Value-Sharing of Meromorphic Functions and Differential Polynomials

Zhen LIU, Jun WANG*

School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China

Abstract This paper is devoted to studying the relationship between meromorphic functions f(z) and g(z) when their differential polynomials satisfy sharing condition weaker than sharing one value IM.

Keywords meromorphic function; uniqueness; sharing value; differential polynomial.

Document code A MR(2010) Subject Classification 30D35 Chinese Library Classification O174.52

1. Introduction and main results

We assume that the reader is familiar with the usual notations and basic results of the Nevanlinna theory [6, 7, 10]. We use S(r, f) to denote any quantity satisfying S(r, f) = o(T(r, f)), as $r \to \infty$, possibly outside of an exceptional set of finite logarithmic measure.

In addition, we also use the following notations. Let a be a finite complex number, and k be a positive integer, we denote by $N_k(r, \frac{1}{f-a})$ the counting function for zeros of f-a with multiplicity no more than k (counting multiplicity), and by $\overline{N}_k(r, \frac{1}{f-a})$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, \frac{1}{f-a})$ be the counting function for zeros of f-a with multiplicity at least k (counting multiplicity), and $\overline{N}_{(k}(r, \frac{1}{f-a})$ be the corresponding one for which multiplicity is not counted. We define

$$N_k(r, \frac{1}{f-a}) = \overline{N}(r, \frac{1}{f-a}) + \overline{N}_{(2)}(r, \frac{1}{f-a}) + \dots + \overline{N}_{(k)}(r, \frac{1}{f-a}).$$

Clearly, $N_1(r, \frac{1}{f-a}) = \overline{N}(r, \frac{1}{f-a}).$

Suppose now that f and g are two non-constant meromorphic functions. We say that f and g share a CM (IM), if f-a and g-a have the same zeros counting multiplicity (ignoring multiplicity). Let z_0 be the zero of f-a with the multiplicity p and the zero of g-a with the multiplicity q. We denote by $\overline{N}_L(r,\frac{1}{f-a})$ the counting function for the zeros of f-a with $p>q\geq 1$; by $\overline{N}_E^{(1)}(r,\frac{1}{f-a})$ the counting function of the zeros of f-a where p=q=1; by $\overline{N}_E^{(2)}(r,\frac{1}{f-a})$ the counting function of the zeros of f-a where $p=q\geq 2$. Each point in these

Received October 20, 2009; Accepted April 26, 2010

Supported by the National Natural Science Foundation of China (Grant Nos. 10871047; J0730103; 11001057).

* Corresponding author

E-mail address: 07300180086@fudan.edu.cn (Z. LIU); majwang@fudan.edu.cn (J. WANG)

736 Z. LIU and J. WANG

counting functions is counted only once. In the same way, we can define $\overline{N}_L(r,\frac{1}{g-a})$, $\overline{N}_E^{(1)}(r,\frac{1}{g-a})$, $\overline{N}_E^{(2)}(r,\frac{1}{g-a})$. We use $\overline{N}_*(r,\frac{1}{f-a})$ to denote the counting function of zeros of f-a but not the zeros of g-a, for which multiplicity is not counted, and we can similarly define $\overline{N}_*(r,\frac{1}{g-a})$.

Let $E_{k}(a, f)$ denote the set of zeros of f - a with multiplicity m no more than k counting m times, and let $\overline{E}_{k}(a, f)$ denote the set of those zeros of f - a with multiplicity no more than k ignoring multiplicity.

Corresponding to one famous question of Hayman [5], Fang and Hua [2], Yang and Hua [9] obtained the following unicity theorem.

Theorem A Let f(z) and g(z) be two nonconstant entire functions, and let $n \ge 6$ be a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1, c_2 and c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$, or f(z) = tg(z) for a constant t such that $t^{n+1} = 1$.

Notice $f^n f' = \frac{1}{n+1} (f^{n+1})'$. Fang [3] considered kth derivative instead of 1st derivative, and proved the following result.

Theorem B Let f(z) and g(z) be two nonconstant entire functions, and n, k be two positive integers with n > 2k+4. If $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 CM, then either $f(z) = c_1e^{cz}$, $g(z) = c_2e^{-cz}$ where c_1, c_2 and c are three constants satisfying $(-1)^k(c_1c_2)^n(nc)^{2k} = 1$, or f(z) = tg(z) for a constant t such that $t^n = 1$.

