# Upper Locating-Domination Numbers of Cycles 

Yan Cai ZHAO ${ }^{1,2, *}$, Er Fang SHAN ${ }^{2}$, Ru Zhao GAO ${ }^{3}$<br>1. Foundation Department, Wuxi City College of Vocational Technology, Jiangsu 214153, P. R. China;<br>2. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China;<br>3. Department of Mathematics and Physics, Bengbu College, Anhui 233030, P. R. China


#### Abstract

A set $D$ of vertices in a graph $G=(V, E)$ is a locating-dominating set (LDS) if for every two vertices $u, v$ of $V \backslash D$ the sets $N(u) \cap D$ and $N(v) \cap D$ are non-empty and different. The locating-domination number $\gamma_{\mathrm{L}}(G)$ is the minimum cardinality of an LDS of $G$, and the upper-locating domination number $\Gamma_{\mathrm{L}}(G)$ is the maximum cardinality of a minimal LDS of $G$. In the present paper, methods for determining the exact values of the upper locating-domination numbers of cycles are provided.


Keywords locating-domination number; upper locating-domination number; cycle.
Document code A
MR(2010) Subject Classification 05C69
Chinese Library Classification O157.5

## 1. Introduction

All graphs considered in this paper are finite simple graphs, that is, undirected graphs without loops or multiple edges. We in general follow [4] for notation and graph theory terminology. Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. For a vertex $v \in V$, the open neighborhood $N(v)$ of $v$ consists of the vertices adjacent to $v$; the closed neighborhood of $v$ is $N[v]=N(v) \cup\{v\}$. Also, let $d_{G}(v)=|N(v)|$ be the degree of $v$ and $\delta(G)$ denote the minimum degree of graph $G$.

A set $D \subseteq V$ is a dominating set if every vertex of $V \backslash D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in $G$. A dominating set $D \subseteq V$ is a locating-dominating set (LDS) if every two vertices $u, v$ of $V \backslash D$ satisfy $N(u) \cap D \neq N(v) \cap D$. The locating-domination number $\gamma_{\mathrm{L}}(G)$ is the minimum cardinality of an LDS of $G$, and the upper locating-domination number, denoted by $\Gamma_{\mathrm{L}}(G)$, is the maximum cardinality of a minimal LDS of $G$. A minimal LDS with maximum cardinality is called a $\Gamma_{\mathrm{L}}(G)$-set. Locating domination was introduced by Slater [5, 6]. For further studies on locatingdomination we refer to [1], [2] and [3].

[^0]So far as we know, no work has been done on the upper locating- domination number, except for the recent work by Mustapha Chellali, et al [3], in which, the authors presented the exact value of $\Gamma_{\mathrm{L}}(G)$ for $G$ a path. In this paper, we determine the exact values of $\Gamma_{\mathrm{L}}(G)$ for $G$ a cycle.

## 2. Upper locating-domination numbers of cycles

The upper locating-domination number of any a path has been given as follows.
Theorem 1 ([3]) For every path $P_{n}$,

$$
\Gamma_{\mathrm{L}}\left(P_{n}\right)= \begin{cases}4 k, & \text { if } n=7 k ; \\ 4 k+1, & \text { if } n=7 k+1 \text { or } n=7 k+2 \\ 4 k+2, & \text { if } n=7 k+3 \text { or } n=7 k+4 \\ 4 k+3, & \text { if } n=7 k+5 ; \\ 4 k+4, & \text { if } n=7 k+6\end{cases}
$$

On the basis of Theorem 1, we compute the values of upper locating-domination numbers of cycles, which is shown as follows.

