Local Derivations of a Matrix Algebra over a Commutative Ring

Xian WANG
Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, P. R. China

Abstract

Let R be a commutative ring with identity, $N_{n}(R)$ the matrix algebra consisting of all $n \times n$ strictly upper triangular matrices over R. Several types of proper local derivations of $N_{n}(R)(n \leq 4)$ are constructed, based on which all local derivations of $N_{n}(R)(n \leq 4)$ are characterized when R is a domain.

Keywords derivations; local derivations; R-algebras.
Document code A
MR(2010) Subject Classification 15A04; 15A27; 16S50
Chinese Library Classification O152.2

1. Introduction

Let R be a commutative ring with identity, n a positive integer. We denote by R^{*} the set of nonzero elements in R. By $M_{n}(R)$ we denote the set of all $n \times n$ matrices over R, and by R^{n} we mean the set of all $1 \times n$ matrices over R. We denote by $N_{n}(R)$ (resp., $\left.D_{n}(R)\right)$ the set consisting of all $n \times n$ strictly upper triangular matrices (resp., diagonal matrices) over R. Let E denote the $n \times n$ identity matrix and $E_{i j}(1 \leq i, j \leq n)$ denote the standard matrix unit whose (i, j)-entry is 1 and whose other entries are 0 . By definition, an algebra over R (or simply an R-algebra), is a set \mathcal{A} with a ring structure and an R-module structure that share the same addition operation with the additional property that $(r A) B=r(A B)=A(r B)$ for any $r \in R$ and $A, B \in \mathcal{A}$. Recall that an R-linear map $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if $\phi\left(A_{1} A_{2}\right)=\phi\left(A_{1}\right) A_{2}+A_{1} \phi\left(A_{2}\right)$ for any $A_{1}, A_{2} \in \mathcal{A}$. An R-linear map $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a local derivation if for every $A \in \mathcal{A}$ there exists a derivation ϕ_{A}, depending on A, such that $\phi(A)=\phi_{A}(A)$. It is natural that

$$
\text { derivations } \Rightarrow \text { local derivations. }
$$

Larson [1] initially considered local maps in his examination of reflexivity and interpolation for subspaces of $\mathcal{B}(\mathcal{H})$, where \mathcal{H} is a Hilbert space. The notion local derivation was originally introduced by Larson and Sourour. A proper local derivation (means a local derivation which fails to be a derivation) on an operator algebra was found by Crist in [3]. Kadison [4] constructed an example of an algebra which has proper local derivations. Other work on the description of

[^0]the local derivations on operator algebras can be found in [5-10]. In these articles all local derivations are actually global derivations. Concerning reports on derivations of matrix algebras and those of classic Lie algebras we refer to [11-15].

Certain special maps on $N_{n}(R)$ have been studied by several authors. For example, Cao [16-18] characterized all its automorphisms and Lie automorphisms and Ou [11] determined all its Lie derivations. In this article, we consider the local derivations of the matrix algebra $N_{n}(R)$ when $2 \leq n \leq 4$. Although, as stated in [2], it is somewhat difficult to construct proper local maps for an algebra system, yet three types of proper local derivations on $N_{4}(R)$ are constructed by us (see Section 2). We organize this article as follows. In Section 2, six types of standard local derivations of $N_{n}(R)(n \leq 4)$ are constructed, for R an arbitrary commutative ring with identity. In Section 3, we characterize any local derivations of $N_{n}(R)(n \leq 4)$ when R is a domain. The idea is to decompose each derivation into the sum of those standard derivations. Thus we can express all local derivations of $N_{n}(R)(n \leq 4)$ in an explicit form.

Remark 1.1 We are regretful for leaving the general case that $n \geq 5$ unsolved. We suffer from the difficulty in verifying whether the standard maps are local derivations.

