Journal of Mathematical Research & Exposition Sept., 2011, Vol. 31, No. 5, pp. 770–780 DOI:10.3770/j.issn:1000-341X.2011.05.002 Http://jmre.dlut.edu.cn

Moore-Smith Convergence in *L*-Fuzzifying Topological Spaces

Wei $YAO^{1,2,*}$, Ling Xia LU^3

1. College of Mathematics and Information Science, Shaanxi Normal University,

Shaanxi 710062, P. R. China;

2. College of Science, Hebei University of Science and Technology, Hebei 050018, P. R. China;

3. School of Mathematics and Science, Shijiazhuang University of Economics,

Hebei 050031, P. R. China

Abstract This paper presents a definition of L-fuzzifying nets and the related L-fuzzifying generalized convergence spaces. The Moore-Smith convergence is established in L-fuzzifying topology. It is shown that the category of L-fuzzifying generalized convergence spaces is a cartesianclosed topological category which embeds the category of L-fuzzifying topological spaces as a reflective subcategory.

Keywords *L*-fuzzifying topology; *L*-fuzzifying filter; *L*-fuzzifying net; *L*-fuzzifying generalized convergence space; topological category; cartesian-closed.

Document code A MR(2010) Subject Classification 54A40 Chinese Library Classification 0189.1

1. Introduction and preliminaries

Convergence of filters and nets, called the Moore-Smith convergence, is an important topic in general topology. For convenience, sometimes we use filters and sometimes use nets to define and study convergence in topology since there is a close relation between them.

In L-topology theory, the Moore-Smith convergence theory had been completely established by Pu and Liu in [1] by means of L-fuzzy nets and L-fuzzy filters (of crisp degree). Analogously, in L-fuzzifying topology [2], in order to study convergence structures, L-fuzzifying filters or L-fuzzifying nets should be used. While there is no proper definition of L-fuzzifying nets corresponding to L-fuzzifying filters in fuzzy set theory.

The aim of this paper is to give a definition of L-fuzzifying nets corresponding to L-fuzzifying filters and then to establish the Moore-Smith convergence in L-fuzzifying topology. This paper is arranged as follows. In the rest of this section, we recall some materials which will be used

* Corresponding author

Received April 14, 2010; Accepted April 18, 2011

Supported by National Natural Science Foundation of China (Grant No. 10926055), the Foundation of Hebei Province (Grant Nos. A2010000826; Z2010297) and Foundation of Shijiazhuang University of Economics (Grant No. XN201003).

E-mail address: yaowei0516@163.com (W. YAO); lulingxia1214@gmail.com (L. X. LU)

throughout this paper. In Section 2, we give definitions of L-fuzzifying filters and L-fuzzifying nets and then study the Moore-Smith convergence in L-fuzzifying topology. In Section 3, we define an L-fuzzifying generalized convergence spaces and show that the resulting category L-FYGConv embeds the category of L-fuzzifying topological spaces as a reflective category. In Section 4, we show that L-FYGConv is a cartesian-closed topological category.

In the following, we will list some preliminaries which are used in this paper.

An element a of a lattice is called \wedge -irreducible if $a = b \wedge c$ always implies a = b or a = c for any elements b, c. A lattice with a \wedge -irreducible button 0 is called 0- \wedge -inaccessible. For example, the unit interval [0, 1] is such a lattice. A DeMorgan algebra is a complete lattice equipped with an order-reversing involution.

A complete lattice L is a frame or a complete Heyting algebra if the binary meets are distributive over arbitrary joins, i.e., $a \land (\bigvee_i b_i) = \bigvee_i (a \land b_i)$ holds for all $a, b_i (i \in I) \in L$. For a frame L, an implicative operator $\rightarrow : L \times L \longrightarrow L$ can be defined as $a \rightarrow b = \bigvee\{c \in L | a \land c \leq b\}$ ($\forall a, b \in L$). Then for any $a, b, c \in L$, $a \land c \leq b \iff c \leq a \rightarrow b$. A frame is called spatial if it is generated by all \land -irreducible elements, that is, any element is the meets of all \land -irreducible elements less than or equal to it. Properties of frames can be found in many literatures, e.g. [3].

In this paper, L is always assumed to be a $0 - \wedge$ irreducible frame. We put $L_0 = L - \{0\}$.

2. L-fuzzifying filters, L-fuzzifying nets and their Moore-Smith convergence

Definition 1 ([4]) We call a map $\mathcal{F}: 2^X \longrightarrow L$ an L-fuzzifying filter on X if

- $(LF1) \ \mathcal{F}(\emptyset) = 0, \mathcal{F}(X) = 1;$
- (LF2) $\mathcal{F}(A \cap B) = \mathcal{F}(A) \wedge \mathcal{F}(B).$

An *L*-fuzzyfying topology on a set *X* is a map $\tau : 2^X \longrightarrow L$ satisfying that (1) $\tau(\emptyset) = \tau(X) = 1$; (2) $\tau(A \cap B) \ge \tau(A) \land \tau(B)$; (3) $\tau(\bigcup_i A_i) \ge \bigwedge_i \tau(A_i)$. The pair (X, τ) is called an *L*-fuzzifying topological space [2]. A map $f : (X, \tau_X) \longrightarrow (Y, \tau_Y)$ between two *L*-fuzzifying topological spaces is called continuous if $\tau_X(f^{-1}(B)) \ge \tau_Y(B)$ for all $B \subseteq Y$. Let *L*-FYS denote the category of all *L*-fuzzifying topological spaces with continuous maps as morphisms.

Let $\tau : L^X \longrightarrow L$ be an *L*-fuzzifying topology and $x \in X$. Define $\mathcal{N}^x_{\tau}(A) = \bigvee_{x \in B \subseteq A} \tau(B)$. Then \mathcal{N}^x_{τ} is an *L*-fuzzifying filter, which is the neighborhood filter in [5].

Definition 2 For a directed set Δ , we call a map $\xi = (p, v) : \Delta \longrightarrow X \times L_0$ an L-fuzzifying net on X if

(LN1) $\bigvee_{d \in \Delta} v(d) = 1;$

(LN2) For any $d_1, d_2 \in \Delta$, there exists an upper bound d of d_1, d_2 such that $v(d_1) \wedge v(d_2) \leq v(d)$.

