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Abstract A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for

every two vertices u, v of V \ D the sets N(u) ∩ D and N(v) ∩ D are non-empty and different.

The locating-domination number γL(G) is the minimum cardinality of an LDS of G, and the

upper-locating domination number ΓL(G) is the maximum cardinality of a minimal LDS of G.

In the present paper, methods for determining the exact values of the upper locating-domination

numbers of cycles are provided.
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1. Introduction

All graphs considered in this paper are finite simple graphs, that is, undirected graphs without

loops or multiple edges. We in general follow [4] for notation and graph theory terminology. Let

G = (V, E) be a simple graph with vertex set V and edge set E. For a vertex v ∈ V , the open

neighborhood N(v) of v consists of the vertices adjacent to v; the closed neighborhood of v is

N [v] = N(v) ∪ {v}. Also, let dG(v) = |N(v)| be the degree of v and δ(G) denote the minimum

degree of graph G.

A set D ⊆ V is a dominating set if every vertex of V \ D has at least one neighbor in

D. The domination number γ(G) is the minimum cardinality of a dominating set in G. A

dominating set D ⊆ V is a locating-dominating set (LDS) if every two vertices u, v of V \ D

satisfy N(u)∩D 6= N(v)∩D. The locating-domination number γL(G) is the minimum cardinality

of an LDS of G, and the upper locating-domination number, denoted by ΓL(G), is the maximum

cardinality of a minimal LDS of G. A minimal LDS with maximum cardinality is called a

ΓL(G)-set. Locating domination was introduced by Slater [5, 6]. For further studies on locating-

domination we refer to [1], [2] and [3].
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So far as we know, no work has been done on the upper locating- domination number, except

for the recent work by Mustapha Chellali, et al [3], in which, the authors presented the exact

value of ΓL(G) for G a path. In this paper, we determine the exact values of ΓL(G) for G a cycle.

2. Upper locating-domination numbers of cycles

The upper locating-domination number of any a path has been given as follows.

Theorem 1 ([3]) For every path Pn,

ΓL(Pn) =































4k, if n = 7k;

4k + 1, if n = 7k + 1 or n = 7k + 2;

4k + 2, if n = 7k + 3 or n = 7k + 4;

4k + 3, if n = 7k + 5;

4k + 4, if n = 7k + 6.

On the basis of Theorem 1, we compute the values of upper locating-domination numbers of

cycles, which is shown as follows.

Theorem 2 For every cycle Cn with n ≥ 4,

ΓL(Cn) =























4k, if n = 7k or n = 7k + 1;

4k + 1, if n = 7k + 2 or n = 7k + 3;

4k + 2, if n = 7k + 4 or n = 7k + 5;

4k + 3, if n = 7k + 6.

To prove Theorem 2, we first give two lemmas as follows.

Lemma 3 For every cycle Cn with n ≥ 4,

ΓL(Cn) ≥























4k, if n = 7k or n = 7k + 1;

4k + 1, if n = 7k + 2 or n = 7k + 3;

4k + 2, if n = 7k + 4 or n = 7k + 5;

4k + 3, if n = 7k + 6.

Proof Suppose Cn = v1v2 · · · vnv1. When n = 7k or n = 7k + 1, let

D =

k−1
⋃

i=0

{v7i+1, v7i+2, v7i+5, v7i+6}.

First, we can easily find that D is an LDS of Cn and |D| = 4k. Also, D is minimal. In fact, for

any a vertex v ∈ D, D \ {v} is no longer an LDS of Cn. This means that ΓL(Cn) ≥ 4k.

When n = 7k + 2 or n = 7k + 3, let

D = {v7k+1} ∪

k−1
⋃

i=0

{v7i+1, v7i+2, v7i+5, v7i+6}.
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It is not hard for us to find that D is a minimal LDS, and |D| = 4k + 1, which means that

ΓL(Cn) ≥ 4k + 1.

When n = 7k + 4, let

D = {v1, v2, v5, v6, v9, v10} ∪

k−1
⋃

i=1

{v7i+5, v7i+6, v7i+9, v7i+10}.

It is not hard for us to verify that D is a minimal LDS, and |D| = 4k + 2, which means that

ΓL(Cn) ≥ 4k + 2.

When n = 7k + 5, we distinguish two cases. If k = 0, it can be easily verified that ΓL(C5) =

2 ≥ 4 · 0 + 2. If k ≥ 1, let

D = {v1, v2, v5, v6, v9, v10} ∪

k−1
⋃

i=1

{v7i+6, v7i+7, v7i+10, v7i+11}.

One can easily verify that D is a minimal LDS, and |D| = 4k + 2, which means that ΓL(Cn) ≥

4k + 2.

When n = 7k + 6, we distinguish two cases. If k = 0, it can be easily verified that ΓL(C6) =

3 ≥ 4 · 0 + 3. If k ≥ 1, let

D = {v1, v2, v5, v6, v8, v9, v12} ∪

k
⋃

i=2

{v7i, v7i+1, v7i+4, v7i+5}.

It is not difficult to find that D is a minimal LDS, and |D| = 4k + 3. This implies that

ΓL(Cn) ≥ 4k + 3. We have finished the proof of Lemma 3. 2

Lemma 4 For every cycle Cn with n ≥ 4, ΓL(Cn) ≤ ΓL(Pn−1).

Proof First we can easily verify that the conclusion of Lemma 4 holds for n ≤ 12. In fact, the

values of ΓL(Cn) for 4 ≤ n ≤ 12 are as follows.

n 4 5 6 7 8 9 10 11 12

ΓL(Cn) 2 2 3 4 4 5 5 6 6

So we may assume that n ≥ 13 in what follows. We claim that every ΓL(Cn)-set contains two

consecutive vertices of Cn. For otherwise, suppose to the contrary that there exists a ΓL(Cn)-set

D such that any two vertices of D are not consecutive. Then |D| ≤ ⌊n
2
⌋. Noticing n ≥ 13, we

can prove, by some simple computations, that

|D| ≤
⌊n

2

⌋

≤























⌊ 7k+1

2
⌋ < 4k, if n = 7k or n = 7k + 1;

⌊ 7k+3

2
⌋ < 4k + 1, if n = 7k + 2 or n = 7k + 3;

⌊ 7k+5

2
⌋ < 4k + 2, if n = 7k + 4 or n = 7k + 5;

⌊ 7k+6

2
⌋ < 4k + 3, if n = 7k + 6.

But this contradicts Lemma 3. Suppose D is a ΓL(Cn)-set, and assume v1, v2 ∈ D without loss

of generality. Noticing that no three consecutive vertices are in D by the minimality of D, we

have vn /∈ D. Let Pn−1 be the path resulting from Cn by removing the vertex vn. Then D is a

minimal LDS of Pn−1, and therefore ΓL(Cn) = |D| ≤ ΓL(Pn−1) as desired. 2
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Proof of Theorem 2 By Theorem 1,

ΓL(Pn−1) =























4k, if n = 7k or n = 7k + 1;

4k + 1, if n = 7k + 2 or n = 7k + 3;

4k + 2, if n = 7k + 4 or n = 7k + 5;

4k + 3, if n = 7k + 6.

Then, Theorem 2 follows from Lemmas 3 and 4. 2
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