2. Construction of standard local derivations of $N_{n}(R)(n \leq 4)$

We now construct several types of standard local derivations on $N_{n}(R)$, which will be used to generate all local derivations when $n \leq 4$.
(1) Inner derivations

Let $X \in N_{n}(R)$. Then the map ad $X: N_{n}(R) \rightarrow N_{n}(R)$, defined by $Y \mapsto X Y-Y X$, is a derivation of $N_{n}(R)$, called an inner derivation of $N_{n}(R)$ induced by X.
(2) Diagonal derivations

Let $H \in D_{n}(R)$. Then the map $\eta_{H}: N_{n}(R) \rightarrow N_{n}(R)$, defined by $Y \mapsto H Y-Y H$, is a derivation of $N_{n}(R)$, called a diagonal derivation of $N_{n}(R)$ induced by H.
(3) Central derivations

Assume that $n \geq 3$. For $\alpha=\left(c_{2}, c_{3}, \ldots, c_{n-2}\right) \in R^{n-3}$, the map $\mu_{\alpha}: N_{n}(R) \rightarrow N_{n}(R)$, defined by $\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto\left(\sum_{k=2}^{n-2} a_{k, k+1} c_{k}\right) E_{1 n}$ is a derivation of $N_{n}(R)$, called a central derivation of $N_{n}(R)$ induced by α.

In [11] we have known these types of Lie derivations for $N_{n}(R)$ and a description for any Lie derivation of $N_{n}(R)$. Since any derivation on $N_{n}(R)$ is a Lie derivation on $N_{n}(R)$, and another two types of standard Lie derivation on $N_{n}(R)$ (defined in [11]) are not derivations of $N_{n}(R)$, we can easily get any derivation on $N_{n}(R)$.

Lemma 2.1 (following from the main theorem of [11]) Let ρ be a derivation of $N_{n}(R)$.
(i) When $n=2$, then $\rho=\eta_{H}$ with $H \in D_{n}(R)$.
(ii) When $n=3$, then $\rho=\eta_{H}+\operatorname{ad} X$ with $H \in D_{n}(R), X \in N_{n}(R)$.
(iii) When $n>3$, then $\rho=\eta_{H}+\operatorname{ad} X+\mu_{\alpha}$ with $H \in D_{n}(R), \alpha \in R^{n-3}, X \in N_{n}(R)$.
(4) Extensible local derivations of $N_{n}(R)(n=3$ or $n=4)$.

Definition 2.2 Let $v \in R$. If any nonzero $r \in R$ is a factor of v, that is $v=r a$ for $a \in R$, then v is called divisible in R. The set of all divisible elements in R is denoted by $V(R)$.

Let $v \in V(R)$ be divisible. We define $\psi_{v}: N_{n}(R) \rightarrow N_{n}(R)$, by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto v a_{1 n} E_{1 n}
$$

Then ψ_{v} is an R-linear map of $N_{n}(R)$ to itself.
Lemma 2.3 Suppose $n=3$ or $n=4$. Then ψ_{v} is a local derivation of $N_{n}(R)$. It is a derivation of $N_{n}(R)$ if and only if $v=0$.

Proof We only consider the case when $n=4$. Since the proof is very easy, we here omit the proof when $n=3$. For a given $A=\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j} \in N_{4}(R)$, we intend to show that the action of ψ_{v} on A exactly agrees with that of a derivation on it. If $a_{12} \neq 0$, suppose that $v=a_{12} b_{12}$ for $b_{12} \in R$ (by assumption on v). Then $\psi_{v}(A)=\left[-\operatorname{ad}\left(b_{12} a_{14} E_{24}\right)\right](A)$, as desired. Similarly, if $a_{34} \neq 0$, we suppose that $v=a_{34} b_{34}$ for $b_{34} \in R$, then $\psi_{v}(A)=\left[\operatorname{ad}\left(b_{34} a_{14} E_{13}\right)\right](A)$. If $a_{23} \neq 0$, suppose that $v=a_{23} b_{23}$ for $b_{23} \in R$, then $\psi_{v}(A)=\mu_{b_{23} a_{14}}(A)$. Now we suppose that $a_{12}=a_{23}=a_{34}=0$, then $\psi_{v}(A)=\eta_{H}(A)$, where $H=\operatorname{diag}\{v, 0, v, 0\}$. It has been shown that ψ_{v} is a local derivation of $N_{4}(R)$. If ψ_{v} is a derivation of $N_{4}(R)$, then ψ_{v} must be the zero map (note that ψ_{v} maps E_{12}, E_{23}, E_{34} to zero, respectively), which leads to $v=0$. On the contrary, if $v=0$, then ψ_{v} is the zero map and is naturally a derivation of $N_{4}(R)$.
ψ_{v} is called an extensible local derivation of $N_{n}(R)$ induced by $v \in V(R)$.
(5) Contractible local derivations of $N_{4}(R)$

