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1. Introduction

Let B be a Banach space, B∗ be the dual space of B. 〈·, ·〉 denotes the duality pairing of B∗

and B. Let K be a nonempty closed convex subset of B and T : K → B∗ be an operator. The

following problem:

Find x∗ ∈ K, such that 〈Tx∗, y − x∗〉 ≥ 0, for all y ∈ K (1.1)

is called classical variational inequality problem.

The variational inequality (1.1) has been intensively considered due to its various applica-

tions in operations research, economic equilibrium and engineering design [1–9]. Variational

inequalities have been extended and generalized in many directions using novel and innovative

techniques. Most recently, applying the f -projection operator, Wu and Huang [10] proposed an

iterative method of approximating solutions for the generalized variational inequality problem:

find x∗ ∈ K such that

〈Ax∗, y − x∗〉 + f(y) − f(x∗) ≥ 0, ∀y ∈ K, (1.2)

where A : K → B∗ is an operator. A convergence result for this iterative method was also given

in compact subsets of Banach spaces. They proved the following theorem:

Theorem K1 ([10, Theorem 4.1]) Let K be a nonempty compact convex subset of a uniformly
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convex and uniformly smooth Banach space B with dual space B∗ and 0 ∈ K. Let A : K → B∗

be a continuous mapping and f : K → R be convex, lower semi-continuous and positively

homogeneous. Suppose that

(1) f(x) ≥ 0 for all x ∈ K and f(0) = 0;

(2) For any x ∈ K,

〈J(x − π
f
K(Jx − ρAx)), J∗(Jx − J(x − π

f
K(Jx − ρAx)))〉 ≥ 0.

Let x0 ∈ K and the sequence {xn} be generated by the following iteration scheme:

xn+1 = π
f
K(Jxn − αnJ(xn − π

f
K(Jxn − ρAxn))), n = 0, 1, 2, . . . ,

where {αn} satisfies the conditions:

(a) 0 ≤ αn ≤ 1, for all n = 0, 1, 2, . . .; (b)
∑∞

n=0
αn(1 − αn) = ∞.

Then generalized variational inequality (1.2) has a solution x∗ ∈ K and there exists a subsequence

{xni
} of {xn} such that xni

→ x∗, as i → ∞.

In addition, Fan [9] defined a Mann type iteration scheme as follows:

xn+1 = (1 − αn)xn + αnπK(Jxn − βTxn), n = 1, 2, 3, . . . , (1.3)

where {αn} satisfies: 0 < a ≤ αn ≤ b < 1 for all n ∈ N , for some positive numbers a, b ∈ (0, 1)

satisfying a < b. He established some existence results and convergence of the above iterative

scheme (1.3) for variational inequalities (1.1) in noncompact subsets of Banach spaces.

Motivated by these facts, our purpose in this paper is to establish some existence results of

solutions and the convergence of an iterative scheme in noncompact subsets of Banach spaces

for the following system of the generalized variational inequalities:

Find x∗ ∈ K, such that

{

〈Tx∗, y − x∗〉 + f(y) − f(x∗) ≥ 0,

〈Ax∗, y − x∗〉 + f(y) − f(x∗) ≥ 0,
∀y ∈ K. (1.4)

The results presented in this paper generalize the corresponding results of [8–10].

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,

respectively.

Let X, Y be Banach spaces, T : D(T ) ⊂ X → Y. The operator T is said to be compact if it

is continuous and maps the bounded subsets of D(T ) onto the relatively compact subsets of Y .

We denote by J : B → 2B∗

the normalized duality mapping from B to 2B∗

, defined by

J(x) := {v ∈ B∗ : 〈v, x〉 = ‖v‖2 = ‖x‖2}, ∀x ∈ B.

The duality mapping J has the following properties:

(i) If B is smooth, then J is single-valued;

(ii) If B is strictly convex, then J is one-to-one;

(iii) If B is reflexive, then J is surjective;

(iv) If B is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded

subset of B.
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Let B be a reflexive, strictly convex, smooth Banach space and J the duality mapping from

B into B∗. Then J∗ is also single-valued, one-to-one, surjective, and it is the duality mapping

from B∗ into B, i.e., J∗J = IB ; JJ∗ = IB∗ .

When {xn} is a sequence in B, we denote strong convergence of {xn} to x ∈ B by xn → x

and weak convergence by xn ⇀ x.

