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1. Introduction and main results

We assume that the reader is familiar with the usual notations and basic results of the

Nevanlinna theory [6, 7, 10]. We use S(r, f) to denote any quantity satisfying S(r, f) = o(T (r, f)),

as r → ∞, possibly outside of an exceptional set of finite logarithmic measure.

In addition, we also use the following notations. Let a be a finite complex number, and k

be a positive integer, we denote by Nk)(r,
1

f−a
) the counting function for zeros of f − a with

multiplicity no more than k (counting multiplicity), and by Nk)(r,
1

f−a
) the corresponding one

for which multiplicity is not counted. Let N(k(r, 1
f−a

) be the counting function for zeros of f − a

with multiplicity at least k (counting multiplicity), and N (k(r, 1
f−a

) be the corresponding one

for which multiplicity is not counted. We define

Nk(r,
1

f − a
) = N(r,

1

f − a
) + N (2(r,

1

f − a
) + · · · + N (k(r,

1

f − a
).

Clearly, N1(r,
1

f−a
) = N(r, 1

f−a
).

Suppose now that f and g are two non-constant meromorphic functions. We say that f

and g share a CM (IM), if f − a and g − a have the same zeros counting multiplicity (ignoring

multiplicity). Let z0 be the zero of f − a with the multiplicity p and the zero of g − a with

the multiplicity q. We denote by NL(r, 1
f−a

) the counting function for the zeros of f − a with

p > q ≥ 1; by N
1)

E (r, 1
f−a

) the counting function of the zeros of f − a where p = q = 1; by

N
(2

E (r, 1
f−a

) the counting function of the zeros of f − a where p = q ≥ 2. Each point in these
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counting functions is counted only once. In the same way, we can define NL(r, 1
g−a

), N
1)

E (r, 1
g−a

),

N
(2

E (r, 1
g−a

). We use N∗(r,
1

f−a
) to denote the counting function of zeros of f − a but not the

zeros of g − a, for which multiplicity is not counted, and we can similarly define N∗(r,
1

g−a
).

Let Ek)(a, f) denote the set of zeros of f − a with multiplicity m no more than k counting

m times, and let Ek)(a, f) denote the set of those zeros of f − a with multiplicity no more than

k ignoring multiplicity.

Corresponding to one famous question of Hayman [5], Fang and Hua [2], Yang and Hua [9]

obtained the following unicity theorem.

Theorem A Let f(z) and g(z) be two nonconstant entire functions, and let n ≥ 6 be a positive

integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz where c1, c2 and

c are three constants satisfying (c1c2)
n+1c2 = −1, or f(z) = tg(z) for a constant t such that

tn+1 = 1.

Notice fnf ′ = 1
n+1 (fn+1)′. Fang [3] considered kth derivative instead of 1st derivative, and

proved the following result.

Theorem B Let f(z) and g(z) be two nonconstant entire functions, and n, k be two positive

integers with n > 2k+4. If [fn](k) and [gn](k) share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz

where c1, c2 and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or f(z) = tg(z) for a

constant t such that tn = 1.

Recently, Bhoosnurmath and Dyavanal [1] extended Fang’s result to the meromorphic func-

tions case.

Theorem C Let f(z) and g(z) be two nonconstant meromorphic functions, and n, k be two

positive integers with n > 3k + 8. If [fn](k) and [gn](k) share 1 CM, then either f(z) = c1e
cz,

g(z) = c2e
−cz where c1, c2 and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1, or

f(z) = tg(z) for a constant t such that tn = 1.

Xu [8] improved the above related results by weakening the CM sharing condition, as follows.

Theorem D Let f(z) and g(z) be two nonconstant meromorphic (resp. entire) functions, and n,

k be two positive integers with n > 3k+8 (resp. n > 2k+4). If E3)(1, (fn)(k)) = E3)(1, (gn)(k)),

then either f(z) = tg(z) for some nth root of unity t or f(z) = c1e
cz, g(z) = c2e

−cz where c1, c2

and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1.

For some general differential polynomials, Zhang et al. [11] obtained the following result.

Theorem E Let f(z) and g(z) be two nonconstant entire functions; and let n, k and m be three

positive integers with n ≥ 3m + 2k + 5, and let P (z) = amzm + am−1z
m−1 + · · · + a1z + a0 or

P (z) ≡ c0, where a0 6= 0, a1, . . . , am−1, am 6= 0, c0 6= 0 are complex constants. If [fnP (f)](k) =

[gnP (g)](k) share 1 CM, then

(i) When P (z) = amzm + am−1z
m−1 + · · · + a1z + a0, either f(z) = tg(z) for a constant t

such that td = 1, where d = (n + m, . . . , n + m − i, . . . , n), am−i 6= 0 for some i = 0, 1, . . . , m or

f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) = wn
1 P (w1) − wn

2 P (w2);
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(ii) When P (z) ≡ c0, either f(z) = c1c
−

1
n

0 ecz, g(z) = c1c
−

1
n

0 e−cz where c1, c2 and c are three

constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or f(z) = tg(z) for a constant t such that tn = 1.