Definition 2.4 Let $V(R)$ be as above. $s \in V(R)$ is said to be strongly divisible, if for any given $a_{12}, a_{23}, a_{34} \in R^{*}$ and $a_{13}, a_{24} \in R$, the system of linear equations

$$
\left\{\begin{array}{l}
a_{23} x_{12}-a_{12} x_{23}=s a_{13} \tag{2.1}\\
a_{34} x_{23}-a_{23} x_{34}=s a_{24} \\
a_{24} x_{12}+a_{34} x_{13}-a_{13} x_{34}-a_{12} x_{24}+a_{23} x_{14}=0
\end{array}\right.
$$

on variables: $\left\{x_{12}, x_{23}, x_{34}, x_{13}, x_{24}, x_{14}\right\}$ has at least one solution in R^{6}. The set of all strongly divisible elements in R is denoted by $S(R)$.

Let $s \in S(R)$ be strongly divisible. We define $\theta_{s}: N_{4}(R) \rightarrow N_{4}(R)$, by

$$
\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j} \mapsto s a_{13} E_{13}+s a_{24} E_{24}
$$

Then θ_{s} is an R-linear map of $N_{4}(R)$ to itself.
Lemma $2.5 \theta_{s}$ is a local derivation of $N_{4}(R)$. It is a derivation of $N_{4}(R)$ if and only if $s=0$.
Proof For any given $A=\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j} \in N_{4}(R)$, we intend to show that the action of θ_{s} on A exactly agrees with that of a derivation on it.

Case $1 a_{23}=0$.

In this case, if $a_{34} \neq 0$, assume that $s=a_{34} b_{34}$ (by assumption on s), then

$$
\theta_{s}(A)=\left[-\operatorname{ad}\left(b_{34} a_{14} E_{13}\right)+\eta_{H}\right](A), \text { where } H=\operatorname{diag}\{s, s, 0,0\} \in D_{4}(R) .
$$

Similarly, if $a_{12} \neq 0$, assume that $s=a_{12} b_{12}$, then

$$
\theta_{s}(A)=\left[\operatorname{ad}\left(b_{12} a_{14} E_{24}\right)+\eta_{H}\right](A), \text { where } H=\operatorname{diag}\{s, s, 0,0\} \in D_{4}(R)
$$

If $a_{12}=a_{34}=0$, then

$$
\theta_{s}(A)=\eta_{H_{1}}(A), \text { where } H_{1}=\operatorname{diag}\{s, 2 s, 0, s\} \in D_{4}(R)
$$

Case $2 a_{23} \neq 0$.
If $a_{12}=a_{34}=0$, assume that $-2 s=a_{23} b_{23}$ (note that $-2 s \in V(R)$). Then

$$
\theta_{s}(A)=\left[\mu_{a_{14} b_{23}}+\eta_{H}\right](A), \text { where } H=\operatorname{diag}\{s, 0,0,-s\} \in D_{4}(R)
$$

If $a_{12}=0$ but $a_{34} \neq 0$, assume that $s=a_{34} b_{34}$ and $-s=a_{23} b_{23}$. Then

$$
\theta_{s}(A)=\left[\mu_{a_{14} b_{23}}+\eta_{H_{1}}+\operatorname{ad}\left(b_{34} a_{24} E_{23}\right)\right](A), \text { where } H_{1}=\operatorname{diag}\{s, 0,0,0\} \in D_{4}(R)
$$

If $a_{12} \neq 0$ but $a_{34}=0$, assume that $s=a_{12} b_{12}$ and $-s=a_{23} b_{23}$. Then

$$
\theta_{s}(A)=\left[\mu_{a_{14} b_{23}}+\eta_{H_{2}}-\operatorname{ad}\left(b_{12} a_{13} E_{23}\right)\right](A), \text { where } H_{2}=\operatorname{diag}\{0,0,0,-s\} \in D_{4}(R)
$$