Recently, Bhoosnurmath and Dyavanal [1] extended Fang's result to the meromorphic functions case.

Theorem C Let f(z) and g(z) be two nonconstant meromorphic functions, and n, k be two positive integers with n > 3k + 8. If $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or f(z) = tg(z) for a constant t such that $t^n = 1$.

Xu [8] improved the above related results by weakening the CM sharing condition, as follows.

Theorem D Let f(z) and g(z) be two nonconstant meromorphic (resp. entire) functions, and n, k be two positive integers with n > 3k + 8 (resp. n > 2k + 4). If $E_{3}(1, (f^n)^{(k)}) = E_{3}(1, (g^n)^{(k)})$, then either f(z) = tg(z) for some nth root of unity t or $f(z) = c_1e^{cz}$, $g(z) = c_2e^{-cz}$ where c_1 , c_2 and c are three constants satisfying $(-1)^k(c_1c_2)^n(nc)^{2k} = 1$.

For some general differential polynomials, Zhang et al. [11] obtained the following result.

Theorem E Let f(z) and g(z) be two nonconstant entire functions; and let n, k and m be three positive integers with $n \geq 3m + 2k + 5$, and let $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$ or $P(z) \equiv c_0$, where $a_0 \neq 0, a_1, \ldots, a_{m-1}, a_m \neq 0, c_0 \neq 0$ are complex constants. If $[f^n P(f)]^{(k)} = [g^n P(g)]^{(k)}$ share 1 CM, then

(i) When $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$, either f(z) = tg(z) for a constant t such that $t^d = 1$, where $d = (n + m, \dots, n + m - i, \dots, n)$, $a_{m-i} \neq 0$ for some $i = 0, 1, \dots, m$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R(w_1, w_2) = w_1^n P(w_1) - w_2^n P(w_2)$;

(ii) When $P(z) \equiv c_0$, either $f(z) = c_1 c_0^{-\frac{1}{n}} e^{cz}$, $g(z) = c_1 c_0^{-\frac{1}{n}} e^{-cz}$ where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or f(z) = tg(z) for a constant t such that $t^n = 1$. When $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 IM, Li and Lu [4] obtained the following theorem.

Theorem F Let f(z) and g(z) be two nonconstant meromorphic functions, and n, k be two positive integers with n > 6k + 14. If $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 IM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or f(z) = tg(z) for a constant t such that $t^n = 1$.

In this paper, we will prove the following uniqueness theorems under weaker sharing condition than sharing one value IM.

Theorem 1 Let f(z) and g(z) be two nonconstant meromorphic (resp. entire) functions, and n, k be two positive integers with n > 9k + 14 (resp. n > 5k + 7). If $\overline{E}_{l)}(1, (f^n)^{(k)}) = \overline{E}_{l)}(1, (g^n)^{(k)})$ with positive integer l, then either f(z) = tg(z) for some nth root of unity t or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1 , c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$.

Theorem 2 Let f(z) and g(z) be two nonconstant entire functions, n, k and m be three positive integers with n > 5m + 5k + 7, and P(z) be defined as in Theorem E. If $\overline{E}_{l}(1, [f^n P(f)]^{(k)}) = \overline{E}_{l}(1, [g^n P(g)]^{(k)})$ with positive integer l, then two conclusions of Theorem E also hold.

2. Preliminary lemmas

Firstly, we recall a few lemmas that play important roles in the reasoning.

Lemma 1 ([10]) Let f(z) be a nonconstant meromorphic function, k be a positive integer, and c be a nonzero finite complex number. Then

$$T(r,f) \le \overline{N}(r,f) + N_{k+1}(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{f^{(k)}-c}) - N_0(r,\frac{1}{f^{(k+1)}}) + S(r,f).$$

Here $N_0(r, \frac{1}{f^{(k+1)}})$ is the counting function which only counts these points such that $f^{(k+1)} = 0$ but $f(f^{(k)} - c) \neq 0$.