Let U = {x ∈ B : ‖x‖ = 1}. A Banach space B is said to be strictly convex if ‖x+y

2
‖ < 1 for

all x, y ∈ U and x 6= y. It is also said to be uniformly convex if limn→∞ ‖xn−yn‖ = 0 for any two

sequences {xn}, {yn} in U and limn→∞ ‖xn+yn

2
‖ = 1. A Banach space B is said to be smooth

provided limt→0
‖x+ty‖−‖x‖

t
exists for each x, y ∈ U. It is also said to be uniformly smooth if the

limit is attained uniformly for x, y ∈ U.

Alber [2, 4] introduced the functional V : B∗ × B → R defined by

V (φ, x) = ‖φ‖2 − 2〈φ, x〉 + ‖x‖2,

where φ ∈ B∗ and x ∈ B.

Definition 2.1 ([9]) If B is a uniformly convex and uniformly smooth Banach space, the

generalized projection πK : B∗ → K is a mapping that assigns an arbitrary point φ ∈ B∗ to the

minimum point of the functional V (φ, x), i.e., a solution to the minimization problem

V (φ, πK(φ)) = inf
y∈K

V (φ, y).

The operator πK is J fixed in each point x ∈ K, i.e., πK(Jx) = x (see [8]).

Recently, by employing the functional V (φ, x), many authors established some existence

results and iterative methods for the classical variational inequality problems (1.1) in reflexive,

strictly convex and smooth Banach spaces, see [8, 9] and the references therein. However, we

can not solve the generalized variational inequality (1.2) by using the functional V (φ, x). The

primary reason is that there is a nonlinear item f(y) − f(x∗) in (1.2). Therefore, for solving

the generalized variational inequality (1.2), Wu and Huang [10] introduced the functional G :

B∗ × K → R
⋃

{+∞} defined by

G(φ, x) = ‖φ‖2 − 2〈φ, x〉 + ‖x‖2 + 2ρf(x),

where φ ∈ B∗, x ∈ B, ρ > 0 is a constant and f : K ⊂ B → R
⋃

{+∞} is proper, convex and

lower semi-continuous. It is easy to see that G(φ, x) ≥ (‖φ‖ − ‖x‖)2 + 2ρf(x) and G(φ, x) =

V (φ, x) + 2ρf(x).

From the definitions of G and f, it is easy to have the following properties:

(i) G(φ, x) is convex and continuous with respect to φ when x is fixed;

(ii) G(φ, x) is convex and lower-semi-continuous with respect to x when φ is fixed;

(iii) (‖φ‖ − ‖x‖)2 + 2ρf(x) ≤ G(φ, x) ≤ (‖φ‖ + ‖x‖)2 + 2ρf(x).

Remark 2.1 If f ≡ 0, then G(φ, x) = V (φ, x), ∀φ ∈ B∗, x ∈ K.

Definition 2.2 ([10]) Let B be a Banach space with dual space B∗ and K be a nonempty,

closed and convex subset of B. We say that π
f
K : B∗ → 2K is a generalized f -projection operator
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if

π
f
Kφ = {u ∈ K : G(φ, u) = inf

y∈K
G(φ, y)}∀φ ∈ B∗.

Definition 2.3 We say that a Banach space B has the property (h) if xn ⇀ x and ‖xn‖ → ‖x‖

implies xn → x.

Remark 2.2 It is well known that any uniformly convex space has the property (h).

Theorem 2.1 ([10]) If B is a reflexive Banach space with dual space B∗ and K is a nonempty,

closed and convex subset of B, then the following conclusions hold:

(f1) For any given φ ∈ B∗, π
f
Kφ is a nonempty, closed and convex subset of K;

(f2) π
f
K is monotone, i.e., for any φ1, φ2 ∈ B∗, x1 ∈ π

f
Kφ1 and x2 ∈ π

f
Kφ2,

〈x1 − x2, φ1 − φ2〉 ≥ 0;

(f3) If B is smooth, then for any given φ ∈ B∗, x ∈ π
f
Kφ if and only if

〈φ − Jx, x − y〉 + ρf(y) − ρf(x) ≥ 0, ∀y ∈ K;

(f4) If f : K → R
⋃

{+∞} is positively homogeneous, i.e., f(tx) = tf(x) for all t > 0 and

x ∈ K with tx ∈ K, then for any φ ∈ B∗ and x1, x2 ∈ π
f
Kφ with x1 6= 0 and x2 6= 0, we have

x1 6= µx2 for all µ ∈ (0, +∞) with µ 6= 1;

(f5) If f : K → R
⋃

{+∞} is positively homogeneous and B is strictly convex, then the

operator π
f
K : B∗ → K is single-valued.