When [fn](k) and [gn](k) share 1 IM, Li and Lu [4] obtained the following theorem.

Theorem F Let f(z) and g(z) be two nonconstant meromorphic functions, and n, k be two

positive integers with n > 6k + 14. If [fn](k) and [gn](k) share 1 IM, then either f(z) = c1e
cz,

g(z) = c2e
−cz where c1, c2 and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1, or

f(z) = tg(z) for a constant t such that tn = 1.

In this paper, we will prove the following uniqueness theorems under weaker sharing condition

than sharing one value IM.

Theorem 1 Let f(z) and g(z) be two nonconstant meromorphic (resp. entire) functions, and n,

k be two positive integers with n > 9k+14 (resp. n > 5k+7). If El)(1, (fn)(k)) = El)(1, (gn)(k))

with positive integer l, then either f(z) = tg(z) for some nth root of unity t or f(z) = c1e
cz,

g(z) = c2e
−cz where c1, c2 and c are three constants satisfying (−1)k(c1c2)

n(nc)2k = 1.

Theorem 2 Let f(z) and g(z) be two nonconstant entire functions, n, k and m be three positive

integers with n > 5m + 5k + 7, and P (z) be defined as in Theorem E. If El)(1, [fnP (f)](k)) =

El)(1, [gnP (g)](k)) with positive integer l, then two conclusions of Theorem E also hold.

2. Preliminary lemmas

Firstly, we recall a few lemmas that play important roles in the reasoning.

Lemma 1 ([10]) Let f(z) be a nonconstant meromorphic function, k be a positive integer, and

c be a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) + Nk+1(r,
1

f
) + N(r,

1

f (k) − c
) − N0(r,

1

f (k+1)
) + S(r, f).

Here N0(r,
1

f(k+1) ) is the counting function which only counts these points such that f (k+1) = 0

but f(f (k) − c) 6= 0.

Lemma 2 Let f(z) be a nonconstant meromorphic function, and k be a positive integer. Then

N (2(r,
1

f (k) − 1
) ≤ (k + 1)N(r, f) + Nk(r,

1

f
) + N(r,

1

f
) + S(r, f). (2.1)

Proof Firstly, we have

N(r,
1

f (k)
) ≤ N(r,

f

f (k)
) + N(r,

1

f
)

≤ T (r,
f (k)

f
) + N(r,

1

f
) + S(r, f)

≤ N(r,
f (k)

f
) + N(r,

1

f
) + S(r, f)

≤ kN(r, f) + Nk(r,
1

f
) + N(r,

1

f
) + S(r, f).
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Next, it is easy to see

N (2(r,
1

f (k) − 1
) ≤ N(r,

f (k)

f (k+1)
)

≤ T (r,
f (k+1)

f (k)
) + S(r, f)

≤ N(r,
f (k+1)

f (k)
) + S(r, f)

≤ N(r, f) + N(r,
1

f (k)
) + S(r, f). (2.2)

Combining (2.2) with the estimation for N(r, 1
f(k) ) yields (2.1). 2

3. Proofs of Theorems

Proof of Theorem 1 Consider F (z) = fn and G(z) = gn. Since El)(1, (fn)(k)) = El)(1, (gn)(k)),

it means that El)(1, F (k)) = El)(1, G(k)). Clearly, from the standard Valiron-Mohon’ko theorem,

we have

T (r, F ) = nT (r, f) + S(r, f), T (r, G) = nT (r, g) + S(r, g). (3.1)

We set

H(z) =
(F (k+2)

F (k+1)
− 2

F (k+1)

F (k) − 1

)

−
(G(k+2)

G(k+1)
− 2

G(k+1)

G(k) − 1

)

. (3.2)

Suppose that H(z) 6≡ 0. Clearly, m(r, H) = S(r, f) + S(r, g). Firstly, a simple computation

on local expansions shows that H(z0) = 0 if z0 is a common simple zero of F (k) −1 and G(k) −1.