Lemma 2 Let f(z) be a nonconstant meromorphic function, and k be a positive integer. Then

$$\overline{N}_{(2)}(r, \frac{1}{f^{(k)} - 1}) \le (k+1)\overline{N}(r, f) + N_k(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{f}) + S(r, f).$$
 (2.1)

Proof Firstly, we have

$$\begin{split} \overline{N}(r,\frac{1}{f^{(k)}}) &\leq \overline{N}(r,\frac{f}{f^{(k)}}) + \overline{N}(r,\frac{1}{f}) \\ &\leq T(r,\frac{f^{(k)}}{f}) + \overline{N}(r,\frac{1}{f}) + S(r,f) \\ &\leq N(r,\frac{f^{(k)}}{f}) + \overline{N}(r,\frac{1}{f}) + S(r,f) \\ &\leq k\overline{N}(r,f) + N_k(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{f}) + S(r,f). \end{split}$$

738 Z. LIU and J. WANG

Next, it is easy to see

$$\begin{split} \overline{N}_{(2}(r, \frac{1}{f^{(k)} - 1}) &\leq \overline{N}(r, \frac{f^{(k)}}{f^{(k+1)}}) \\ &\leq T(r, \frac{f^{(k+1)}}{f^{(k)}}) + S(r, f) \\ &\leq N(r, \frac{f^{(k+1)}}{f^{(k)}}) + S(r, f) \\ &\leq \overline{N}(r, f) + \overline{N}(r, \frac{1}{f^{(k)}}) + S(r, f). \end{split} \tag{2.2}$$

Combining (2.2) with the estimation for $\overline{N}(r, \frac{1}{f^{(k)}})$ yields (2.1). \square

3. Proofs of Theorems

Proof of Theorem 1 Consider $F(z) = f^n$ and $G(z) = g^n$. Since $\overline{E}_{l_l}(1, (f^n)^{(k)}) = \overline{E}_{l_l}(1, (g^n)^{(k)})$, it means that $\overline{E}_{l_l}(1, F^{(k)}) = \overline{E}_{l_l}(1, G^{(k)})$. Clearly, from the standard Valiron-Mohon'ko theorem, we have

$$T(r,F) = nT(r,f) + S(r,f), \quad T(r,G) = nT(r,g) + S(r,g).$$
 (3.1)

We set

$$H(z) = \left(\frac{F^{(k+2)}}{F^{(k+1)}} - 2\frac{F^{(k+1)}}{F^{(k)} - 1}\right) - \left(\frac{G^{(k+2)}}{G^{(k+1)}} - 2\frac{G^{(k+1)}}{G^{(k)} - 1}\right). \tag{3.2}$$

Suppose that $H(z) \not\equiv 0$. Clearly, m(r,H) = S(r,f) + S(r,g). Firstly, a simple computation on local expansions shows that $H(z_0) = 0$ if z_0 is a common simple zero of $F^{(k)} - 1$ and $G^{(k)} - 1$. Then we have

$$\overline{N}_{E}^{(1)}(r, \frac{1}{F^{(k)} - 1}) \le N(r, \frac{1}{H}) \le N(r, H) + S(r, f) + S(r, g). \tag{3.3}$$

The poles of H(z) only come from the zeros of $F^{(k+1)}$ and $G^{(k+1)}$, the poles of f and g, the zeros of $F^{(k)} - 1$ and $G^{(k)} - 1$ with different multiplicity, the zeros of $F^{(k)} - 1$ which are not the zeros of $G^{(k)} - 1$, and the zeros of $G^{(k)} - 1$ but not the zeros of $F^{(k)} - 1$. By analysis, we deduce that

$$N(r,H) \leq \overline{N}(r,f) + \overline{N}(r,g) + \overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + \overline{N}_{L}(r,\frac{1}{F^{(k)}-1}) + \overline{N}_{L}(r,\frac{1}{G^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{F^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{F^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{G^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{G^{(k)}-1$$

where $N_0(r, \frac{1}{F^{(k+1)}})$ only counts those zeros of $F^{(k+1)}$ but not the zeros of F(F-1), and $\overline{N}_0(r, \frac{1}{F^{(k+1)}})$ denotes the corresponding reduced counting function. At the same time, obviously

$$\overline{N}(r, \frac{1}{F^{(k)} - 1}) = \overline{N}_E^{(1)}(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_E^{(2)}(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_L(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_L(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_E(r, \frac{1}{F^{(k)} - 1}).$$

Combining this with (3.3) and (3.4) gives

$$\overline{N}(r,\frac{1}{F^{(k)}-1})$$

$$\leq \overline{N}(r,f) + \overline{N}(r,g) + \overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + 2\overline{N}_{L}(r,\frac{1}{F^{(k)}-1}) + 2\overline{N}_{L}(r,\frac{1}{G^{(k)}-1}) + 2\overline{N}_{L}(r,\frac{1}{G^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{F^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{F^{(k)}-1}) + \overline{N}_{R}(r,\frac{1}{F^{(k)}-1}) + S(r,f) + S(r,g).$$
(3.5)