Remark 2.3 If f ≡ 0, then π
f
Kφ = πKφ, ∀φ ∈ B∗.

By Theorem 2.1 (f3), it is easy to obtain the following result.

Theorem 2.2 ([10]) Let A be an arbitrary operator acting from the reflexive smooth Banach

space B to B∗, ρ > 0. Then the point x∗ ∈ K ⊂ B is a solution of the variational inequality

〈Ax∗, y − x∗〉 + f(y) − f(x∗) ≥ 0, ∀y ∈ K,

if and only if x∗ is a solution of the following inclusion

x ∈ π
f
K(Jx − ρAx).

Theorem 2.3 ([10]) Let B be a reflexive and strictly convex Banach space with dual space B∗

and K be a nonempty closed convex subset of B. Suppose that f : K → R
⋃

{+∞} is proper,

convex, lower semi-continuous, positively homogeneous and bounded from below. Then

(i) π
f
K : B∗ → K is norm-weak continuous;

(ii) Moreover, if B has the property (h), then π
f
K : B∗ → K is continuous.

Theorem 2.4 ([10]) If f(x) ≥ 0 for all x ∈ K, then

G(Jx, y) ≤ G(φ, y) + 2ρf(y), ∀φ ∈ B∗, y ∈ K, x ∈ π
f
Kφ.

Theorem 2.5 ([11]) Let B be a uniformly convex Banach space and let r > 0. Then there
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exists a continuous strictly increasing convex function g : [0, 2r] → R such that g(0) = 0 and

‖tx + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x − y‖),

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ B : ‖z‖ ≤ r}.

Theorem 2.6 ([5]) Let B be a uniformly convex and uniformly smooth Banach space. We have

‖φ + Φ‖2 ≤ ‖φ‖2 + 2〈Φ, J∗(φ + Φ)〉, ∀φ, Φ ∈ B∗.

3. Main results

For any x0 ∈ K, we define the iteration process {xn} as follows:










x0 ∈ K chosen arbitrarily,

yn = βnxn + (1 − βn)πf
K(Jxn − ρAxn),

xn+1 = αnxn + (1 − αn)πf
K(Jyn − ρTyn),

(3.1)

where {αn}, {βn} satisfy:

0 < αn < 1, and lim inf
n→∞

αn(1 − αn) > 0; 0 < βn < 1 and lim inf
n→∞

(1 − αn)βn(1 − βn) > 0.

Theorem 3.1 Let B be a uniformly convex and uniformly smooth Banach space. Let K be

a nonempty, closed convex subset of B and 0 ∈ K. Assume that T, A are two operators of K

into B∗ and f : K → R is proper, convex, lower semi-continuous, positively homogeneous and

bounded from below. Suppose that

(1) f(x) ≥ 0 for all x ∈ K and f(0) = 0;

(2) For any x ∈ K, 〈Tx, J∗(Jx − ρTx)〉 ≥ 0, and 〈Ax, J∗(Jx − ρAx)〉 ≥ 0;

(3) J − ρT : K → B∗ is compact, and A is continuous.

Then the system of generalized variational inequality (1.4) has a solution x∗ ∈ K and there exists

a subsequence {xni
} of {xn} defined by (3.1) such that xni

→ x∗, as i → ∞.