For L = 2, an L-fuzzifying net is just an ordinary net. Let $\xi = (p, v) : \Delta \longrightarrow X \times L_0$ be an L-fuzzifying net. We call ξ an L-fuzzifying net of crisp degree if $v \equiv 1$. We call ξ a constant net if $p : \Delta \longrightarrow X$ is a constant map with a value x and $v \equiv 1$, and in this case, ξ is also denoted by \overline{x} .

We denote the set of all L-fuzzifying filters (resp., nets) on a set X by $\mathbb{F}(X)$ (resp., $\mathbb{N}(X)$).

Let $\xi = (p_1, v_1) : D \longrightarrow X \times L_0, \eta = (p_2, v_2) : E \longrightarrow X \times L_0$ be two *L*-fuzzifying nets. We call η a subnet of ξ if there is a map $j : E \longrightarrow D$ satisfying that $p_2 = p_1 \circ j, v_2 = v_1 \circ j$ and for each $d \in D$, there exists an $e_0 \in E$ such that $v_2(e_0) \ge v_1(d)$ and $j(e) \ge d$ for all $e \ge e_0$.

Proposition 1 (1) Let $f : X \longrightarrow Y$ be a map and $\xi = (p, v) \in \mathbb{N}(X)$, $\mathcal{F} \in \mathbb{F}(X)$. Define $f(\xi) = (f \circ p, v) : \Delta \longrightarrow Y \times L_0$ and for all $B \subseteq Y$, $f(\mathcal{F})(B) = \mathcal{F}(f^{-1}(B))$, then $f(\xi) \in \mathbb{N}(Y)$, $f(\mathcal{F}) \in \mathbb{F}(Y)$.

(2) Let $f: X \longrightarrow Y$ be a map and ξ, η be two L-fuzzifying nets of X. If η is a subnet of ξ , then $f(\eta)$ is a subnet of $f(\xi)$.

Proof Straightforward. \Box

Definition 3 Suppose that $\xi = (p, v) : D \longrightarrow X \times L_0$ is an *L*-fuzzifying net on *X*. Define $\mathcal{F}_{\xi}(A) = \bigvee \{v(d) | \forall e \geq d, \ p(e) \in A\}$, which can be considered as the degree for ξ eventually belonging to *A*.

Proposition 2 \mathcal{F}_{ξ} is an *L*-fuzzifying filter.

Proof (a) $\mathcal{F}_{\xi}(0_X) = \bigvee \emptyset = 0$, $\mathcal{F}_{\xi}(X) = \bigvee d \in \Delta v(d) = 1$. (b) Obviously, \mathcal{F}_{ξ} is order-preserving. For any $A, B \in L^X$,

$$\begin{aligned} \mathcal{F}_{\xi}(A) \wedge \mathcal{F}_{\xi}(B) &= \bigvee \{ v(d_1) | \ \forall e \ge d_1, \ p(e) \in A \} \wedge \bigvee \{ v(d_2) | \ \forall e \ge d_2, \ p(e) \in B \} \\ &= \bigvee \{ v(d_1) \wedge v(d_2) | \ \forall e_1 \ge d_1, \forall e_2 \ge d_2, \ p(e_1) \in A, p(e_2) \in B \} \\ &\le \bigvee \{ v(d) | \ \forall e \ge d, \ p(e) \in A \cap B \} = \mathcal{F}_{\xi}(A \cap B). \ \Box \end{aligned}$$

Proposition 3 If $\eta = (p_2, v_2) : E \longrightarrow X \times L_0$ is a subnet of $\xi = (p_1, v_1) : D \longrightarrow X \times L_0$, then $\mathcal{F}_{\xi} \leq \mathcal{F}_{\eta}$.

Proof For $A \subseteq X$, suppose that $d \in D$ satisfying that $p_1(d_1) \in A$ for all $d_1 \geq d$. Since η is a subnet of ξ , there is a map $j : E \longrightarrow D$ satisfying that $p_2 = p_1 \circ j$, $v_2 = v_1 \circ j$ and for this d, there exists an $e_0 \in E$ such that $v_2(e_0) \geq v_1(d)$, $j(e) \geq d$ and $p_2(e) = p_1(j(e)) \in A$ for all $e \geq e_0$. By $v_2(e_0) \geq v_1(d)$, we have $\mathcal{F}_{\xi} \leq \mathcal{F}_{\eta}$. \Box

Proposition 4 Let $f: X \longrightarrow Y$ be a map. For every *L*-fuzzifying net ξ on a set X, $\mathcal{F}_{f(\xi)} = f(\mathcal{F}_{\xi})$.

Proof For every $A \subseteq X$, we have

$$\mathcal{F}_{f(\xi)}(A) = \bigvee \{ v(d) | \ \forall e \ge d, \ f(p(e)) \in A \} = \bigvee \{ v(d) | \ \forall e \ge d, \ p(e) \in f^{-1}(A) \} \\ = \mathcal{F}_{\xi}(f^{-1}(A)) = f(\mathcal{F}_{\xi})(A).$$

For \mathcal{F} an *L*-fuzzifying filter on *X*, put $\mathcal{F}^+ = \{A \subseteq X | \mathcal{F}(A) \in L_0\}$ and $\Delta_{\mathcal{F}} = \{(x, A) | x \in A \in \mathcal{F}^+\}$. Define a relation \prec on $\Delta_{\mathcal{F}}$ as $(x, A) \prec (y, B)$ iff $B \subseteq A$. Define $\xi_{\mathcal{F}} = (p_{\mathcal{F}}, v_{\mathcal{F}}) : \Delta_{\mathcal{F}} \longrightarrow X \times L_0$ by $(x, A) \mapsto (x, \mathcal{F}(A))$. \Box

Proposition 5 $\xi_{\mathcal{F}}$ is an *L*-fuzzifying net.

Proof (1) $\Delta_{\mathcal{F}}$ is a direct set. For $(x, A), (y, B) \in \Delta_{\mathcal{F}}$, we have $\mathcal{F}(A), \mathcal{F}(B) \neq 0$ and then $\mathcal{F}(A \cap B) = \mathcal{F}(A) \wedge \mathcal{F}(B) \neq 0$. Then $A \cap B \neq 0$ and there exists $z \in A \cap B$. Thus $(x, A), (y, B) \prec (z, A \cap B) \in \Delta_{\mathcal{F}}$.

