Value-Sharing of Meromorphic Functions and Differential Polynomials

Zhen LIU, Jun WANG*
School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China

Abstract

This paper is devoted to studying the relationship between meromorphic functions $f(z)$ and $g(z)$ when their differential polynomials satisfy sharing condition weaker than sharing one value IM.

Keywords meromorphic function; uniqueness; sharing value; differential polynomial.
Document code A
MR(2010) Subject Classification 30D35
Chinese Library Classification O174.52

1. Introduction and main results

We assume that the reader is familiar with the usual notations and basic results of the Nevanlinna theory $[6,7,10]$. We use $S(r, f)$ to denote any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow \infty$, possibly outside of an exceptional set of finite logarithmic measure.

In addition, we also use the following notations. Let a be a finite complex number, and k be a positive integer, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)$ the counting function for zeros of $f-a$ with multiplicity no more than k (counting multiplicity), and by $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{f-a}\right)$ be the counting function for zeros of $f-a$ with multiplicity at least k (counting multiplicity), and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ be the corresponding one for which multiplicity is not counted. We define

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\cdots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)
$$

Clearly, $N_{1}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)$.
Suppose now that f and g are two non-constant meromorphic functions. We say that f and g share a CM (IM), if $f-a$ and $g-a$ have the same zeros counting multiplicity (ignoring multiplicity). Let z_{0} be the zero of $f-a$ with the multiplicity p and the zero of $g-a$ with the multiplicity q. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-a}\right)$ the counting function for the zeros of $f-a$ with $p>q \geq 1$; by $\bar{N}_{E}^{1)}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ where $p=q=1$; by $\bar{N}_{E}^{(2}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ where $p=q \geq 2$. Each point in these

[^0]counting functions is counted only once. In the same way, we can define $\bar{N}_{L}\left(r, \frac{1}{g-a}\right), \bar{N}_{E}^{1)}\left(r, \frac{1}{g-a}\right)$, $\bar{N}_{E}^{(2}\left(r, \frac{1}{g-a}\right)$. We use $\bar{N}_{*}\left(r, \frac{1}{f-a}\right)$ to denote the counting function of zeros of $f-a$ but not the zeros of $g-a$, for which multiplicity is not counted, and we can similarly define $\bar{N}_{*}\left(r, \frac{1}{g-a}\right)$.

Let $E_{k)}(a, f)$ denote the set of zeros of $f-a$ with multiplicity m no more than k counting m times, and let $\bar{E}_{k)}(a, f)$ denote the set of those zeros of $f-a$ with multiplicity no more than k ignoring multiplicity.

Corresponding to one famous question of Hayman [5], Fang and Hua [2], Yang and Hua [9] obtained the following unicity theorem.

Theorem A Let $f(z)$ and $g(z)$ be two nonconstant entire functions, and let $n \geq 6$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n+1}=1$.

Notice $f^{n} f^{\prime}=\frac{1}{n+1}\left(f^{n+1}\right)^{\prime}$. Fang [3] considered k th derivative instead of 1 st derivative, and proved the following result.

Theorem B Let $f(z)$ and $g(z)$ be two nonconstant entire functions, and n, k be two positive integers with $n>2 k+4$. If $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f(z)=t g(z)$ for a constant t such that $t^{n}=1$.

Recently, Bhoosnurmath and Dyavanal [1] extended Fang's result to the meromorphic functions case.

Theorem C Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, and n, k be two positive integers with $n>3 k+8$. If $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}$, $g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n}=1$.
$\mathrm{Xu}[8]$ improved the above related results by weakening the CM sharing condition, as follows.
Theorem \mathbf{D} Let $f(z)$ and $g(z)$ be two nonconstant meromorphic (resp. entire) functions, and n, k be two positive integers with $n>3 k+8$ (resp. $n>2 k+4$). If $E_{3)}\left(1,\left(f^{n}\right)^{(k)}\right)=E_{3)}\left(1,\left(g^{n}\right)^{(k)}\right)$, then either $f(z)=\operatorname{tg}(z)$ for some nth root of unity t or $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$.