Proof From the definition of G, Theorems 2.4 and 2.6, we have

‖πf
K(Jyn − ρTyn)‖2 = G(Jπ

f
K(Jyn − ρTyn), 0)

≤ G(Jyn − ρTyn, 0) = ‖Jyn − ρTyn‖
2

≤ ‖Jyn‖
2 − 2ρ〈Tyn, J∗(Jyn − ρTyn)〉 ≤ ‖yn‖

2. (3.2)

Similarly, we have

‖πf
K(Jxn − ρAxn)‖2 ≤ ‖xn‖

2. (3.3)

From the convexity of ‖ · ‖2 and (3.3), we have

‖yn‖
2 ≤ βn‖xn‖

2 + (1 − βn)‖πf
K(Jxn − ρAxn)‖2 ≤ ‖xn‖

2. (3.4)

Therefore,

‖xn+1‖
2 ≤ αn‖xn‖

2 + (1 − αn)‖πf
K(Jyn − ρTyn)‖2

≤ αn‖xn‖
2 + (1 − αn)‖yn‖

2 ≤ ‖xn‖
2, (3.5)
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for every n ∈ N
⋃

{0}. Therefore, {‖xn‖} is nonincreasing and hence there exists limn→∞ ‖xn‖.

So, {xn}, {yn}, {π
f
K(Jxn − ρAxn)}, {πf

K(Jyn − ρTyn)} are bounded. From Theorem 2.5 and

(3.2),(3.3), we have

‖xn+1‖
2 ≤αn‖xn‖

2 + (1 − αn)‖πf
K(Jyn − ρTyn)‖2 − αn(1 − αn)g(‖xn − π

f
K(Jyn − ρTyn)‖)

≤αn‖xn‖
2 + (1 − αn)‖yn‖

2 − αn(1 − αn)g(‖xn − π
f
K(Jyn − ρTyn)‖)

≤αn‖xn‖
2 + (1 − αn){βn‖xn‖

2 + (1 − βn)‖πf
K(Jxn − ρAxn)‖2−

βn(1 − βn)g(‖xn − π
f
K(Jxn − ρAxn)‖)},−αn(1 − αn)g(‖xn − π

f
K(Jyn − ρTyn)‖)

≤‖xn‖
2 − (1 − αn)βn(1 − βn)g(‖xn − π

f
K(Jxn − ρAxn)‖)−

αn(1 − αn)g(‖xn − π
f
K(Jyn − ρTyn)‖). (3.6)

That is

(1 − αn)βn(1 − βn)g(‖xn − π
f
K(Jxn − ρAxn)‖) ≤ ‖xn‖

2 − ‖xn+1‖
2

and

αn(1 − αn)g(‖xn − π
f
K(Jyn − ρTyn)‖) ≤ ‖xn‖

2 − ‖xn+1‖
2.

Since lim infn→∞ αn(1 − αn) > 0, lim infn→∞(1 − αn)βn(1 − βn) > 0, and limn→∞ ‖xn‖ exists,

we have

lim
n→∞

g(‖xn − π
f
K(Jxn − ρAxn)‖) = 0, and lim

n→∞
g(‖xn − π

f
K(Jyn − ρTyn)‖) = 0.

Applying the properties of g, we have

lim
n→∞

‖xn − π
f
K(Jxn − ρAxn)‖ = 0, and lim

n→∞
‖xn − π

f
K(Jyn − ρTyn)‖ = 0. (3.7)

Since

‖yn − xn‖ = (1 − βn)‖πf
K(Jxn − ρAxn) − xn‖,

from (3.7), we have

‖yn − xn‖ → 0. (3.8)

Since {yn} is bounded and J − ρT is compact on K, the sequence {Jyn − ρTyn} must have

a subsequence {Jyni
− ρTyni

}, which converges to a point φ ∈ B∗. By the continuity of the

projection operator π
f
K , we have

lim
i→∞

π
f
K(Jyni

− ρTyni
) = π

f
Kφ. (3.9)

Let x∗ = π
f
Kφ. Since

‖yni
− x∗‖ ≤ ‖yni

− xni
‖ + ‖xni

− π
f
K(Jyni

− ρTyni
)‖ + ‖πf

K(Jyni
− ρTyni

) − x∗‖, (3.10)

combining (3.7), (3.8) and (3.9) gives

lim
i→∞

yni
= x∗. (3.11)

By the continuity properties of the operators π
f
K and J − ρT, combining (3.9) and (3.11), we

have

π
f
K(Jx∗ − ρTx∗) = x∗. (3.12)
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From (3.11) and (3.8), we have

lim
i→∞

xni
= x∗. (3.13)

By the continuity properties of the operators π
f
K , J and A, we have

lim
i→∞

π
f
K(Jxni

− ρAxni
) = π

f
K(Jx∗ − ρAx∗). (3.14)