(2) $\xi_{\mathcal{F}}$ is an *L*-fuzzifying net. (LN1) $\bigvee_{(x,A)\in\Delta_{\mathcal{F}}} v_{\mathcal{F}}(x,A) \geq \mathcal{F}(X) = 1$. (LN2) For $(x,A), (y,B)\in\Delta_{\mathcal{F}}$, then $(z,A\cap B)$ is an upper bound of (x,A), (y,B). $v_{\mathcal{F}}(x,A)\wedge v_{\mathcal{F}}(y,B) = \mathcal{F}(A)\wedge\mathcal{F}(B) = \mathcal{F}(A\cap B) = v_{\mathcal{F}}(z,A\cap B)$. \Box

Proposition 6 For every *L*-fuzzifying filter \mathcal{F} on a set $X, \mathcal{F}_{\xi_{\mathcal{F}}} = \mathcal{F}$.

Proof Let $A \subseteq X$. If $\mathcal{F}(A) \neq 0$, then $A \neq \emptyset$. Choose $x \in A$, we have $(x, \mathcal{F}(A)) \in \Delta_{\mathcal{F}}$. For any $(y, B) \in \Delta_{\mathcal{F}}$ with $(y, B) \succ (x, A)$, we have $\xi_{\mathcal{F}}(y, B) = y \in B \subseteq A$. Thus $v_{\mathcal{F}}(x, \mathcal{F}(A)) =$ $\mathcal{F}(A) \in P(\mathcal{F}, A)$ and $\mathcal{F}_{\xi_{\mathcal{F}}}(A) \geq \mathcal{F}(A)$. Conversely, for any $(x, B) \in \Delta_{\mathcal{F}}$, $p_{\mathcal{F}}(y, C) = y \in A$ for any $(y, C) \succ (x, B)$. For $z \in B$, we have $(z, B) \in \Delta_{\mathcal{F}}$ and $(z, B) \succ (x, B)$, then $z \in A$. Then $B \subseteq A$. Hence $v_{\mathcal{F}}(x, B) = \mathcal{F}(B) \leq \mathcal{F}(A)$. Consequently we have $\mathcal{F}_{\xi_{\mathcal{F}}}(A) \leq \mathcal{F}(A)$. \Box

In the rest of this paper, we assume that L has an order-reversing involution *. For any L-fuzzifying topological space (X, τ) , define $cl : 2^X \longrightarrow L^X$ by $cl(A)(x) = (\mathcal{N}^x_{\tau}(A'))^*$. This is a special case of the closure operator cl in [6] (see Theorem 5.3).

Define $L_f : \mathbb{F}(X) \times X \longrightarrow L$ by $L_f(\mathcal{F}, x) = \bigwedge_{A \in L^X} \operatorname{cl}(A)(x) \vee \mathcal{F}(A')$ and $L_n : \mathbb{N}(X) \times X \longrightarrow L$ by $L_n(\xi, x) = L_f(\mathcal{F}_{\xi}, x)$. The value $L_f(\mathcal{F}, x)$ (resp., $L_n(\xi, x)$) can be considered as the degree of x to be a limit point of \mathcal{F} (resp., ξ). By Proposition 6, we have $L_n(\xi_{\mathcal{F}}, x) = L_f(\mathcal{F}, x)$.

Remark 1 In a crisp topological space (X, T), a filter \mathcal{F} is convergent to a point x iff $\mathcal{U}(x) \subseteq \mathcal{F}$ [7]. In fact, we can show that $\mathcal{U}(x) \subseteq \mathcal{F}$ iff for any $A \subseteq X$, $x \in A^-$ or $A' \in \mathcal{F}$. Thus L_f, L_n are generalizations of classical convergence in crisp topology.

Proof Suppose that $\mathcal{U}(x) \subseteq \mathcal{F}$. For $A \subseteq X$, if $A' \notin \mathcal{F}$, then $A' \notin \mathcal{U}(x)$. For all $U \in \mathcal{U}(x)$, if $U \cap A = \emptyset$, then $U \subseteq A'$, which implies that $A' \in \mathcal{U}(x)$, which is a contradiction to $A' \notin \mathcal{U}(x)$. Hence $x \in A^-$. Conversely, for any open neighborhood U of x, if $U = (U')' \notin \mathcal{F}$, then $x \in U'^- = U'$ (notice that U is open and U' is closed), which is a contradiction to $U \in \mathcal{U}(x)$.

We define $C_f : \mathbb{F}(X) \times X \longrightarrow L$ by $C_f(\mathcal{F}, x) = \bigwedge_{A \in X} \operatorname{cl}(A)(x) \vee (\mathcal{F}(A))^*$ and $C_n : \mathbb{N}(X) \times X \longrightarrow L$ by $C_n(\xi, x) = C_f(\mathcal{F}_{\xi}, x)$. The value $C_f(\mathcal{F}, x)$ (resp., $C_n(\xi, x)$) can be considered as the degree of x to be a cluster point of \mathcal{F} (resp., ξ). By Proposition 6, $C_n(\xi_{\mathcal{F}}, x) = C_f(\mathcal{F}, x)$. \Box

Remark 2 In a crisp topological space $(X, T), x \in X$ is a cluster point of a filter \mathcal{F} iff for all $A \in \mathcal{F}, x \in A^-$ (see [7]). Thus C_f, C_n are generalizations of cluster in crisp topology.