If a_{12}, a_{23}, a_{34} are all nonzero, since Equation (2.1) has at least one solution in R^{6}. Say

$$
\begin{cases}x_{12}=r_{12} ; & x_{13}=r_{13} \\ x_{23}=r_{23} ; & x_{24}=r_{24} \\ x_{34}=r_{34} ; & x_{14}=r_{14}\end{cases}
$$

is a solution. Set $Y=\sum_{1 \leq i<j \leq 4} r_{i j} E_{i j}$. Then one can verify that

$$
\theta_{s}(A)=\left[\mu_{r_{14}}+\operatorname{ad} Y\right](A)
$$

These show that θ_{s} is a local derivation of $N_{4}(R)$. If $s=0$, then obviously $\theta_{s}=0$. If $s \neq 0$, since

$$
\theta_{s}\left(E_{12} E_{23}\right)=\theta_{s}\left(E_{13}\right)=s E_{13} \neq \theta_{s}\left(E_{12}\right) E_{23}+E_{12} \theta_{s}\left(E_{23}\right)=0
$$

we see that θ_{s} is not a derivation of $N_{4}(R)$.
θ_{s} is called a contractible local derivation of $N_{4}(R)$ induced by $s \in S(R)$.
(6) Local central derivations of $N_{4}(R)$

Definition 2.6 Let $w \in R$. If for any $a \in R^{*}$ there exist $b, c \in R$ such that $w=a b+c$ and $a c=0$, then w is said to be generalized divisible.

It is obvious that all such (generalized divisible) elements in R form an ideal of R. We denote it by $W(R)$. It is clear that $V(R)$ and $S(R)$ also are ideals of R and $S(R) \subseteq V(R) \subseteq W(R)$. Let $w_{1}, w_{2} \in W(R)$ both be generalized divisible. Define $\phi_{w_{1}, w_{2}}: N_{4}(R) \rightarrow N_{4}(R)$, by

$$
\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j} \mapsto\left(w_{1} a_{13}+w_{2} a_{24}\right) E_{14}
$$

Then $\phi_{w_{1}, w_{2}}$ is an R-linear map of $N_{4}(R)$ to itself.

Lemma $2.7 \phi_{w_{1}, w_{2}}$ is a local derivation of $N_{4}(R)$. It is a derivation of $N_{4}(R)$ if and only if $w_{1}=w_{2}=0$.

Proof We start by proving that $\phi_{w_{1}, 0}$ is a local derivation. For a given $A=\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j} \in$ $N_{4}(R)$, if $a_{23}=0$, then the action of $\phi_{w_{1}, 0}$ on A agrees with that of the inner derivation $-\operatorname{ad}\left(w_{1} E_{34}\right)$. If $a_{23} \neq 0$, then by assumption on w, there exist $q, r \in R$ such that $w_{1}=a_{23} q+r$ and $r a_{23}=0$. Then it is not difficult to verify that

$$
\phi_{w_{1}, 0}(A)=\left[\mu_{a_{13} q}-\operatorname{ad}\left(r E_{34}\right)\right](A)
$$

So $\phi_{w_{1}, 0}$ is a local derivation of $N_{4}(R)$. Similarly, $\phi_{0, w_{2}}$ is a local derivation of $N_{4}(R)$. Then so is $\phi_{w_{1}, w_{2}}$, since $\phi_{w_{1}, w_{2}}=\phi_{w_{1}, 0,}+\phi_{0, w_{2}}$. If $w_{1}=w_{2}=0, \phi_{w_{1}, w_{2}}$ is the zero map. If w_{1}, w_{2} are not both zero, say $w_{1} \neq 0$. Since each of the generators $\left\{E_{12}, E_{23}, E_{34}\right\}$ of $N_{4}(R)$ is mapped to zero by $\phi_{w_{1}, w_{2}}$, we see that $\phi_{w_{1}, w_{2}}$ fails to be a derivation of $N_{4}(R)$. Otherwise $\phi_{w_{1}, w_{2}}$ should map each element in $N_{4}(R)$ to zero, in contradiction with $\phi_{w_{1}, w_{2}}\left(E_{13}\right)=w_{1} E_{14}$.
$\phi_{w_{1}, w_{2}}$ is called a local central derivation of $N_{4}(R)$ induced by $\left(w_{1}, w_{2}\right) \in W(R) \bigoplus W(R)$.

3. Local derivations of $N_{n}(R)$

We start this section by giving several lemmas, then we make use of them to prove the main theorem.

Lemma 3.1 Let ϕ be a local derivation of an R-algebra \mathcal{A} to itself. If $A^{2}=0$, then $A \phi(A)+$ $\phi(A) A=0$.