For some general differential polynomials, Zhang et al. [11] obtained the following result.
Theorem E Let $f(z)$ and $g(z)$ be two nonconstant entire functions; and let n, k and m be three positive integers with $n \geq 3 m+2 k+5$, and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ or $P(z) \equiv c_{0}$, where $a_{0} \neq 0, a_{1}, \ldots, a_{m-1}, a_{m} \neq 0, c_{0} \neq 0$ are complex constants. If $\left[f^{n} P(f)\right]^{(k)}=$ $\left[g^{n} P(g)\right]^{(k)}$ share $1 C M$, then
(i) When $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$, either $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=w_{1}^{n} P\left(w_{1}\right)-w_{2}^{n} P\left(w_{2}\right)$;
(ii) When $P(z) \equiv c_{0}$, either $f(z)=c_{1} c_{0}^{-\frac{1}{n}} e^{c z}, g(z)=c_{1} c_{0}^{-\frac{1}{n}} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n}=1$.

When $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share $1 \mathrm{IM}, \mathrm{Li}$ and $\mathrm{Lu}[4]$ obtained the following theorem.
Theorem \mathbf{F} Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, and n, k be two positive integers with $n>6 k+14$. If $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share $1 I M$, then either $f(z)=c_{1} e^{c z}$, $g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n}=1$.

In this paper, we will prove the following uniqueness theorems under weaker sharing condition than sharing one value IM.

Theorem 1 Let $f(z)$ and $g(z)$ be two nonconstant meromorphic (resp. entire) functions, and n, k be two positive integers with $n>9 k+14$ (resp. $n>5 k+7$). If $\bar{E}_{l)}\left(1,\left(f^{n}\right)^{(k)}\right)=\bar{E}_{l)}\left(1,\left(g^{n}\right)^{(k)}\right)$ with positive integer l, then either $f(z)=\operatorname{tg}(z)$ for some nth root of unity t or $f(z)=c_{1} e^{c z}$, $g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$.

Theorem 2 Let $f(z)$ and $g(z)$ be two nonconstant entire functions, n, k and m be three positive integers with $n>5 m+5 k+7$, and $P(z)$ be defined as in Theorem E. If $\bar{E}_{l)}\left(1,\left[f^{n} P(f)\right]^{(k)}\right)=$ $\bar{E}_{l)}\left(1,\left[g^{n} P(g)\right]^{(k)}\right)$ with positive integer l, then two conclusions of Theorem E also hold.

2. Preliminary lemmas

Firstly, we recall a few lemmas that play important roles in the reasoning.
Lemma $1([10])$ Let $f(z)$ be a nonconstant meromorphic function, k be a positive integer, and c be a nonzero finite complex number. Then

$$
T(r, f) \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
$$

Here $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts these points such that $f^{(k+1)}=0$ but $f\left(f^{(k)}-c\right) \neq 0$.

Lemma 2 Let $f(z)$ be a nonconstant meromorphic function, and k be a positive integer. Then

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{f^{(k)}-1}\right) \leq(k+1) \bar{N}(r, f)+N_{k}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.1}
\end{equation*}
$$

Proof Firstly, we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f^{(k)}}\right) & \leq \bar{N}\left(r, \frac{f}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f}\right) \\
& \leq T\left(r, \frac{f^{(k)}}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq N\left(r, \frac{f^{(k)}}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq k \bar{N}(r, f)+N_{k}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

Next, it is easy to see

$$
\begin{align*}
\bar{N}_{(2}\left(r, \frac{1}{f^{(k)}-1}\right) & \leq \bar{N}\left(r, \frac{f^{(k)}}{f^{(k+1)}}\right) \\
& \leq T\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+S(r, f) \\
& \leq N\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \tag{2.2}
\end{align*}
$$

Combining (2.2) with the estimation for $\bar{N}\left(r, \frac{1}{f^{(k)}}\right)$ yields (2.1).

