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degree method.
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1. Introduction

The problems of boundary-value problems with integral boundary conditions for ordinary

differential equations arises in different areas of applied mathematics and physics. For example,

heat conduction, chemical engineering, underground water flow, thermo-elasticity and plasma

physics can be reduced to nonlocal problems with integral boundary conditions. For boundary-

value problems with integral boundary conditions and comments on their importance, we refer

the readers to [1–4] and the references therein. For more information about the general theory of

integral equations and their relation with boundary-value problems, readers may refer to [5–7].

In recent years, the existence and multiplicity of positive solutions for nonlocal problems have

attracted great attention to many mathematicians. Readers may refer to [8–16] and references

therein. On the other hand, initial-value problems with integral conditions constitute a very

interesting and important class of problems. However, to the best of our knowledge, the integral

initial value problems to one-dimension p-Laplacian equation have not been studied.

The purpose of this paper is to investigate the existence of solutions to the following one-

dimension p-Laplacian equation:

(φ(u′))′ = −f(t, u), t ∈ (0, 1), (1.1)
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with integral initial value

u(0) =

∫ 1

0

g(s)u(s)ds, (1.2)

u′(0) = A, (1.3)

where φ(s) = φp(s) = |s|p−2s, φ−1(s) = φq(s) = |s|q−2s, p, q > 1, 1
p

+ 1
q

= 1, f : [0, 1] × R → R

is continuous, g(s) ∈ L1([0, 1]) and A is a real constant. The main arguments are based upon

Leray-Schauder topological degree.

The paper is organized as follows. We shall introduce some necessary lemmas in the rest of

this section. In Section 2, we provide some necessary preliminaries and in Section 3, the main

results will be stated and proved.

For application in what follows, we state some properties of completely continuous operators.

Lemma 1.1 Suppose that X is a Banach space and A is a completely continuous operator from

X to X .Then for any λ 6= 0, only one of the following statements holds:

(i) For any y ∈ X , there exists a unique x ∈ X , such that (A − λI)x = y;

(ii) There exists an x ∈ X , x 6= 0, such that (A − λI)x = 0.

Lemma 1.2 Assume that H : [0, 1]×Ω → E is completely continuous. Let ht(x) = x−H(t, x).

If for all t ∈ [0, 1], p /∈ ht(∂Ω), then deg(ht, Ω, p) is a constant, ∀0 ≤ t ≤ 1.

Lemma 1.3 If deg(f, Ω, p) 6= 0, then the equation f(x) = p must admit at least one solution in

Ω.

2. Preliminaries

Let I denote the real interval [0, 1], and C(I) denote the Banach space of all continuous

u : I → R, equipped with the norm ‖u‖ = max{|u(t)|; t ∈ I}, for any u ∈ C(I).

Consider the following problem:

(φ(x′))′ = −y(t), t ∈ (0, 1), (2.1)

x(0) =

∫ 1

0

g(s)x(s)ds, (2.2)

x′(0) = A, (2.3)

where y(t) ∈ C(I),
∫ 1

0
g(s)ds 6= 1.

Integrating the Eq.(2.1) from 0 to t to obtain

φ(x′(t)) − φ(x′(0)) = −

∫ t

0

(y(s))ds,

using the initial condition (2.3), we have

x′(t) = φ−1(φ(A) −

∫ t

0

y(s)ds).
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Integrating the above equality from 0 to t again, we obtain

x(t) −

∫ 1

0

g(s)x(s)ds =

∫ t

0

φ−1(φ(A) −

∫ τ

0

y(s)ds)dτ. (2.4)

Let F (t) :=
∫ t

0
φ−1(φ(A) −

∫ τ

0
y(s)ds)dτ . Define an operator K : C(I) → C(I) by

(Kx)(t) =

∫ 1

0

g(s)x(s)ds,

then (2.4) can be rewritten as

(I − K)x(t) = F (t). (2.5)

Thus x(t) is a solution to (2.1)–(2.3) if and only if it is a solution to (2.5).

Lemma 2.1. I − K is a Fredholm operator.

Proof To prove that I −K is a Fredholm operator, we need only to show that K is completely

continuous.

It is easy to see from the definition of K that K is a bounded linear operator from C(I) to

C(I). Obviously, dimR(K) = 1. So K is a completely continuous operator.

This completes the proof. 2

Lemma 2.2 Problems (2.1)–(2.3) admits a unique solution.

Proof Since Problems (2.1)–(2.3) is equivalent to problem (2.5), we need only to show that

problem (2.5) has a unique solution.

Using Lemma 2.1 and Alternative Theorem, it is sufficient for us to prove that

(I − K)x(t) = 0 (2.6)

has a trivial solution x ≡ 0 only.

On the contrary, suppose (2.6) has a nontrivial solution µ, then µ is a constant, and we have

Iµ = Kµ = µ.

The definition of K and the above equality yield

[1 −

∫ 1

0

g(s)ds]µ = 0,

which is a contradiction with the assumptions
∫ 1

0 g(s)ds 6= 1 and µ 6≡ 0.