Proposition 7 For every $\mathcal{F} \in \mathbb{F}(\mathbb{X}), \xi \in \mathbb{N}(\mathbb{X})$ and $x \in X$, we have $L_f(\mathcal{F}, \S) \leq C_{\{}(\mathcal{F}, \S), L_n(\xi, x) \leq C_n(\xi, x).$

Proof We only need to show $L_f \leq C_f$ or just $\mathcal{F}_{\xi}(A') \leq (\mathcal{F}_{\xi}(A))^*$. If $(\mathcal{F}_{\xi}(A))^* \neq 1$, then $\mathcal{F}_{\xi}(A) \neq 0$. While $\mathcal{F}_{\xi}(A') \wedge \mathcal{F}_{\xi}(A) = \mathcal{F}_{\xi}(A' \cap A) = 0$, then $\mathcal{F}_{\xi}(A') = 0$ since L is $0 \wedge -i$ rreducible. \Box

For any *L*-fuzzifying topology τ on *X* and *p* a \wedge -irreducible element of *L*, it is easy to check that the family $\tau_{(p)} = \{A \subseteq X | \tau(A) \not\leq p\}$ is a crisp topology on *X*. In a topological space (X,T), for $x \in X$, $A \subseteq X$, we have $x \in A^-$ if and only if $U \cap A \neq \emptyset$ for any $U \in \mathcal{U}(x)$ (see [7]). Let $\mathcal{U}(x)$ be the neighborhood system of *x*. If $x \in A^-$, then there exists a net $\xi : \mathcal{U}(x) \longrightarrow X$ such that for any $U \in \mathcal{U}(x)$, $\xi(U) \in A \cap U$. We denote such a net by $\xi_{\mathcal{U}(x)}$.

Let $\xi = (p, v) : D \longrightarrow X \times L_0$ be an *L*-fuzzifying net and $A \subseteq X$. For a notation $\xi \subseteq A$, we mean $p(d) \in A$ for all $d \in D$. We also denote by $\mathbb{N}^c(X)$ the set of all *L*-fuzzifying nets of crisp degree on X.

We now give the main results of this section.

Theorem 1 Suppose that L is a spatial frame. For $A \in L^X, x \in X$, the following five values are equal to each other:

(1) cl(A)(x); (2) $\bigvee_{\xi \subseteq A} L_n(\xi, x);$ (3) $\bigvee_{\xi \subseteq A} C_n(\xi, x);$ (4) $\bigvee_{\mathbb{N}^c(X) \ni \xi \subseteq A} L_n(\xi, x);$ (5) $\bigvee_{\mathbb{N}^c(X) \ni \xi \subseteq A} C_n(\xi, x).$

Proof Obviously $(4) \leq (5,2) \leq (3)$.

(3) \leq (1). First, it is easy to see that if $\xi \subseteq A$, then $\mathcal{F}_{\xi}(A) = 1$ and $(\mathcal{F}_{\xi}(A))^* = 0$. $\bigvee_{\xi \subseteq A} C_n(\xi, x) = \bigvee_{\xi \subseteq A} \bigwedge_{B \subseteq X} \operatorname{cl}(B)(x) \lor (\mathcal{F}_{\xi}(B))^* \leq \bigwedge_{\xi \subseteq A} \operatorname{cl}(A)(x) \lor (\mathcal{F}_{\xi}(A))^* = \bigwedge_{\xi \subseteq A} \operatorname{cl}(A)(x) \lor 0 = \operatorname{cl}(A)(x).$

 $(1) \leq (4)$. We only need to show that

$$\mathcal{N}^x_{\tau}(A') \ge \bigwedge_{\mathbb{N}^c(X) \ni \xi \subseteq A} \bigvee_{B \in L^X} \mathcal{N}^x_{\tau}(B) \wedge (\mathcal{F}_{\xi}(B))^*.$$

In fact, for all prime element $p \geq \mathcal{N}_{\tau}^{x}(A')$, then $x \leq \overline{A}|_{\tau(p)}$ (otherwise, there exists an open neighborhood U of x in $\tau_{(p)}$ such that $U \subseteq A'$, then $x \in U \subseteq A$ and then $\tau(U) \leq p$, which is a contradiction to $U \in \tau_{(p)}$). Let $\mathcal{U}(x)$ be the neighborhood system of x in $\tau_{(p)}$. Clearly, $\xi_{\mathcal{U}(x)} \subseteq A$. Consider ξ as an L-fuzzifying net of crisp degree, then the value $(\mathcal{F}_{\xi}(B))^*$ is 0 or 1. If $(\mathcal{F}_{\xi_{\mathcal{U}(x)}}(B))^* = 1$, then $\mathcal{F}_{\xi_{\mathcal{U}(x)}}(B) = 0$. Then for all $U \in \mathcal{U}(x)$, there exists $V \in \mathcal{U}(x)$ such that $V \subseteq U$ and $\xi_{\mathcal{U}(x)}(V) \notin B$. In order to complete the proof, we only need to show that for all $x \in C \subseteq B, \tau(C) \leq p$. If not, then $C \in \tau_{(p)}$, and $C \in \mathcal{U}(x)$. For this C, there exists $D \subseteq C$ such that $\xi_{\mathcal{U}(x)}(D) \notin B$, while $\xi_{\mathcal{U}(x)}(D) \in D \subseteq C \subseteq B$, leading to a contradiction. \Box

3. Embed *L*-FYS in the category of *L*-fuzzifying generalized convergence spaces

A pair of functors (F, G) is called an adjunction [8] between two categories \mathcal{A} and \mathcal{B} if for any $A \in ob(\mathcal{A}), B \in ob(\mathcal{B})$, there is a bijection between $\hom_{\mathcal{A}}(A, G(B))$ and $\hom_{\mathcal{B}}(F(A), B)$. The functor F is called the left adjoint of G and G the right adjoint of F. If \mathcal{A} is a subcategory of \mathcal{B} and the inclusion functor $i : \mathcal{A} \longrightarrow \mathcal{B}$ has a left (resp., right) adjoint, then \mathcal{A} is called a reflective (resp., coreflective) subcategory of \mathcal{B} .

In this section, we will show that the category of L-fuzzifying topological spaces can be embedded in the category of net-theoretical L-fuzzifying generalized convergence spaces as a reflective subcategory.

Definition 4 We call a map $S : \mathbb{N}(X) \times X \longrightarrow L$ an L-fuzzifying generalized convergence structure on X if it satisfies

- (LC1) For all $x \in X$, $S(\overline{x}, x) = 1$;
- (LC2) If η is a subnet of ξ , then for any $x \in X$, $S(\xi, x) \leq S(\eta, x)$.

The pair (X, S) is called an L-fuzzifying generalized convergence space.

For two *L*-fuzzifying generalized convergence spaces (X, S_1) and (Y, S_2) , a map $f : X \longrightarrow Y$ is called continuous if for any $(\xi, x) \in \mathbb{N}(X) \times X$, $S_1(\xi, x) \leq S_2(f(\xi), f(x))$. Denote by *L*-FYGConv the category of *L*-fuzzifying generalized convergence spaces with continuous maps as morphisms.