3. Proofs of Theorems

Proof of Theorem 1 Consider $F(z)=f^{n}$ and $G(z)=g^{n}$. Since $\bar{E}_{l)}\left(1,\left(f^{n}\right)^{(k)}\right)=\bar{E}_{l)}\left(1,\left(g^{n}\right)^{(k)}\right)$, it means that $\bar{E}_{l)}\left(1, F^{(k)}\right)=\bar{E}_{l)}\left(1, G^{(k)}\right)$. Clearly, from the standard Valiron-Mohon'ko theorem, we have

$$
\begin{equation*}
T(r, F)=n T(r, f)+S(r, f), \quad T(r, G)=n T(r, g)+S(r, g) \tag{3.1}
\end{equation*}
$$

We set

$$
\begin{equation*}
H(z)=\left(\frac{F^{(k+2)}}{F^{(k+1)}}-2 \frac{F^{(k+1)}}{F^{(k)}-1}\right)-\left(\frac{G^{(k+2)}}{G^{(k+1)}}-2 \frac{G^{(k+1)}}{G^{(k)}-1}\right) \tag{3.2}
\end{equation*}
$$

Suppose that $H(z) \not \equiv 0$. Clearly, $m(r, H)=S(r, f)+S(r, g)$. Firstly, a simple computation on local expansions shows that $H\left(z_{0}\right)=0$ if z_{0} is a common simple zero of $F^{(k)}-1$ and $G^{(k)}-1$. Then we have

$$
\begin{equation*}
\bar{N}_{E}^{1)}\left(r, \frac{1}{F^{(k)}-1}\right) \leq N\left(r, \frac{1}{H}\right) \leq N(r, H)+S(r, f)+S(r, g) \tag{3.3}
\end{equation*}
$$

The poles of $H(z)$ only come from the zeros of $F^{(k+1)}$ and $G^{(k+1)}$, the poles of f and g, the zeros of $F^{(k)}-1$ and $G^{(k)}-1$ with different multiplicity, the zeros of $F^{(k)}-1$ which are not the zeros of $G^{(k)}-1$, and the zeros of $G^{(k)}-1$ but not the zeros of $F^{(k)}-1$. By analysis, we deduce that

$$
\begin{align*}
N(r, H) \leq & \bar{N}(r, f)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G^{(k)}-1}\right)+ \\
& \bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{*}\left(r, \frac{1}{G^{(k)}-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{(k+1)}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{(k+1)}}\right)+ \\
& S(r, f)+S(r, g) \tag{3.4}
\end{align*}
$$

where $N_{0}\left(r, \frac{1}{F^{(k+1)}}\right)$ only counts those zeros of $F^{(k+1)}$ but not the zeros of $F(F-1)$, and $\bar{N}_{0}\left(r, \frac{1}{F^{(k+1)}}\right)$ denotes the corresponding reduced counting function. At the same time, obviously

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)= & \bar{N}_{E}^{1)}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+ \\
& \bar{N}_{L}\left(r, \frac{1}{G^{(k)}-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right)
\end{aligned}
$$

Combining this with (3.3) and (3.4) gives

$$
\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)
$$

$$
\begin{align*}
\leq & \bar{N}(r, f)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G^{(k)}-1}\right)+ \\
& 2 \bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{*}\left(r, \frac{1}{G^{(k)}-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{(k+1)}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{(k+1)}}\right)+ \\
& \bar{N}_{E}^{(2}\left(r, \frac{1}{F^{(k)}-1}\right)+S(r, f)+S(r, g) \tag{3.5}
\end{align*}
$$

Since $\bar{E}_{l)}\left(1, F^{(k)}\right)=\bar{E}_{l)}\left(1, G^{(k)}\right)$, it follows

$$
\bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right) \leq \bar{N}_{(2}\left(r, \frac{1}{F^{(k)}-1}\right)
$$