Since

‖πf
K(Jxni

− ρAxni
) − x∗‖ ≤ ‖πf

K(Jxni
− ρAxni

) − xni
‖ + ‖xni

− x∗‖,

it follows from (3.7) and (3.13)

lim
i→∞

π
f
K(Jxni

− ρAxni
) = x∗. (3.15)

Combining (3.14) and (3.15), we obtain

π
f
K(Jx∗ − ρAx∗) = x∗. (3.16)

Theorem 2.2, equalities (3.12) and (3.16) imply that x∗ is a solution of the system of the gener-

alized variational inequalities (1.4) and xni
→ x∗. 2

Remark 3.1 Note that {αn} = { 1

2
− 1

n
} and {βn} = { 1

2
− 1

n
} is an example of the sequences

αn and βn.

Theorem 3.2 Let B be a uniformly convex and uniformly smooth Banach space. Let K be

a nonempty, closed convex subset of B and 0 ∈ K. Assume that T, A are two operators of K

into B∗ and f : K → R is proper, convex, lower semi-continuous, positively homogeneous and

bounded from below. Suppose that

(1) f(x) ≥ 0 for all x ∈ K and f(0) = 0;

(2) For any x ∈ K, 〈Tx, J∗(Jx − ρTx)〉 ≥ 0, and 〈Ax, J∗(Jx − ρAx)〉 ≥ 0;

(3) J − ρT : K → B∗ is compact, and A is continuous.

Moreover, if the solution of the the system of generalized variational inequality (1.4) is unique,

denoted by x∗, then the sequence {xn} defined by (3.1) converges to x∗.

Proof Let {xnk
} be any subsequence of {xn}. Since {xnk

} is bounded, similarly to the proof

of Theorem 3.1, we can obtain a subsequence {xnj
} of {xnk

} such that limj→∞ xnj
= x∗ and

hence limn→∞ xn = x∗. 2

If f ≡ 0 and A ≡ 0, then we obtain the following conclusion:

Theorem 3.3 ([9, Theorem 3.1]) Let B be a uniformly convex and uniformly smooth Banach

space and let K be a closed convex subset of B. Suppose that there exists a positive number β,

such that

〈Tx, J∗(Jx − βTx)〉 ≥ 0, for all x ∈ K,

and J−βT : K → B∗ is compact. Then the variational inequality (1.1) has a solution x∗ ∈ K and

the sequence {xn} defined by (1.3) has a convergent subsequence {xni
} that converges strongly

to x∗ ∈ K.
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Proof Taking f ≡ 0 in Theorem 3.1, then we have π
f
K = πK . Taking A ≡ 0, by xn ∈ K and

the property of the operator πK , we have πKJxn = xn, So, yn = xn. Moreover, if 0 < a ≤

αn ≤ b < 1 for all n ∈ N, for some positive numbers a, b ∈ (0, 1) satisfying a < b, then we have

lim infn→∞ αn(1 − αn) > 0. Thus, by Theorem 3.1, we can obtain the desired conclusion. 2

Theorem 3.4 Let H be a Hilbert space. Let K be a nonempty, closed convex subset of H and

0 ∈ K. Assume that T, A are two operators of K into H and f : K → R is proper, convex, lower

semi-continuous, positively homogeneous and bounded from below. Suppose that

(1) f(x) ≥ 0 for all x ∈ K and f(0) = 0;

(2) For any x ∈ K, 〈Tx, x〉 ≥ ρ‖Tx‖2, and 〈Ax, x〉 ≥ ρ‖Ax‖2;

(3) I − ρT : K → H is compact, and A is continuous.

Let the sequence {xn} be generated by the following iteration scheme:










x0 ∈ K chosen arbitrarily,

yn = βnxn + (1 − βn)πf
K(xn − ρAxn),

xn+1 = αnxn + (1 − αn)πf
K(yn − ρTyn),

where {αn},{βn} satisfy:

0 < αn < 1, and lim inf
n→∞

αn(1 − αn) > 0; 0 < βn < 1 and lim inf
n→∞

(1 − αn)βn(1 − βn) > 0.

Then the system of generalized variational inequality (1.4) has a solution x∗ ∈ K and there exists

a subsequence {xni
} of {xn} such that xni

→ x∗, as i → ∞.

Proof Since H∗ = H and J∗ = J = I for a Hilbert space H , the conclusion follows from

Theorem 3.1. This completes the proof. 2
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