we may assume that each component

of (F−{F ∗

1 })∩M1 with boundary is essential in M1 and each component of F∩M2 with boundary

is ∂-parallel in M2.

The following arguments are in some sense similar to those of subcase 2.1. Take the innermost

component B of F ∩ M2, that is, B cuts M2 into two pieces M ′

2 and M ′′

2 , where M ′

2
∼= M2 and

M ′′

2
∼= B × I, and the interior of M ′

2 contains no component of F ∩ M2. B lies in a component,

say Hi, of F . Hence Hi ∩M1 is essential in M1 and Hi ∩M2 is ∂-parallel in M2. We may assume

that M
′

2 is contained in the submanifold Ni = V
′

i ∪
S

′

i

W
′

i of the untelescoping. Since Hi ∩M1 is

essential in M1, by Claim 2, χ(S
′

i ∩M1) < 2− 2t1 − 2g(F2). Note that Ni ∩M2
∼= M2, by Claim

1, χ(S
′

i ∩ M2) ≤ −2t2, then 2g(S) ≥ 4 − χ(S
′

i) > 2t1 + 2t2 + 2g(F2), a contradiction.

Sub-subcase 2.3.2 Nr has another boundary component H
′

of F with H
′

∩ M2 essential in

M2.

In this case, H
′

∩M2 is essential in M2. By Claim 2, we have that χ(S2
r ) < 2− 2t2 − 2g(F1).

Whether H
′

∩ M1 = ∅ or not, since S
′

2 is separating in N2, |S
′

2 ∩ A| is even while |∂F 1
1 | = 1.

This means that S
′

2 ∩ (F1 × I) has at least two components. Then by Claim 4, we have that

χ(S1
r ) ≤ 2χ(F 1

1 ). Hence 2g(S) ≥ 2−χ(S
′

r)−χ(S
′

j)+χ(F ∗

1 ) > 2t1 +2t2 +2g(F1), a contradiction.

Sub-subcase 2.3.3 Nr has no other boundary component.

In this case, Nr ∩ M2
∼= M2. By Claim 1, we have χ(S1

r ) ≤ 2χ(F 1
1 ), χ(S2

r ) ≤ −2t2. Hence

2g(S) = 2 − χ(S
′

r) − χ(S
′

j) + χ(F ∗

1 ) ≥ 2t1 + 2t2 + 2, a contradiction.

Case 3 There exists one component of F which is ∂-parallel in M1 or M2, and A ∩ F = ∅.

In this case, without loss of generality, we may assume that F 1 ⊂ F . Now whether there

exists some component of F in intM1 or not, by amalgamating the Heegaard splittings in the

untelescoping contained in M1, we get a generalized Heegaard splitting M1 = V ∗

1 ∪S∗

1
W ∗

1 with
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g(S∗

1 ) ≥ g(M1).

If there is no other component of F in M2, we denote the Heegaard splitting of M0 ∪F 2 M2

in the untelescoping by Nj = V
′

j ∪S
′

j
W

′

j . Since S
′

j is a Heegaard surface of M0 ∪F 2 M2 while

S2 is a Heegaard surface of M2, S
′

j is not isotopic to S2, and furthermore, they are not well-

separated. Then by Lemma 4, we have d(S2) ≤ 2g(S
′

j), hence g(S
′

j) > t2 + g(F1). Then we

have g(S) ≥ g(S∗

1) + g(S
′

j) − g(F1) > g(M1) + t2 ≥ t1 + t2, a contradiction. Hence there is

some other component of F in M2, let F∗ be the outermost one. If F∗ is essential in M2, we

denote the Heegaard splitting in the untelescoping between F 1, F∗ and F3 by Nj = V
′

j ∪
S

′

j

W
′

j .

Now by Claim 2, we have χ(S
′

j ∩ M2) < 2 − 2t2 − 2g(F1). Since χ(S
′

j ∩ M1) ≤ 0, we have

g(S) ≥ g(S∗

1) + g(S
′

j)− g(F1) + 1 > g(M1) + t2 ≥ t1 + t2, a contradiction. Hence F∗ is ∂-parallel

in M2.

Then we get a generalized Heegaard splitting as: V ∪S W = (V
′

1 ∪S
′

1

W
′

1)∪H1
(V

′

2 ∪S
′

2

W
′

2)∪H2

(V
′

3∪S
′

3

W
′

3), and H1 is isotopic to F 1, H2 is isotopic to F 2. We may further assume that V
′

1∪S
′

1

W
′

1

is a Heegaard splitting of M1, V
′

2 ∪
S

′

2

W
′

2 is a Heegaard splitting of M0, and V
′

3 ∪
S

′

3

W
′

3 is a

Heegaard splitting of M2. Since A is separating on F1 and non-separating on F2, M0 contains

only three boundary components F 1, F 2 and F3. Note that g(F3) = g(F1) + g(F2) − 1, hence

g(S
′

2) ≥ g(M0) ≥ g(F1) + g(F2). Then we have g(S) = g(S
′

1) + g(S
′

2) + g(S
′

3)− g(H1)− g(H2) ≥

g(M1) + g(M2) ≥ t1 + t2, a contradiction.