By Lemma 2.2, we have

$$
\begin{equation*}
\bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right) \leq(k+1) \bar{N}(r, f)+N_{k}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \tag{3.6}
\end{equation*}
$$

The similar inequality also holds for G. Consider the following relation

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G^{(k)}-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G^{(k)}-1}\right) \\
& \quad \leq N\left(r, \frac{1}{G^{(k)}-1}\right) \leq T(r, G)+k \bar{N}(r, g)+S(r, g)
\end{aligned}
$$

By Lemma 2.1 and (3.5), we have

$$
\begin{align*}
T(r, F)+T(r, G) \leq & \bar{N}(r, f)+\bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+ \\
& \bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{0}\left(r, \frac{1}{F^{(k+1)}}\right)-N_{0}\left(r, \frac{1}{G^{(k+1)}}\right)+S(r, f)+S(r, g) \\
\leq & 2 \bar{N}(r, f)+(k+2) \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+ \\
& \bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G^{(k)}-1}\right)+2 \bar{N}_{*}\left(r, \frac{1}{F^{(k)}-1}\right)+ \\
& T(r, G)+\bar{N}_{*}\left(r, \frac{1}{G^{(k)}-1}\right)+S(r, f)+S(r, g) \tag{3.7}
\end{align*}
$$

It follows from this and (3.6) that

$$
\begin{aligned}
T(r, F) \leq & (2 k+4) \bar{N}(r, f)+(2 k+3) \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+2 N_{k}\left(r, \frac{1}{F}\right)+ \\
& N_{k}\left(r, \frac{1}{G}\right)+3 \bar{N}\left(r, \frac{1}{F}\right)+2 \bar{N}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
T(r, G) \leq & (2 k+4) \bar{N}(r, g)+(2 k+3) \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+2 N_{k}\left(r, \frac{1}{G}\right)+ \\
& N_{k}\left(r, \frac{1}{F}\right)+3 \bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Therefore, we can obtain

$$
\begin{align*}
T(r, F)+T(r, G) \leq & (4 k+7)[\bar{N}(r, f)+\bar{N}(r, g)]+2\left[N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)\right]+3\left[N_{k}\left(r, \frac{1}{G}\right)+\right. \\
& \left.N_{k}\left(r, \frac{1}{F}\right)\right]+5\left[\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)\right]+S(r, f)+S(r, g) \tag{3.8}
\end{align*}
$$

Note that

$$
\begin{array}{lll}
N_{k+1}\left(r, \frac{1}{F}\right)=(k+1) \bar{N}\left(r, \frac{1}{f}\right), & N_{k}\left(r, \frac{1}{F}\right)=k \bar{N}\left(r, \frac{1}{f}\right), & \bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{f}\right), \\
N_{k+1}\left(r, \frac{1}{G}\right)=(k+1) \bar{N}\left(r, \frac{1}{g}\right), & N_{k}\left(r, \frac{1}{G}\right)=k \bar{N}\left(r, \frac{1}{g}\right), & \bar{N}\left(r, \frac{1}{G}\right)=\bar{N}\left(r, \frac{1}{g}\right),
\end{array}
$$

and from (3.1), we get

$$
n(T(r, f)+T(r, g)) \leq(9 k+14)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

It is impossible since $n>9 k+14$.
If f and g are entire, we can deduce that

$$
n(T(r, f)+T(r, g)) \leq(5 k+7)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

which contradicts $n>5 k+7$.
Thus, it remains to treat the case $H(z) \equiv 0$. Integrating twice results in

$$
\begin{equation*}
\frac{1}{F^{(k)}-1}=A \frac{1}{G^{(k)}-1}+B \tag{3.9}
\end{equation*}
$$

where $A \neq 0, B$ are two constants. It follows that $F^{(k)}$ and $G^{(k)}$ share 1 CM , that is $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share 1 CM. By Theorem C, we obtain the conclusion of Theorem 1. This completes the proof of Theorem 1.