Theorem 2 For every cycle $C_{n}$ with $n \geq 4$,

$$
\Gamma_{\mathrm{L}}\left(C_{n}\right)= \begin{cases}4 k, & \text { if } n=7 k \text { or } n=7 k+1 \\ 4 k+1, & \text { if } n=7 k+2 \text { or } n=7 k+3 \\ 4 k+2, & \text { if } n=7 k+4 \text { or } n=7 k+5 \\ 4 k+3, & \text { if } n=7 k+6\end{cases}
$$

To prove Theorem 2, we first give two lemmas as follows.
Lemma 3 For every cycle $C_{n}$ with $n \geq 4$,

$$
\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq \begin{cases}4 k, & \text { if } n=7 k \text { or } n=7 k+1 \\ 4 k+1, & \text { if } n=7 k+2 \text { or } n=7 k+3 \\ 4 k+2, & \text { if } n=7 k+4 \text { or } n=7 k+5 \\ 4 k+3, & \text { if } n=7 k+6\end{cases}
$$

Proof Suppose $C_{n}=v_{1} v_{2} \cdots v_{n} v_{1}$. When $n=7 k$ or $n=7 k+1$, let

$$
D=\bigcup_{i=0}^{k-1}\left\{v_{7 i+1}, v_{7 i+2}, v_{7 i+5}, v_{7 i+6}\right\}
$$

First, we can easily find that $D$ is an LDS of $C_{n}$ and $|D|=4 k$. Also, $D$ is minimal. In fact, for any a vertex $v \in D, D \backslash\{v\}$ is no longer an LDS of $C_{n}$. This means that $\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq 4 k$.

When $n=7 k+2$ or $n=7 k+3$, let

$$
D=\left\{v_{7 k+1}\right\} \cup \bigcup_{i=0}^{k-1}\left\{v_{7 i+1}, v_{7 i+2}, v_{7 i+5}, v_{7 i+6}\right\}
$$

It is not hard for us to find that $D$ is a minimal LDS, and $|D|=4 k+1$, which means that $\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq 4 k+1$.

When $n=7 k+4$, let

$$
D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}\right\} \cup \bigcup_{i=1}^{k-1}\left\{v_{7 i+5}, v_{7 i+6}, v_{7 i+9}, v_{7 i+10}\right\}
$$

It is not hard for us to verify that $D$ is a minimal LDS, and $|D|=4 k+2$, which means that $\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq 4 k+2$.

When $n=7 k+5$, we distinguish two cases. If $k=0$, it can be easily verified that $\Gamma_{\mathrm{L}}\left(C_{5}\right)=$ $2 \geq 4 \cdot 0+2$. If $k \geq 1$, let

$$
D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}\right\} \cup \bigcup_{i=1}^{k-1}\left\{v_{7 i+6}, v_{7 i+7}, v_{7 i+10}, v_{7 i+11}\right\}
$$

One can easily verify that $D$ is a minimal LDS, and $|D|=4 k+2$, which means that $\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq$ $4 k+2$.

When $n=7 k+6$, we distinguish two cases. If $k=0$, it can be easily verified that $\Gamma_{\mathrm{L}}\left(C_{6}\right)=$ $3 \geq 4 \cdot 0+3$. If $k \geq 1$, let

$$
D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{8}, v_{9}, v_{12}\right\} \cup \bigcup_{i=2}^{k}\left\{v_{7 i}, v_{7 i+1}, v_{7 i+4}, v_{7 i+5}\right\}
$$

It is not difficult to find that $D$ is a minimal LDS, and $|D|=4 k+3$. This implies that $\Gamma_{\mathrm{L}}\left(C_{n}\right) \geq 4 k+3$. We have finished the proof of Lemma 3 .