Since $\overline{E}_{l}(1, F^{(k)}) = \overline{E}_{l}(1, G^{(k)})$, it follows

$$\overline{N}_L(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_*(r, \frac{1}{F^{(k)} - 1}) \le \overline{N}_{(2)}(r, \frac{1}{F^{(k)} - 1}).$$

By Lemma 2.2, we have

$$\overline{N}_{L}(r, \frac{1}{F^{(k)} - 1}) + \overline{N}_{*}(r, \frac{1}{F^{(k)} - 1}) \le (k+1)\overline{N}(r, f) + N_{k}(r, \frac{1}{F}) + \overline{N}(r, \frac{1}{F}) + S(r, f).$$
 (3.6)

The similar inequality also holds for G. Consider the following relation

$$\overline{N}(r, \frac{1}{G^{(k)} - 1}) + \overline{N}_L(r, \frac{1}{G^{(k)} - 1}) + \overline{N}_E^{(2)}(r, \frac{1}{G^{(k)} - 1}) \\
\leq N(r, \frac{1}{G^{(k)} - 1}) \leq T(r, G) + k\overline{N}(r, g) + S(r, g).$$

By Lemma 2.1 and (3.5), we have

$$T(r,F) + T(r,G) \leq \overline{N}(r,f) + \overline{N}(r,g) + N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{F^{(k)}-1}) + \overline{N}(r,\frac{1}{G^{(k)}-1}) - N_0(r,\frac{1}{F^{(k+1)}}) - N_0(r,\frac{1}{G^{(k+1)}}) + S(r,f) + S(r,g)$$

$$\leq 2\overline{N}(r,f) + (k+2)\overline{N}(r,g) + N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{G}) + 2\overline{N}_L(r,\frac{1}{F^{(k)}-1}) + \overline{N}_L(r,\frac{1}{G^{(k)}-1}) + 2\overline{N}_*(r,\frac{1}{F^{(k)}-1}) + T(r,G) + \overline{N}_*(r,\frac{1}{G^{(k)}-1}) + S(r,f) + S(r,g).$$

$$(3.7)$$

It follows from this and (3.6) that

$$T(r,F) \leq (2k+4)\overline{N}(r,f) + (2k+3)\overline{N}(r,g) + N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G}) + 2N_k(r,\frac{1}{F}) + N_k(r,\frac{1}{G}) + 3\overline{N}(r,\frac{1}{F}) + 2\overline{N}(r,\frac{1}{G}) + S(r,f) + S(r,g).$$

Similarly, we have

$$T(r,G) \leq (2k+4)\overline{N}(r,g) + (2k+3)\overline{N}(r,f) + N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G}) + 2N_k(r,\frac{1}{G}) + N_k(r,\frac{1}{F}) + 3\overline{N}(r,\frac{1}{G}) + 2\overline{N}(r,\frac{1}{F}) + S(r,f) + S(r,g).$$

Therefore, we can obtain

$$T(r,F) + T(r,G) \le (4k+7)[\overline{N}(r,f) + \overline{N}(r,g)] + 2[N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G})] + 3[N_k(r,\frac{1}{G}) + N_k(r,\frac{1}{F})] + 5[\overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{F})] + S(r,f) + S(r,g).$$
(3.8)

740 Z. LIU and J. WANG

Note that

$$\begin{split} N_{k+1}(r,\frac{1}{F}) &= (k+1)\overline{N}(r,\frac{1}{f}), \quad N_k(r,\frac{1}{F}) = k\overline{N}(r,\frac{1}{f}), \quad \overline{N}(r,\frac{1}{F}) = \overline{N}(r,\frac{1}{f}), \\ N_{k+1}(r,\frac{1}{G}) &= (k+1)\overline{N}(r,\frac{1}{q}), \quad N_k(r,\frac{1}{G}) = k\overline{N}(r,\frac{1}{q}), \quad \overline{N}(r,\frac{1}{G}) = \overline{N}(r,\frac{1}{q}), \end{split}$$

and from (3.1), we get

$$n(T(r,f) + T(r,g)) \le (9k + 14)(T(r,f) + T(r,g)) + S(r,f) + S(r,g).$$

It is impossible since n > 9k + 14.