Thus we complete the proof. 2

3. Main results

Consider the following problem

(φ(u′))′ = −f(t, u), t ∈ (0, 1), (3.1)

u(0) =

∫ 1

0

g(s)u(s)ds, (3.2)
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u′(0) = A, (3.3)

In the following, we will assume that the following conditions hold.

(H1)
∫ 1

0 |g(s)|ds = M < 1;

(H2) f : [0, 1] × R → R is continuous;

(H3) |f(t, x)| ≤ c1φ(|x|) + c2, c1, c2 > 0 and c1 < φ(1−M
2q−1 ).

From Lemma 2.2 we know that u(t) is a solution to Problems (3.1)–(3.3) if and only if it is

a solution to the following integral equation

(I − K)u(t) =

∫ t

0

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ. (3.4)

Define an operator T : C(I) → C(I) by

(Tu)(t) =

∫ t

0

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ,

then (3.4) can be rewritten as

(I − K)u(t) = (Tu)(t).

In order to prove the existence of solutions to (3.4), we need the following lemmas.

Lemma 3.1 T is completely continuous.

Proof For any ball B1 = {u ∈ C(I); ‖u‖ ≤ R1}, set M1 = max0≤s≤1

u∈B1

|f(s, u(s))|, then we have

for any u ∈ B1,

|(Tu)(t)| ≤

∫ t

0

|φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)|dτ ≤

∫ 1

0

φ−1(|φ(A) −

∫ τ

0

f(s, u(s))ds|)dτ

≤

∫ 1

0

φ−1(|φ(A)| + |

∫ τ

0

f(s, u(s))ds|)dτ ≤

∫ 1

0

φ−1(|φ(A)| +

∫ 1

0

|f(s, u(s))|ds)dτ

≤φ−1(|φ(A)| + M1).

This shows that T (B1) is uniformly bounded.

Since f : [0, 1] × R → R is continuous, it is uniformly continuous on [0, 1] × [−R1, R1]. Thus

for any ε > 0, there exists a δ > 0 such that for all t1, t2 ∈ [0, 1], |t1 − t2| < δ, we have

|(Tu)(t1) − (Tu)(t2)| = |

∫ t2

t1

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ |

≤

∫ t2

t1

φ−1(|φ(A)| +

∫ τ

0

|f(s, u(s))|ds)dτ

≤ M2|t1 − t2|,

where M2 = φ−1(|φ(A)| + M1). This implies that T (B1) is equicontinuous on [0, 1].

There fore, T : C(I) → C(I) is completely continuous. The Proof of Lemma 3.1 is com-

pleted. 2

Theorem Assume conditions (H1)–(H3) hold, then (3.1)–(3.2) admits at least one solution.

Proof Lemmas 2.1 and 3.1 imply that the operator K + T is completely continuous. It suffices
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for us to prove the following equation

(I − (K + T ))u = 0 (3.5)

has at least one solution.

Define H : [0, 1]× C[0, 1] → C[0, 1] as

H(σ, u) = σ(K + T )u,

and it is clear that H is completely continuous.

Set hσ(u) = u − H(σ, u), then we have

h0(u) = u, h1(u) = [I − (K + T )]u.

To apply the Leray-Schauder degree to hσ, we need only to show that there exists a ball BR(θ)

in C[0, 1] whose radius R will be fixed later, such that θ 6∈ hσ(∂BR(θ)).

Choosing R > 2q−1φ−1(|φ(A)|+c2)
1−M−2q−1φ−1(c1)

, then for any fixed u ∈ ∂BR(θ), there exists a t0 ∈ [0, 1]

such that |u(t0)| = R. By directly calculating, we have

|(hσu)(t0)| = |u(t0) − σ[

∫ 1

0

g(s)u(s)ds +

∫ t0

0

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ ]|

≥ |u(t0)| − |σ[

∫ 1

0

g(s)u(s)ds +

∫ t0

0

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ ]|

≥ R − |

∫ 1

0

g(s)u(s)ds| − |

∫ t0

0

φ−1(φ(A) −

∫ τ

0

f(s, u(s))ds)dτ |

≥ (1 − M)R −

∫ 1

0

φ−1(|φ(A)| +

∫ 1

0

|f(s, u(s))|ds)dτ. (3.6)

From (H3), we have

|(hσu)(t0)| ≥ (1 − M)R −

∫ 1

0

φ−1
(

|φ(A)| +

∫ 1

0

(

c1φ(|u|) + c2

)

ds
)

dτ

≥ (1 − M)R −

∫ 1

0

φ−1
(

(|φ(A)| + c2) + c1φ(||u||)
)

dτ

> 0.

This implies hσu 6= θ , and hence we obtain θ 6∈ hσ(∂BR(θ)).

Lemma 1.2 shows that

deg(h1, BR(θ), θ) = deg(h0, BR(θ), θ) = 1 6= 0.

Using Lemma 1.3 we know that (3.5) admits a solution u ∈ BR(θ), which implies that (3.1)–(3.3)

also admits a solution in BR(θ). 2
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