Case 4 There exists one component of F which is ∂-parallel in M1 or M2, and A ∩ F 6= ∅.

Now there are two subcases.

Subcase 4.1 F 2 ⊂ F .

let H be a component of F with H∩A 6= ∅. If H∩M1 is essential in M1 and H∩(F2 × I) is ∂-

parallel in F2×I, by Lemma 2, 2−χ(H∩M1) ≥ d(S1) > 2t1 + 2g(F2), χ(H∩(F2 × I)) ≤ χ(F2),

then g(S) ≥ g(M2) + g(H) + 1 − g(F2) > t1 + g(M2), a contradiction.

Hence if H ∩ A 6= ∅, H ∩ M1 is ∂-parallel in M1 and H ∩ (F2 × I) is ∂-parallel in F2 × I.

Then H can be isotoped to be an essential closed surface in M0, hence H is isotopic to either

F ∗

1 or F ∗

2 . We may assume that H is isotopic to F ∗

1 .

If there is no other component of F in M1, we denote the Heegaard splitting in the untele-

scoping between F ∗

1 and F3 by N1 = V
′

1 ∪S
′

1

W
′

1. Note that N1∩M1
∼= M1 and N1∩M2

∼= F2×I.

By Claim 1, we have χ(S
′

1 ∩ M1) ≤ −2t1, χ(S
′

1 ∩ (F2 × I)) ≤ χ(F2). Then g(S) ≥ g(M2) +

g(S
′

1) + 1 − g(F2) ≥ t1 + g(M2), a contradiction.

Hence one component of F must be parallel to F 1 in M1. Then by the same arguments as

the last paragraph of case 3, we get a contradiction.

Subcase 4.2 F 1 ⊂ F .

Let H = {H : H ⊂ F and H ∩ M2 is essential in M2}. If some component H
′

of H and F 1

cobound a Heegaard splitting in the untelescoping, we denote the Heegaard splitting between H
′

and F 1 by Nj = V
′

j ∪
S

′

j

W
′

j . Since H
′

∩M2 is essential in M2, by Claim 2, we have χ(S
′

j ∩M2) <

2−2t2−2g(F1), χ(S
′

j ∩ (F1 × I)) ≤ 0, then we have g(S) ≥ g(M1)+ g(S
′

j)− g(F1) > g(M1)+ t2,
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a contradiction.

Hence the outermost component with H ∩A 6= ∅ must be ∂-parallel in M2. We may assume

that H is isotopic to F ∗

1 . Let N1 = V
′

1∪S
′

1

W
′

1 be the Heegaard splitting bounded by F 1, F ∗

1 and F3

in the untelescoping. Then g(N1) ≥ min{g(F1)+g(F ∗

1 ), g(F1)+g(F3), g(F ∗

1 )+g(F3)}. Note that

g(F3) = g(F1)+g(F2)−1 and g(F ∗

1 ) = g(F2)+2g(F 1
1 )−1, hence g(S

′

1) ≥ g(N1) ≥ g(F1)+g(F2).

If there is no other component of F , we denote the Heegaard splitting in the untelescoping

bounded by F ∗

1 by Nj = V
′

j ∪S
′

j

W
′

j . A is essential in M , so is in Nj . Note that Nj ∩M1
∼= F 1

1 ×I

and Nj ∩M2
∼= M2. By Claim 1, we have χ(S

′

j ∩M2) ≤ −2t2, and by Claim 4, χ(S
′

2∩(F1 × I)) ≤

2χ(F 1
1 ). Then we have g(S) ≥ g(M1)+g(S

′

1)+g(S
′

j)−g(F1)−g(F ∗

1 ) ≥ g(M1)+t2, a contradiction.

Hence there is some other component F ∗ of F . If F ∗ ∩M2 is essential in M2, we denote the

Heegaard splitting in the untelescoping between F ∗

1 and F ∗ by N2 = V
′

2 ∪S
′

2

W
′

2. Then by Claim

2, we have χ(S
′

2 ∩ M2) < 2 − 2t2 − 2g(F1). By Claim 4, we have χ(S
′

2 ∩ (F1 × I)) ≤ 2χ(F 1
1 ).

Then g(S) ≥ g(M1) + g(S
′

1) + g(S
′

2) − g(F1) − g(F ∗

1 ) + 1 > g(M1) + t2, a contradiction.

Hence one component of F must be parallel to F 2 in M2. Then by the same arguments as

the last paragraph of Case 3, we get a contradiction.

Therefore, the required equation holds. This finishes the proof of Theorem 1. 2

We now come to the proof of Corollary 2.

Proof of Corollary 2 Now let ti = g(Mi), i = 1, 2. Then by the results of Theorem 1, we have

g(M) ≥ g(M1) + g(M2). Since M is the annulus sum of M1 and M2, by the result of Schultens

[13], we have g(M) ≤ g(M1) + g(M2). Hence g(M) = g(M1) + g(M2).
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