Then we have

N
1)

E (r,
1

F (k) − 1
) ≤ N(r,

1

H
) ≤ N(r, H) + S(r, f) + S(r, g). (3.3)

The poles of H(z) only come from the zeros of F (k+1) and G(k+1), the poles of f and g, the zeros

of F (k) − 1 and G(k) − 1 with different multiplicity, the zeros of F (k) − 1 which are not the zeros

of G(k) − 1, and the zeros of G(k) − 1 but not the zeros of F (k) − 1. By analysis, we deduce that

N(r, H) ≤N(r, f) + N(r, g) + N(r,
1

F
) + N(r,

1

G
) + NL(r,

1

F (k) − 1
) + NL(r,

1

G(k) − 1
)+

N∗(r,
1

F (k) − 1
) + N∗(r,

1

G(k) − 1
) + N0(r,

1

F (k+1)
) + N0(r,

1

G(k+1)
)+

S(r, f) + S(r, g), (3.4)

where N0(r,
1

F (k+1) ) only counts those zeros of F (k+1) but not the zeros of F (F − 1), and

N0(r,
1

F (k+1) ) denotes the corresponding reduced counting function. At the same time, obvi-

ously

N(r,
1

F (k) − 1
) =N

1)

E (r,
1

F (k) − 1
) + N

(2

E (r,
1

F (k) − 1
) + NL(r,

1

F (k) − 1
)+

NL(r,
1

G(k) − 1
) + N∗(r,

1

F (k) − 1
).

Combining this with (3.3) and (3.4) gives

N(r,
1

F (k) − 1
)
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≤ N(r, f) + N(r, g) + N(r,
1

F
) + N(r,

1

G
) + 2NL(r,

1

F (k) − 1
) + 2NL(r,

1

G(k) − 1
)+

2N∗(r,
1

F (k) − 1
) + N∗(r,

1

G(k) − 1
) + N0(r,

1

F (k+1)
) + N0(r,

1

G(k+1)
)+

N
(2

E (r,
1

F (k) − 1
) + S(r, f) + S(r, g). (3.5)

Since El)(1, F (k)) = El)(1, G(k)), it follows

NL(r,
1

F (k) − 1
) + N∗(r,

1

F (k) − 1
) ≤ N (2(r,

1

F (k) − 1
).

By Lemma 2.2, we have

NL(r,
1

F (k) − 1
) + N∗(r,

1

F (k) − 1
) ≤ (k + 1)N(r, f) + Nk(r,

1

F
) + N(r,

1

F
) + S(r, f). (3.6)

The similar inequality also holds for G. Consider the following relation

N(r,
1

G(k) − 1
) + NL(r,

1

G(k) − 1
) + N

(2

E (r,
1

G(k) − 1
)

≤ N(r,
1

G(k) − 1
) ≤ T (r, G) + kN(r, g) + S(r, g).

By Lemma 2.1 and (3.5), we have

T (r, F ) + T (r, G) ≤N(r, f) + N(r, g) + Nk+1(r,
1

F
) + Nk+1(r,

1

G
) + N(r,

1

F (k) − 1
)+

N(r,
1

G(k) − 1
) − N0(r,

1

F (k+1)
) − N0(r,

1

G(k+1)
) + S(r, f) + S(r, g)

≤2N(r, f) + (k + 2)N(r, g) + Nk+1(r,
1

F
) + Nk+1(r,

1

G
) + N(r,

1

F
)+

N(r,
1

G
) + 2NL(r,

1

F (k) − 1
) + NL(r,

1

G(k) − 1
) + 2N∗(r,

1

F (k) − 1
)+

T (r, G) + N∗(r,
1

G(k) − 1
) + S(r, f) + S(r, g). (3.7)

It follows from this and (3.6) that

T (r, F ) ≤(2k + 4)N(r, f) + (2k + 3)N(r, g) + Nk+1(r,
1

F
) + Nk+1(r,

1

G
) + 2Nk(r,

1

F
)+

Nk(r,
1

G
) + 3N(r,

1

F
) + 2N(r,

1

G
) + S(r, f) + S(r, g).

Similarly, we have

T (r, G) ≤(2k + 4)N(r, g) + (2k + 3)N(r, f) + Nk+1(r,
1

F
) + Nk+1(r,

1

G
) + 2Nk(r,

1

G
)+

Nk(r,
1

F
) + 3N(r,

1

G
) + 2N(r,

1

F
) + S(r, f) + S(r, g).