Let (X, S) be an L-fuzzifying generalized convergence space. Define $\mathcal{U}_S^x : L^X \longrightarrow L$ by

$$\mathcal{U}_{S}^{x}(A) = \begin{cases} \bigwedge_{\xi \in \mathbb{N}(X)} S(\xi, x) \to \mathcal{F}_{\xi}(A), & x \in A; \\ 0, & x \notin A. \end{cases}$$

Lemma 1 (1) For all $x \in X$, \mathcal{U}_S^x is an *L*-fuzzifying filter.

(2) Let $f: (X, S_1) \longrightarrow (Y, S_2)$ be a continuous map. Then $f(\mathcal{U}_{S_1}^x) \ge \mathcal{U}_{S_2}^{(f(x))}$.

Proof (1) $\mathcal{U}_{S}^{x}(\emptyset) = 0$, $\mathcal{U}_{S}^{x}(X) = 1$ are obvious. For all $A, B \subseteq X, x \in A \cap B$ iff $x \in A, x \in B$. Then

$$\mathcal{U}_{S}^{x}(A) \wedge \mathcal{U}_{S}^{x}(B) \leq \bigwedge_{\xi \in \mathbb{N}(X)} (S(\xi, x) \to \mathcal{F}_{\xi}(A)) \wedge (S(\xi, x) \to \mathcal{F}_{\xi}(B))$$
$$= \bigwedge_{\xi \in \mathbb{N}(X)} S(\xi, x) \to (\mathcal{F}_{\xi}(A) \wedge \mathcal{F}_{\xi}(B))$$
$$= \bigwedge_{\xi \in \mathbb{N}(X)} S(\xi, x) \to \mathcal{F}_{\xi}(A \cap B)$$
$$= \mathcal{U}_{S}^{x}(A \cap B).$$

Clearly, \mathcal{U}_S^x is order-preserving. Hence $\mathcal{U}_S^x(A \cap B) = \mathcal{U}_S^x(A) \wedge \mathcal{U}_S^x(B)$.

(2) For all $B \subseteq Y$,

$$f(\mathcal{U}_{S_1}^x)(B) = \mathcal{U}_{S_1}^x(f^{-1}(B)) = \bigwedge_{\xi \in \mathbb{N}(X)} S_1(\xi, x) \to \mathcal{F}_{\xi}(f^{-1}(B))$$

$$\geq \bigwedge_{\xi \in \mathbb{N}(X)} S_2(f(\xi), f(x)) \to f(\mathcal{F}_{\xi})(B) = \bigwedge_{\xi \in \mathbb{N}(X)} S_2(f(\xi), f(x)) \to \mathcal{F}_{f(\xi)}(B)$$

$$\geq \bigwedge_{\eta \in \mathbb{N}(Y)} S_2(\eta, f(x)) \to \mathcal{F}_{\eta}(B)$$

$$= \mathcal{U}_{S_2}^{f(x)}(B). \ \Box$$

Define $\tau_S: 2^X \longrightarrow L$ by

$$\tau_S(A) = \bigwedge_{x \in A} \mathcal{U}_S^x(A), \quad \forall A \subseteq X.$$

Proposition 8 The map τ_S is an *L*-fuzzifying topology on *X*.

Proof (O1) Obviously, $\tau_S(\emptyset) = \tau_S(X) = 1$.

(O2) For any $A, B \subseteq X$, if $A \cap B = \emptyset$, then $\tau_S(A \cap B) = 1 \ge \tau_S(A) \land \tau_S(B)$. Otherwise,

$$\tau_S(A) \wedge \tau_S(B) = \bigwedge_{x \in A} \mathcal{U}_S^x(A) \wedge \bigwedge_{y \in B} \mathcal{U}_S^y(B) \le \bigwedge_{z \in A \cap B} \mathcal{U}_S^z(A) \wedge \mathcal{U}_S^z(B)$$
$$= \bigwedge_{z \in A \cap B} \mathcal{U}_S^z(A \cap B) = \tau_S(A \cap B).$$

(O3)

$$\tau_S(\bigcup_i A_i) = \bigwedge_{x \in \bigcup_i A_i} \mathcal{U}_S^x(\bigcup_i A_i) \ge \bigwedge_{\exists i, x \in A_i} \mathcal{U}_S^x(A_i) = \bigwedge_i \bigwedge_{x \in A_i} \mathcal{U}_S^x(A_i) = \bigwedge_i \tau_S(A_i). \quad \Box$$

Proposition 9 If $f : (X, S_1) \longrightarrow (Y, S_2)$ is continuous, then $f : (X, \tau_{S_1}) \longrightarrow (Y, \tau_{S_2})$ is continuous.

Proof For all $B \subseteq Y$,

$$\tau_{S_1}(f^{-1}(B)) = \bigwedge_{x \in f^{-1}(B)} \mathcal{U}_{S_1}^x(f^{-1}(B)) = \bigwedge_{f(x) \in B} f^{\rightarrow}(\mathcal{U}_{S_1}^x)(B) \ge \bigwedge_{f(x) \in B} \mathcal{U}_{S_2}^{f(x)}(B) \ge \tau_{S_2}(B). \quad \Box$$

By Propositions 8 and 9, we obtain a concrete functor T_S from *L*-FYS to *L*-FYGConv transferring an *L*-fuzzifying generalized convergence structure *S* to τ_S .

Let (X, τ) be an L-fuzzifying topological space. Define $S_{\tau} : \mathbb{N}(X) \times X \longrightarrow L$ by

$$S_{\tau}(\xi, x) = \bigwedge_{x \in A} \tau(A) \to \mathcal{F}_{\xi}(A), \quad \forall (\xi, x) \in \mathbb{N}(X) \times X$$

Proposition 10 For an L-fuzzifying topology τ on X, we have

- (1) S_{τ} is an L-fuzzifying generalized convergence structure on X.
- (2) For each $x \in X$, $\mathcal{U}_{S_{\tau}}^x \ge \mathcal{U}_{\tau}^x$.

Proof (1) (LC1) is straightforward and (LC2) can be implied by Proposition 3.

