Upper Locating-Domination Numbers of Cycles

Yan Cai ZHAO^{1,2,*}, Er Fang SHAN², Ru Zhao GAO³

1. Foundation Department, Wuxi City College of Vocational Technology, Jiangsu 214153, P. R. China;

2. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China;

3. Department of Mathematics and Physics, Bengbu College, Anhui 233030, P. R. China

Abstract A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for every two vertices u, v of $V \setminus D$ the sets $N(u) \cap D$ and $N(v) \cap D$ are non-empty and different. The locating-domination number $\gamma_{\mathrm{L}}(G)$ is the minimum cardinality of an LDS of G, and the upper-locating domination number $\Gamma_{\mathrm{L}}(G)$ is the maximum cardinality of a minimal LDS of G. In the present paper, methods for determining the exact values of the upper locating-domination numbers of cycles are provided.

Keywords locating-domination number; upper locating-domination number; cycle.

Document code A MR(2010) Subject Classification 05C69 Chinese Library Classification 0157.5

1. Introduction

All graphs considered in this paper are finite simple graphs, that is, undirected graphs without loops or multiple edges. We in general follow [4] for notation and graph theory terminology. Let G = (V, E) be a simple graph with vertex set V and edge set E. For a vertex $v \in V$, the open neighborhood N(v) of v consists of the vertices adjacent to v; the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. Also, let $d_G(v) = |N(v)|$ be the degree of v and $\delta(G)$ denote the minimum degree of graph G.

A set $D \subseteq V$ is a dominating set if every vertex of $V \setminus D$ has at least one neighbor in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. A dominating set $D \subseteq V$ is a locating-dominating set (LDS) if every two vertices u, v of $V \setminus D$ satisfy $N(u) \cap D \neq N(v) \cap D$. The locating-domination number $\gamma_L(G)$ is the minimum cardinality of an LDS of G, and the upper locating-domination number, denoted by $\Gamma_L(G)$, is the maximum cardinality of a minimal LDS of G. A minimal LDS with maximum cardinality is called a $\Gamma_L(G)$ -set. Locating domination was introduced by Slater [5, 6]. For further studies on locating-domination we refer to [1], [2] and [3].

* Corresponding author

Received November 22, 2009; Accepted April 22, 2011

Supported by the National Natural Science Foundation of China (Grant No. 60773078) and the Natural Science Foundation of Anhui Provincial Education Department (No. KJ2011B090).

E-mail address: zhaoyc69@126.com (Y. C. ZHAO)

So far as we know, no work has been done on the upper locating- domination number, except for the recent work by Mustapha Chellali, et al [3], in which, the authors presented the exact value of $\Gamma_{\rm L}(G)$ for G a path. In this paper, we determine the exact values of $\Gamma_{\rm L}(G)$ for G a cycle.

2. Upper locating-domination numbers of cycles

The upper locating-domination number of any a path has been given as follows.

Theorem 1 ([3]) For every path P_n ,

$$\Gamma_{\rm L}(P_n) = \begin{cases} 4k, & \text{if } n = 7k; \\ 4k+1, & \text{if } n = 7k+1 \text{ or } n = 7k+2; \\ 4k+2, & \text{if } n = 7k+3 \text{ or } n = 7k+4; \\ 4k+3, & \text{if } n = 7k+5; \\ 4k+4, & \text{if } n = 7k+6. \end{cases}$$

On the basis of Theorem 1, we compute the values of upper locating-domination numbers of cycles, which is shown as follows.

Theorem 2 For every cycle C_n with $n \ge 4$,

$$\Gamma_{\rm L}(C_n) = \begin{cases} 4k, & \text{if } n = 7k \text{ or } n = 7k+1; \\ 4k+1, & \text{if } n = 7k+2 \text{ or } n = 7k+3; \\ 4k+2, & \text{if } n = 7k+4 \text{ or } n = 7k+5; \\ 4k+3, & \text{if } n = 7k+6. \end{cases}$$

To prove Theorem 2, we first give two lemmas as follows.

Lemma 3 For every cycle C_n with $n \ge 4$,

$$\Gamma_{\rm L}(C_n) \ge \begin{cases} 4k, & \text{if } n = 7k \text{ or } n = 7k+1; \\ 4k+1, & \text{if } n = 7k+2 \text{ or } n = 7k+3; \\ 4k+2, & \text{if } n = 7k+4 \text{ or } n = 7k+5; \\ 4k+3, & \text{if } n = 7k+6. \end{cases}$$

Proof Suppose $C_n = v_1 v_2 \cdots v_n v_1$. When n = 7k or n = 7k + 1, let

$$D = \bigcup_{i=0}^{k-1} \{ v_{7i+1}, v_{7i+2}, v_{7i+5}, v_{7i+6} \}.$$

First, we can easily find that D is an LDS of C_n and |D| = 4k. Also, D is minimal. In fact, for any a vertex $v \in D$, $D \setminus \{v\}$ is no longer an LDS of C_n . This means that $\Gamma_L(C_n) \ge 4k$.

When n = 7k + 2 or n = 7k + 3, let

$$D = \{v_{7k+1}\} \cup \bigcup_{i=0}^{k-1} \{v_{7i+1}, v_{7i+2}, v_{7i+5}, v_{7i+6}\}.$$

It is not hard for us to find that D is a minimal LDS, and |D| = 4k + 1, which means that $\Gamma_{\rm L}(C_n) \ge 4k + 1$.