Proof of Theorem 2 Consider $F(z)=f^{n} P(f)$ and $G(z)=g^{n} P(g)$. Thus, $\bar{E}_{l)}\left(1, F^{(k)}\right)=$ $\bar{E}_{l)}\left(1, G^{(k)}\right)$. Clearly, from the standard Valiron-Mohon'ko theorem, we have

$$
\begin{equation*}
T(r, F)=(n+m) T(r, f)+S(r, f), \quad T(r, G)=(n+m) T(r, g)+S(r, g) \tag{4.1}
\end{equation*}
$$

Suppose now $H(z) \not \equiv 0$. By using the argument similar to that of (3.8), since f and g are entire, we can get

$$
\begin{gather*}
T(r, F)+T(r, G) \leq 2\left[N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)\right]+3\left[N_{k}\left(r, \frac{1}{G}\right)+N_{k}\left(r, \frac{1}{F}\right)\right]+ \\
5\left[\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)\right]+S(r, f)+S(r, g) \tag{4.2}
\end{gather*}
$$

Notice

$$
\begin{aligned}
& N_{k+1}\left(r, \frac{1}{F}\right) \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{P(f)}\right) \leq(m+k+1) T(r, f) \\
& N_{k}\left(r, \frac{1}{F}\right) \leq(k+m) T(r, f), \quad \bar{N}\left(r, \frac{1}{F}\right) \leq(1+m) T(r, f)
\end{aligned}
$$

and similar inequalities hold for G, it follows from (4.1) and (4.2) that

$$
(n+m)(T(r, f)+T(r, g)) \leq(6 m+5 k+7)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

It is impossible since $n>5 m+5 k+7$. Thus, we just need to treat the case $H(z) \equiv 0$. By integrating twice, we conclude that $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share 1 CM . Then by using Theorem E, we complete the proof of Theorem 2.

References

[1] BHOOSNURMATH S S, DYAVANAL R S. Uniqueness and value-sharing of meromorphic functions [J]. Comput. Math. Appl., 2007, 53(8): 1191-1205.
[2] FANG Mingliang, HUA Xinhou. Entire functions that share one value [J]. Nanjing Daxue Xuebao Shuxue Bannian Kan, 1996, 13(1): 44-48.
[3] FANG Mingliang. Uniqueness and value-sharing of entire functions [J]. Comput. Math. Appl., 2002, 44(5-6): 823-831.
[4] LI Jindong, LU Qian. Uniqueness of meromorphic functions and differential polynomials sharing one value IM [J]. J. Math. Anal. Appl., 2008, 339(1): 115-124.
[5] HAYMAN W K. Picard values of meromorphic functions and their derivatives [J]. Ann. of Math. (2), 1959, 70: 9-42.
[6] Hayman W., Meromorphic Functions[M], Clarendon Press, Oxford, 1964.
[7] LAINE I. Nevanlinna Theory and Complex Differential Equations [M]. Walter de Gruyter \& Co., Berlin, 1993.
[8] XU Yan. Uniqueness of meromorphic functions sharing one value [J]. Comput. Math. Appl., 2008, 56(10): 2692-2699.
[9] YANG Chungchun, HUA Xinhou. Uniqueness and value-sharing of meromorphic functions [J]. Ann. Acad. Sci. Fenn. Math., 1997, 22(2): 395-406.
[10] YANG Chungchun, YI Hongxun. Uniqueness Theory of Meromorphic Functions [M]. Kluwer, Dordrecht, 2003.
[11] ZHANG Xiaoyu, CHEN Junfan, LIN Weichuan. Entire or meromorphic functions sharing one value [J]. Comput. Math. Appl., 2008, 56(7): 1876-1883.

[^0]: Received October 20, 2009; Accepted April 26, 2010
 Supported by the National Natural Science Foundation of China (Grant Nos. 10871047; J0730103; 11001057).

 * Corresponding author

 E-mail address: 07300180086@fudan.edu.cn (Z. LIU); majwang@fudan.edu.cn (J. WANG)