(2) For all $x \in A \subseteq X$ and all $x \in B \subseteq A$,

$$\mathcal{U}_{S_{\tau}}^{x}(A) \geq \mathcal{U}_{S_{\tau}}^{x}(B) = \bigwedge_{\xi \in \mathbb{N}(X)} S_{\tau}(\xi, x) \to \mathcal{F}_{\xi}(B)$$
$$= \bigwedge_{\xi \in \mathbb{N}(X)} (\bigwedge_{x \in C} (\tau(C) \to \mathcal{F}_{\xi}(C)) \to \mathcal{F}_{\xi}(B)$$
$$\geq \bigwedge_{\xi \in \mathbb{N}(X)} (\tau(B) \to \mathcal{F}_{\xi}(B)) \to \mathcal{F}_{\xi}(B) \geq \tau(B).$$

Hence $\mathcal{U}_{S_{\tau}}^x \geq \mathcal{U}_{\tau}^x$. \Box

Proposition 11 If $f:(X,\tau_1) \longrightarrow (Y,\tau_2)$ is continuous, then so is $f:(X,S_{\tau_1}) \longrightarrow (Y,S_{\tau_2})$.

Proof For all $(\xi, x) \in \mathbb{N}(X) \times X$,

$$S_{\tau_2}(f(\xi), f(x)) = \bigwedge_{B \ni f(x)} \tau_2(B) \to \mathcal{F}_{f(\xi)}(B)$$
$$\geq \bigwedge_{B \ni f(x)} \tau_1(f^{-1}(B)) \to \mathcal{F}_{\xi}(f^{-1}(B))$$

Moore-Smith convergence in L-fuzzifying topological spaces

$$\geq \bigwedge_{A \ni x} \tau_1(A) \to \mathcal{F}_{\xi}(A) = S_{\tau_1}(\xi, x). \quad \Box$$

By Propositions 10 and 11, we obtain a concrete functor S_T from *L*-FYS to *L*-FYGConv transferring an *L*-fuzzifying topology τ to S_{τ} .

Proposition 12 Let τ be an *L*-fuzzifying topology and *S* be an *L*-fuzzifying generalized convergence space. Then $S_{\tau_S} \geq S$, $\tau_{S_{\tau}} \geq \tau$.

Proof (1) For all $(\xi, x) \in \mathbb{N}(X) \times X$,

$$S_{\tau_S}(\xi, x) = \bigwedge_{x \in A} \tau_S(A) \to \mathcal{F}_{\xi}(A) \ge \bigwedge_{x \in A} (S(\xi, x) \to \mathcal{F}_{\xi}(A)) \to \mathcal{F}_{\xi}(A) \ge S(\xi, x)$$

(2) For all $A \subseteq X$,

$$\tau_{S_{\tau}}(A) = \bigwedge_{x \in A} \mathcal{U}_{S_{\tau}}^{x}(A) \ge \bigwedge_{x \in A} \mathcal{U}_{\tau}^{x}(A) \ge \tau(A). \quad \Box$$

Theorem 2 The category L-FYS can be embedded in L-FYGConv as a reflective subcategory.

4. L-FYGConv is a cartesian-closed topological category

A construct \mathcal{C} over Set (U is the forgetful functor) is called topological [8] if for any U-source $(f_i \longrightarrow (X_i, \xi_i))_{i \in I}$, there exists a unique initial U-lift (X, ξ) , that is for any \mathcal{C} -object (Y, η) , a map $g: (Y, \eta) \longrightarrow (X, \xi)$ is a \mathcal{C} -morphism if and only if for any $i \in I$, $f_i \circ g: (Y, \eta) \longrightarrow (X_i, \xi_i)$ is a \mathcal{C} -morphism.

A category with finite products is called cartesian-closed [8] if for each pair (A, B) of objects there exists an object $[A \to B]$ and an evaluation morphism $ev : [A \to B] \times A \longrightarrow B$ with the following universal property: for each morphism $f : C \times A \longrightarrow B$ there exists a unique morphism $\hat{f} : C \longrightarrow [A \to B]$ such that $ev \circ (\hat{f} \times id) = f$.

Theorem 3 L-FYGConv is a topological category.

Proof Let U : L-FYGConv \longrightarrow Set be the forgetful functor and $(X, f_i, (X_i, S_i))_{i \in I}$ be a U-source. Define $S : \mathbb{N}(X) \times X \longrightarrow L$ by $S(\xi, x) = \bigwedge_i S_i(f_i(\xi), f_i(x))$. It is routine to show that (X, S) is an L-fuzzifying generalized convergence space.

Suppose that (Y, S_Y) is an *L*-fuzzifying generalized convergence space. A map $g : (Y, S_Y) \longrightarrow (X, S)$ is an *L*-FYGconv-morphism if and only if $\forall (\xi, y) \in \mathbb{N}(Y) \times Y$, $S_Y(\xi, y) \leq S(g(\xi), (g(y)))$ if and only if $\forall (\xi, y) \in \mathbb{N}(Y) \times Y$, $\forall i \in I$, $S_Y(\xi, y) \leq S_i((f_ig)(\xi), ((f_ig)(y)))$ if and only if $\forall i \in I$, $f_ig : (Y, S_Y) \longrightarrow (X_i, S_i)$ is an *L*-FYGConv-morphism. Hence (X, S) is a unique initial *U*-lift for the given *U*-source (the uniqueness is obvious). \Box

Since *L*-FYGConv is topological, there exist products in *L*-FYGConv [8]. By Theorem 3, let $\{(X_i, S_i) | i \in I\}$ be a nonempty family of *L*-fuzzifying generalized convergence spaces and $X = \prod_{i \in X} X_i$. For all $(\xi, x) \in \mathbb{N}(X) \times X$, let $S(\xi, x) = \bigwedge_{i \in I} S_i(p_i(\xi), (p_i(x)))$. Then (X, S) is the product of $\{(X_i, S_i) | i \in I\}$ in *L*-FYGConv. For an *L*-fuzzifying net $\xi = (p, v) : \Delta \longrightarrow X =$ $\prod_i X_i$, we have $p_i \circ \xi = (p_i \circ p, v) : \Delta \longrightarrow X_i$ is an *L*-fuzzifying net for any $i \in I$. **Proposition 13** (Product of two *L*-fuzzifying nets) Let $\xi = (p_1, v_1) : D \longrightarrow X \times L_0$, $\eta = (p_2, v_2) : E \longrightarrow Y \times L_0$ be two *L*-fuzzifying nets. Define $\xi \times \eta : D \times E \longrightarrow (X \times Y) \times L_0$ by

 $(\xi \times \eta)(d, e) = ((p_1(d), p_2(e)), v_1(d) \wedge v_2(e)), \quad \forall (d, e) \in D \times E.$

Then $\xi \times \eta$ is an *L*-fuzzifying net of $X \times Y$.