Therefore, we can obtain

T (r, F ) + T (r, G) ≤(4k + 7)[N(r, f) + N(r, g)] + 2[Nk+1(r,
1

F
) + Nk+1(r,

1

G
)] + 3[Nk(r,

1

G
)+

Nk(r,
1

F
)] + 5[N(r,

1

G
) + N(r,

1

F
)] + S(r, f) + S(r, g). (3.8)
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Note that

Nk+1(r,
1

F
) = (k + 1)N(r,

1

f
), Nk(r,

1

F
) = kN(r,

1

f
), N(r,

1

F
) = N(r,

1

f
),

Nk+1(r,
1

G
) = (k + 1)N(r,

1

g
), Nk(r,

1

G
) = kN(r,

1

g
), N(r,

1

G
) = N(r,

1

g
),

and from (3.1), we get

n(T (r, f) + T (r, g)) ≤ (9k + 14)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

It is impossible since n > 9k + 14.

If f and g are entire, we can deduce that

n(T (r, f) + T (r, g)) ≤ (5k + 7)(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which contradicts n > 5k + 7.

Thus, it remains to treat the case H(z) ≡ 0. Integrating twice results in

1

F (k) − 1
= A

1

G(k) − 1
+ B, (3.9)

where A 6= 0, B are two constants. It follows that F (k) and G(k) share 1 CM, that is [fn](k) and

[gn](k) share 1 CM. By Theorem C, we obtain the conclusion of Theorem 1. This completes the

proof of Theorem 1. 2

Proof of Theorem 2 Consider F (z) = fnP (f) and G(z) = gnP (g). Thus, El)(1, F (k)) =

El)(1, G(k)). Clearly, from the standard Valiron-Mohon’ko theorem, we have

T (r, F ) = (n + m)T (r, f) + S(r, f), T (r, G) = (n + m)T (r, g) + S(r, g). (4.1)

Suppose now H(z) 6≡ 0. By using the argument similar to that of (3.8), since f and g are entire,

we can get

T (r, F ) + T (r, G) ≤2[Nk+1(r,
1

F
) + Nk+1(r,

1

G
)] + 3[Nk(r,

1

G
) + Nk(r,

1

F
)]+

5[N(r,
1

G
) + N(r,

1

F
)] + S(r, f) + S(r, g). (4.2)

Notice

Nk+1(r,
1

F
) ≤ (k + 1)N(r,

1

f
) + N(r,

1

P (f)
) ≤ (m + k + 1)T (r, f)

Nk(r,
1

F
) ≤ (k + m)T (r, f), N(r,

1

F
) ≤ (1 + m)T (r, f),

and similar inequalities hold for G, it follows from (4.1) and (4.2) that

(n + m)(T (r, f) + T (r, g)) ≤ (6m + 5k + 7)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

It is impossible since n > 5m + 5k + 7. Thus, we just need to treat the case H(z) ≡ 0. By

integrating twice, we conclude that [fnP (f)](k) and [gnP (g)](k) share 1 CM. Then by using

Theorem E, we complete the proof of Theorem 2. 2



Value-sharing of meromorphic functions and differential polynomials 741

References

[1] BHOOSNURMATH S S, DYAVANAL R S. Uniqueness and value-sharing of meromorphic functions [J].
Comput. Math. Appl., 2007, 53(8): 1191–1205.

[2] FANG Mingliang, HUA Xinhou. Entire functions that share one value [J]. Nanjing Daxue Xuebao Shuxue

Bannian Kan, 1996, 13(1): 44–48.
[3] FANG Mingliang. Uniqueness and value-sharing of entire functions [J]. Comput. Math. Appl., 2002, 44(5-6):

823–831.
[4] LI Jindong, LU Qian. Uniqueness of meromorphic functions and differential polynomials sharing one value

IM [J]. J. Math. Anal. Appl., 2008, 339(1): 115–124.

[5] HAYMAN W K. Picard values of meromorphic functions and their derivatives [J]. Ann. of Math. (2), 1959,
70: 9–42.

[6] Hayman W., Meromorphic Functions[M], Clarendon Press, Oxford, 1964.
[7] LAINE I. Nevanlinna Theory and Complex Differential Equations [M]. Walter de Gruyter & Co., Berlin,

1993.

[8] XU Yan. Uniqueness of meromorphic functions sharing one value [J]. Comput. Math. Appl., 2008, 56(10):
2692–2699.

[9] YANG Chungchun, HUA Xinhou. Uniqueness and value-sharing of meromorphic functions [J]. Ann. Acad.
Sci. Fenn. Math., 1997, 22(2): 395–406.

[10] YANG Chungchun, YI Hongxun. Uniqueness Theory of Meromorphic Functions [M]. Kluwer, Dordrecht,

2003.
[11] ZHANG Xiaoyu, CHEN Junfan, LIN Weichuan. Entire or meromorphic functions sharing one value [J].

Comput. Math. Appl., 2008, 56(7): 1876–1883.