Lemma 4 For every cycle $C_{n}$ with $n \geq 4, \Gamma_{\mathrm{L}}\left(C_{n}\right) \leq \Gamma_{\mathrm{L}}\left(P_{n-1}\right)$.
Proof First we can easily verify that the conclusion of Lemma 4 holds for $n \leq 12$. In fact, the values of $\Gamma_{\mathrm{L}}\left(C_{n}\right)$ for $4 \leq n \leq 12$ are as follows.

$$
\begin{array}{cccccccccc}
n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\Gamma_{\mathrm{L}}\left(C_{n}\right) & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 6 & 6
\end{array}
$$

So we may assume that $n \geq 13$ in what follows. We claim that every $\Gamma_{\mathrm{L}}\left(C_{n}\right)$-set contains two consecutive vertices of $C_{n}$. For otherwise, suppose to the contrary that there exists a $\Gamma_{\mathrm{L}}\left(C_{n}\right)$-set $D$ such that any two vertices of $D$ are not consecutive. Then $|D| \leq\left\lfloor\frac{n}{2}\right\rfloor$. Noticing $n \geq 13$, we can prove, by some simple computations, that

$$
|D| \leq\left\lfloor\frac{n}{2}\right\rfloor \leq \begin{cases}\left\lfloor\frac{7 k+1}{2}\right\rfloor<4 k, & \text { if } n=7 k \text { or } n=7 k+1 \\ \left\lfloor\frac{7 k+3}{2}\right\rfloor<4 k+1, & \text { if } n=7 k+2 \text { or } n=7 k+3 \\ \left\lfloor\frac{7 k+5}{2}\right\rfloor<4 k+2, & \text { if } n=7 k+4 \text { or } n=7 k+5 \\ \left\lfloor\frac{7 k+6}{2}\right\rfloor<4 k+3, & \text { if } n=7 k+6\end{cases}
$$

But this contradicts Lemma 3. Suppose $D$ is a $\Gamma_{\mathrm{L}}\left(C_{n}\right)$-set, and assume $v_{1}, v_{2} \in D$ without loss of generality. Noticing that no three consecutive vertices are in $D$ by the minimality of $D$, we have $v_{n} \notin D$. Let $P_{n-1}$ be the path resulting from $C_{n}$ by removing the vertex $v_{n}$. Then $D$ is a minimal LDS of $P_{n-1}$, and therefore $\Gamma_{\mathrm{L}}\left(C_{n}\right)=|D| \leq \Gamma_{\mathrm{L}}\left(P_{n-1}\right)$ as desired.

Proof of Theorem 2 By Theorem 1,

$$
\Gamma_{\mathrm{L}}\left(P_{n-1}\right)= \begin{cases}4 k, & \text { if } n=7 k \text { or } n=7 k+1 \\ 4 k+1, & \text { if } n=7 k+2 \text { or } n=7 k+3 \\ 4 k+2, & \text { if } n=7 k+4 \text { or } n=7 k+5 \\ 4 k+3, & \text { if } n=7 k+6\end{cases}
$$

Then, Theorem 2 follows from Lemmas 3 and 4 .

## References

[1] BLIDIA M, CHELLALI M, MAFFRAY F, et al. Locating-domination and identifying codes in trees [J]. Australas. J. Combin., 2007, 39: 219-232.
[2] BLIDIA M, FAVARON O, LOUNES R. Locating-domination, 2-domination and independence in trees [J]. Australas. J. Combin., 2008, 42: 309-316.
[3] CHELLALI M, MIMOUNI M, SLATER P J. On locating-domination in graphs [J]. Discuss. Math. Graph Theory, 2010, 30(2): 223-235.
[4] HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of Domination in Graphs [M]. Marcel Dekker, New York, 1998.
[5] SLATER P J. Domination and location in acyclic graphs [J]. Networks, 1987, 17: 55-64.
[6] SLATER P J. Dominating and reference sets in graphs [J]. J. Math. Phys. Sci., 1998, 22: 445-455.


[^0]:    Received November 22, 2009; Accepted April 22, 2011
    Supported by the National Natural Science Foundation of China (Grant No. 60773078) and the Natural Science Foundation of Anhui Provincial Education Department (No. KJ2011B090).

    * Corresponding author

    E-mail address: zhaoyc69@126.com (Y. C. ZHAO)