Proof Since L is 0- \wedge -inaccessible, for any $(d, e) \in D \times E$, $h_1(d) \wedge h_2(e) \in L_0$, $v_1(d) \wedge v_2(e) \in L_0$. (LN1) $\bigvee_{(d,e)\in D\times E} v_1(d) \wedge v_2(e) = \bigvee_{d\in D} v_1(d) \wedge \bigvee_{e\in E} v_2(e) = 1 \wedge 1 = 1$.

(LN2) For all $(d_1, e_1), (d_2, e_2) \in D \times E$, there exists an upper bound d of d_1, d_2 such that $v_1(d_1) \wedge v_1(d_2) \leq v_1(d)$ and an upper bound e of e_1, e_2 such that $v_2(e_1) \wedge v_2(e_2) \leq v_2(e)$. Then (d, e) is an upper bound of $(d_1, e_1), (d_2, e_2)$ such that $(v_1(d_1) \wedge v_2(e_1)) \wedge (v_1(d_2) \wedge v_2(e_2)) \leq v_1(d) \wedge v_2(e)$. \Box

Let (X, S_X) and (Y, S_Y) be two *L*-fuzzifying generalized convergence spaces and $[X \to Y]$ the set of all continuous maps from (X, S_X) to (Y, S_Y) . For any $(\xi, f) \in \mathbb{N}([X \to Y]) \times [X \to Y]$, define

$$S_{[X \to Y]}(\xi, f) = \bigwedge_{(\eta, x) \in \mathbb{N}(X) \times X} S_X(\eta, x) \to S_Y(ev(\xi \times \eta), f(x)).$$

Lemma 2 For all $f \in [X \to Y], \eta \in \mathbb{N}(X), a \in L_0, ev(\overline{f} \times \eta)$ is a subnet of $f(\eta)$, where \overline{f} is a constant net on $[X \to Y]$.

Proof Let $\overline{f}: D \longrightarrow [X \to Y] \times L_0$, $\eta = (p, v): E \longrightarrow X \times L_0$ be two *L*-fuzzifying nets. Then the net $ev(\overline{f} \times \eta): D \times E \longrightarrow Y \times L_0$ is defined by $(d, e) \mapsto (f(\eta(e)), v(e))$ and $[f(\eta)]: E \longrightarrow Y$ by $e \mapsto (f(\eta(e)), v(e))$. Define $j: D \times E \longrightarrow E$ by $(d, e) \mapsto e$. Then $ev(\overline{f} \times \eta)$ is a subnet of $[f(\eta)]$. \Box

Lemma 3 If ξ_1, ξ_2 are two *L*-fuzzifying nets on *X* and ξ_1 is a subnet of ξ_2 . Then for any *L*-fuzzifying net η on *Y* and any map $f: X \times Y \longrightarrow Z, \xi_1 \times \eta$ is a subnet of $\xi_2 \times \eta$ and consequently $f(\xi_1 \times \eta)$ is a subnet of $f(\xi_2 \times \eta)$.

Proof Straightforward. \Box

Proposition 14 $S_{[X \to Y]}$ is an L-fuzzifying convergence structure on $[X \to Y]$.

Proof (LC2) can be easily derived by Lemma 3.

(LC1) By Lemma 2,

$$S_{[X \to Y]}(\overline{f}, f) = \bigwedge_{(\eta, x) \in \mathbb{N}(X) \times X} S_X(\eta, x) \to S_Y(ev(\overline{f} \times \eta), f(x))$$

$$\geq \bigwedge_{(\eta, x) \in \mathbb{N}(X) \times X} S_X(\eta, x) \to S_Y(f(\eta), f(x))$$

$$= \bigwedge_{(\eta, x) \in \mathbb{N}(X) \times X} S_X(\eta, x) \to S_Y(f(\eta), f(x)) = 1. \quad \Box$$

Proposition 15 The evaluation $ev : ([X \to Y], S_{[X \to Y]}) \times (X, S_X) \longrightarrow (Y, S_Y)$ is a continuous map.

Moore-Smith convergence in L-fuzzifying topological spaces

Proof For any $(\xi, f) \in \mathbb{N}([X \to Y]) \times [X \to Y]$ and any $(\eta, x) \in \mathbb{N}(X) \times X$,

$$S_{[X \to Y]}(\xi, f) = \bigwedge_{\substack{(\beta, x) \in \mathbb{N}(X) \times X}} S_X(\beta, x) \to S_Y(ev(\xi \times \beta), f(x))$$
$$\leq S_X(\eta, x) \to S_Y(ev(\xi \times \eta), f(x)).$$

Then

$$S_{[X \to Y] \times X}((\xi, \eta), (f, x)) = S_{[X \to Y]}(\xi, f) \land S_X(\eta, x) \le S_Y(ev(\xi \times \eta), f(x)).$$

That is, ev is continuous. \Box

Now let us consider the following situation. Let $f: X \times Y \longrightarrow Z$ be a map. Define for $x \in X$ the map $f_x: Y \longrightarrow Z, y \longmapsto f(x, y)$ and with this the map $f^*: X \longrightarrow Z^Y, x \longmapsto f_x$. The map $\varphi: Z^{X \times Y} \longrightarrow (Z^Y)^X, f \longmapsto f^*$ is called the exponential map.

Lemma 4 Let $f: X \times Y \longrightarrow Z$ be a map, $\xi = (p, v): D \longrightarrow Y \times L_0$ an L-fuzzifying net and $\overline{x}: E \longrightarrow X \times L_0$ a constant L-fuzzifying net on X. Then $f_x(\xi)$ is a subnet of $f(\overline{x} \times \xi)$.