If f and g are entire, we can deduce that

$$n(T(r,f) + T(r,g)) \le (5k+7)(T(r,f) + T(r,g)) + S(r,f) + S(r,g),$$

which contradicts n > 5k + 7.

Thus, it remains to treat the case $H(z) \equiv 0$. Integrating twice results in

$$\frac{1}{F^{(k)} - 1} = A \frac{1}{G^{(k)} - 1} + B, (3.9)$$

where $A \neq 0, B$ are two constants. It follows that $F^{(k)}$ and $G^{(k)}$ share 1 CM, that is $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 CM. By Theorem C, we obtain the conclusion of Theorem 1. This completes the proof of Theorem 1. \square

Proof of Theorem 2 Consider $F(z) = f^n P(f)$ and $G(z) = g^n P(g)$. Thus, $\overline{E}_{l)}(1, F^{(k)}) = \overline{E}_{l)}(1, G^{(k)})$. Clearly, from the standard Valiron-Mohon'ko theorem, we have

$$T(r,F) = (n+m)T(r,f) + S(r,f), \quad T(r,G) = (n+m)T(r,g) + S(r,g). \tag{4.1}$$

Suppose now $H(z) \not\equiv 0$. By using the argument similar to that of (3.8), since f and g are entire, we can get

$$T(r,F) + T(r,G) \le 2[N_{k+1}(r,\frac{1}{F}) + N_{k+1}(r,\frac{1}{G})] + 3[N_k(r,\frac{1}{G}) + N_k(r,\frac{1}{F})] + 5[\overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{F})] + S(r,f) + S(r,g).$$

$$(4.2)$$

Notice

$$N_{k+1}(r, \frac{1}{F}) \le (k+1)\overline{N}(r, \frac{1}{f}) + N(r, \frac{1}{P(f)}) \le (m+k+1)T(r, f)$$

 $N_k(r, \frac{1}{F}) \le (k+m)T(r, f), \quad \overline{N}(r, \frac{1}{F}) \le (1+m)T(r, f),$

and similar inequalities hold for G, it follows from (4.1) and (4.2) that

$$(n+m)(T(r,f)+T(r,g)) \le (6m+5k+7)(T(r,f)+T(r,g)) + S(r,f) + S(r,g).$$

It is impossible since n > 5m + 5k + 7. Thus, we just need to treat the case $H(z) \equiv 0$. By integrating twice, we conclude that $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share 1 CM. Then by using Theorem E, we complete the proof of Theorem 2. \square

References

- [1] BHOOSNURMATH S S, DYAVANAL R S. Uniqueness and value-sharing of meromorphic functions [J]. Comput. Math. Appl., 2007, **53**(8): 1191–1205.
- [2] FANG Mingliang, HUA Xinhou. Entire functions that share one value [J]. Nanjing Daxue Xuebao Shuxue Bannian Kan, 1996, **13**(1): 44–48.
- [3] FANG Mingliang. Uniqueness and value-sharing of entire functions [J]. Comput. Math. Appl., 2002, 44(5-6): 823-831.
- [4] LI Jindong, LU Qian. Uniqueness of meromorphic functions and differential polynomials sharing one value IM [J]. J. Math. Anal. Appl., 2008, 339(1): 115–124.
- [5] HAYMAN W K. Picard values of meromorphic functions and their derivatives [J]. Ann. of Math. (2), 1959, 70: 9-42.
- [6] Hayman W., Meromorphic Functions[M], Clarendon Press, Oxford, 1964.
- [7] LAINE I. Nevanlinna Theory and Complex Differential Equations [M]. Walter de Gruyter & Co., Berlin, 1993.
- [8] XU Yan. Uniqueness of meromorphic functions sharing one value [J]. Comput. Math. Appl., 2008, 56(10): 2692–2699.
- [9] YANG Chungchun, HUA Xinhou. Uniqueness and value-sharing of meromorphic functions [J]. Ann. Acad. Sci. Fenn. Math., 1997, 22(2): 395–406.
- [10] YANG Chungchun, YI Hongxun. Uniqueness Theory of Meromorphic Functions [M]. Kluwer, Dordrecht, 2003.
- [11] ZHANG Xiaoyu, CHEN Junfan, LIN Weichuan. Entire or meromorphic functions sharing one value [J]. Comput. Math. Appl., 2008, 56(7): 1876–1883.