When n = 7k + 4, let

$$D = \{v_1, v_2, v_5, v_6, v_9, v_{10}\} \cup \bigcup_{i=1}^{k-1} \{v_{7i+5}, v_{7i+6}, v_{7i+9}, v_{7i+10}\}.$$

It is not hard for us to verify that D is a minimal LDS, and |D| = 4k + 2, which means that $\Gamma_{\rm L}(C_n) \ge 4k + 2$.

When n = 7k + 5, we distinguish two cases. If k = 0, it can be easily verified that $\Gamma_L(C_5) = 2 \ge 4 \cdot 0 + 2$. If $k \ge 1$, let

$$D = \{v_1, v_2, v_5, v_6, v_9, v_{10}\} \cup \bigcup_{i=1}^{k-1} \{v_{7i+6}, v_{7i+7}, v_{7i+10}, v_{7i+11}\}.$$

One can easily verify that D is a minimal LDS, and |D| = 4k + 2, which means that $\Gamma_{\rm L}(C_n) \ge 4k + 2$.

When n = 7k + 6, we distinguish two cases. If k = 0, it can be easily verified that $\Gamma_L(C_6) = 3 \ge 4 \cdot 0 + 3$. If $k \ge 1$, let

$$D = \{v_1, v_2, v_5, v_6, v_8, v_9, v_{12}\} \cup \bigcup_{i=2}^k \{v_{7i}, v_{7i+1}, v_{7i+4}, v_{7i+5}\}.$$

It is not difficult to find that D is a minimal LDS, and |D| = 4k + 3. This implies that $\Gamma_{\rm L}(C_n) \ge 4k + 3$. We have finished the proof of Lemma 3. \Box

Lemma 4 For every cycle C_n with $n \ge 4$, $\Gamma_L(C_n) \le \Gamma_L(P_{n-1})$.

Proof First we can easily verify that the conclusion of Lemma 4 holds for $n \leq 12$. In fact, the values of $\Gamma_{\rm L}(C_n)$ for $4 \leq n \leq 12$ are as follows.

So we may assume that $n \ge 13$ in what follows. We claim that every $\Gamma_{\rm L}(C_n)$ -set contains two consecutive vertices of C_n . For otherwise, suppose to the contrary that there exists a $\Gamma_{\rm L}(C_n)$ -set D such that any two vertices of D are not consecutive. Then $|D| \le \lfloor \frac{n}{2} \rfloor$. Noticing $n \ge 13$, we can prove, by some simple computations, that

$$|D| \le \left\lfloor \frac{n}{2} \right\rfloor \le \begin{cases} \left\lfloor \frac{7k+1}{2} \right\rfloor < 4k, & \text{if } n = 7k \text{ or } n = 7k+1; \\ \left\lfloor \frac{7k+3}{2} \right\rfloor < 4k+1, & \text{if } n = 7k+2 \text{ or } n = 7k+3; \\ \left\lfloor \frac{7k+5}{2} \right\rfloor < 4k+2, & \text{if } n = 7k+4 \text{ or } n = 7k+5; \\ \left\lfloor \frac{7k+6}{2} \right\rfloor < 4k+3, & \text{if } n = 7k+6. \end{cases}$$

But this contradicts Lemma 3. Suppose D is a $\Gamma_{\mathrm{L}}(C_n)$ -set, and assume $v_1, v_2 \in D$ without loss of generality. Noticing that no three consecutive vertices are in D by the minimality of D, we have $v_n \notin D$. Let P_{n-1} be the path resulting from C_n by removing the vertex v_n . Then D is a minimal LDS of P_{n-1} , and therefore $\Gamma_{\mathrm{L}}(C_n) = |D| \leq \Gamma_{\mathrm{L}}(P_{n-1})$ as desired. \Box Proof of Theorem 2 By Theorem 1,

$$\Gamma_{\rm L}(P_{n-1}) = \begin{cases} 4k, & \text{if } n = 7k \text{ or } n = 7k+1; \\ 4k+1, & \text{if } n = 7k+2 \text{ or } n = 7k+3; \\ 4k+2, & \text{if } n = 7k+4 \text{ or } n = 7k+5; \\ 4k+3, & \text{if } n = 7k+6. \end{cases}$$

Then, Theorem 2 follows from Lemmas 3 and 4. \Box

.

References

- BLIDIA M, CHELLALI M, MAFFRAY F, et al. Locating-domination and identifying codes in trees [J]. Australas. J. Combin., 2007, 39: 219–232.
- BLIDIA M, FAVARON O, LOUNES R. Locating-domination, 2-domination and independence in trees [J]. Australas. J. Combin., 2008, 42: 309–316.
- [3] CHELLALI M, MIMOUNI M, SLATER P J. On locating-domination in graphs [J]. Discuss. Math. Graph Theory, 2010, 30(2): 223–235.
- [4] HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of Domination in Graphs [M]. Marcel Dekker, New York, 1998.
- [5] SLATER P J. Domination and location in acyclic graphs [J]. Networks, 1987, 17: 55–64.
- [6] SLATER P J. Dominating and reference sets in graphs [J]. J. Math. Phys. Sci., 1998, 22: 445–455.