Proof We suppose that E has a top element t. Otherwise, we first do a transformation for \overline{x} . Put $E_t = E \cup \{t\}$ such that t is the top of E, then E_t is also a direct set. Define $(\overline{x})^* : E_t \longrightarrow X \times L_0$ by $e \mapsto (x, 1)$ for all $e \in E_t$. Thus $(\overline{x})^*$ is also a constant net on X, which has hardly difference from \overline{x} . Now we consider $(\overline{x})^*$ and \overline{x} are the same, that is, E has a top element t.

The net $f(\overline{x} \times \xi) : E \times D \longrightarrow Z \times L_0$ is defined by $f(\overline{x} \times \xi)(e, d) = (f(x, p(d)), v(d))$ and the net $f_x(\xi) : D \longrightarrow Z \times L_0$ is defined by $f_x(\xi)(d) = (f(x, p(d)), v(d))$. Define $j : D \longrightarrow E \times D$ by j(d) = (t, d). Then we have $f_x(\xi) = f(\overline{x} \times \xi) \circ j$, and for any $(e, d) \in E \times D$, $v_{[f_x(\xi)]}(d) = v(d) = v_{f(\overline{x} \times \xi)}$ and $j(d_1) = (t, d_1) \ge (e, d)$ for any $d_1 \ge d$. Hence $f_x(\xi)$ is a subnet of $f(\overline{x} \times \xi)$. \Box

Lemma 5 Let $f: (X, S_X) \times (Y, S_Y) \longrightarrow (Z, S_Z)$ be a continuous map. Then for each $x \in X$, $f_x: (Y, S_Y) \longrightarrow (Z, S_Z)$ is also continuous.

Proof For any $(\xi, y) \in \mathbb{N}(Y) \times Y$,

$$S_Z(f_x(\xi), f_x(y)) \ge S_Z(f(\overline{x} \times \xi), f(x, y)) \ge S_{X \times Y}(\overline{x} \times \xi, (x, y))$$
$$= S_X(\overline{x}, x) \land S_Y(\xi, y) = S_Y(\xi, y).$$

Thus f_x is continuous. \Box

Lemma 6 For all $\xi \in \mathbb{N}(X)$, $\eta \in \mathbb{N}(Y)$, $f: X \times Y \longrightarrow Z$, we have $ev(\varphi(f)(\xi) \times \eta) = f(\xi \times \eta)$.

Proof Let $\xi = (p_1, v_1) : D \longrightarrow X \times L_0$ and $\eta = (p_2, v_2) : E \longrightarrow Y \times L_0$ be two *L*-fuzzifying nets. The net $\varphi(f)(\xi) : D \longrightarrow Z^Y \times L_0$ is defined by $d \mapsto (f_{p_1(d)}, v_1(d))$. And $ev(\varphi(f)(\xi) \times \eta) : D \times E \longrightarrow Z \times L_0$ is defined by $(d, e) \mapsto (ev(f_{p_1(d)}, p_2(e)), v_1(d) \wedge v_2(e))) = (f(p_1(d), p_2(e)), v_1(d) \wedge v_2(e))$. Therefore, $ev(\varphi(f)(\xi) \times \eta) = f(\xi \times \eta)$. \Box

Proposition 16 If the map $f: X \times Y \longrightarrow Z$ is continuous, then so is $\varphi(f): X \longrightarrow [Y \to Z]$.

Proof If $f: X \times Y \longrightarrow Z$ is continuous, then by Lemma 5, for any $x \in X$, $\varphi(f)(x) = f_x$:

 $Y \longrightarrow Z$ is continuous and then $\varphi(f)$ is a well-defined map. For any $(\xi, x) \in \mathbb{N}(X) \times X$,

$$\begin{split} S_{[Y \to Z]}(\varphi(f)(\xi), \varphi(f)(x)) \\ &= \bigwedge_{(\eta, y) \in \mathbb{N}(Y) \times Y} S_Y(\eta, y) \to S_Z(ev(\varphi(f)(\xi) \times \eta), f_x(y)) \\ &= \bigwedge_{(\eta, y) \in \mathbb{N}(Y) \times Y} S_Y(\eta, y) \to S_Z(f(\xi \times \eta), f(x, y)) \\ &\geq \bigwedge_{(\eta, y) \in \mathbb{N}(Y) \times Y} S_Y(\eta, y) \to S_{X \times Y}(\xi \times \eta, (x, y)) \\ &\geq \bigwedge_{(\eta, y) \in \mathbb{N}(Y) \times Y} S_Y(\eta, y) \to (S_X(\xi, x) \wedge S_Y(\eta, y)) \\ &\geq S_X(\xi, x). \end{split}$$

Hence $S_{[Y \to Z]}(\varphi(f)(\xi), \varphi(f)(x)) \geq S_X(\xi, x)$. Therefore, $\varphi(f)$ is continuous. \Box

By Propositions 14, 15 and 16, we have

Theorem 4 L-FYGConv is cartesian-closed.

References

- PU Paoming, LIU Yingming. Fuzzy topology (I): Neighborhood structure of a fuzzy point and Moore-Smith convergence [J]. J. Math. Anal. Appl., 1980, 76(2): 571–599.
- [2] YING Mingsheng. A new approach for fuzzy topology (I) [J]. Fuzzy Sets and Systems, 1991, 39(3): 303-321.
- [3] HÁJEK P. Metamathematics of Fuzzy Logic [M]. Kluwer Academic Publishers, Dordrecht, 1998.
- [4] HÖHLE U. Upper semicontinuous fuzzy sets and applications [J]. J. Math. Anal. Appl., 1980, 78(2): 659–673.
- [5] ZHANG Dexue, XU Luoshan. Categories isomorphic to FNS [J]. Fuzzy Sets and Systems, 1999, 104(3): 373–380.
- [6] SHI Fugui. L-fuzzy interiors and L-fuzzy closures [J]. Fuzzy Sets and Systems, 2009, 160(9): 1218–1232.
- [7] ENGELKING R. General Topoogy [M]. Heldermann Verlag, Berlin, 1989.
- [8] ADAMEK J, HERRLICH H, STRECKER G E. Abstract and Concrete Categories [M]. Wiley, New York, 1990.