Proof If $A^{2}=0$, then

$$
A \phi(A)+\phi(A) A=A \phi_{A}(A)+\phi_{A}(A) A=\phi_{A}\left(A^{2}\right)=\phi_{A}(0)=0
$$

where ϕ_{A} is a derivation of \mathcal{A} corresponding to A.
Let $P_{n-1}(R)=\sum_{j-i \geq 2} R E_{i j}, P_{n-2}(R)=\sum_{j-i \geq 3} R E_{i j}, \ldots, P_{3}(R)=\sum_{j-i \geq n-2} R E_{i j}=$ $R E_{1, n-1}+R E_{2, n}+R E_{1, n}, P_{2}(R)=\sum_{j-i \geq n-1} R E_{i j}=R E_{1, n}$. By definition of local derivations one easily sees that:

Lemma 3.2 If ϕ is a local derivation of $P_{n}(R)$, then $P_{n-1}(R), P_{n-2}(R), \ldots, P_{3}(R), P_{2}(R)$ all are stable under ϕ.

Lemma 3.3 Let ϕ be a local derivation of $N_{n}(R)$. Then there exists a derivation ρ of $N_{n}(R)$ such that $\rho+\phi$ maps each of the generators $\left\{E_{12}, E_{23}, \ldots, E_{n-1, n}\right\}$ of $N_{n}(R)$ to zero.

Proof For our purpose, we only need to prove that if ϕ maps $E_{01}, E_{12}, E_{23}, \ldots, E_{k-1, k}(1 \leq k<$ n, by E_{01} we mean 0) to zero, respectively, then we can choose a derivation ψ of $N_{n}(R)$ such that $\psi+\phi$ maps $E_{01}, E_{12}, E_{23}, \ldots, E_{k-1, k}$ and $E_{k, k+1}$ to zero, respectively. Assume that $\phi\left(E_{i-1, i}\right)=0$, $i=1,2, \ldots, k$, and consider the action of ϕ on $E_{k, k+1}$. By definition of local derivations, the action of ϕ on $E_{k, k+1}$ agrees with that of a derivation on it. So there exist a diagonal matrix $H=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} \in D_{n}(R)$, an upper triangular matrix $X=\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}$ and
$\alpha=\left(c_{2}, c_{3}, \ldots, c_{n-2}\right) \in R^{n-3}$ such that

$$
\begin{gathered}
\phi\left(E_{k, k+1}\right)=\left[\operatorname{ad} X+\eta_{H}+\mu_{\alpha}\right]\left(E_{k, k+1}\right), \text { when } 1<k<n-1 ; \\
\phi\left(E_{k, k+1}\right)=\left[\operatorname{ad} X+\eta_{H}\right]\left(E_{k, k+1}\right), \text { when } k=1 \text { or } n-1 .
\end{gathered}
$$

When the first case occurs,

$$
\phi\left(E_{k, k+1}\right)=\left(d_{k}-d_{k+1}\right) E_{k, k+1}+\left(X E_{k, k+1}-E_{k, k+1} X\right)+c_{k} E_{1 n}
$$

Choose $\alpha_{k}=\left(0,0, \ldots, 0,-c_{k}, 0, \ldots, 0\right) \in R^{n-3}$ with $-c_{k}$ in the $(k-1)$-th position. Set

$$
H_{k}=\operatorname{diag}\left\{0, \ldots, 0, d_{k}-d_{k+1}, 0, \ldots, 0\right\}
$$

with $d_{k}-d_{k+1}$ in the $(k+1)$-th position. Let $\psi_{1}=\mu_{\alpha_{k}}+\eta_{H_{k}}$. Then $\psi_{1}+\phi$, denoted by ϕ_{1}, maps $E_{k, k+1}$ to $X E_{k, k+1}-E_{k, k+1} X$, and $\phi_{1}\left(E_{i, i+1}\right)=0$ for $i=1,2, \ldots, k-1$.

Rewrite X as a block matrix: $X=\left(\begin{array}{cc}X_{1} & X_{2} \\ 0 & X_{3}\end{array}\right)$, where $X_{1} \in N_{k}(R), X_{3} \in N_{n-k}(R)$.
Denote by $E_{i k}^{(k)}$ the $k \times k$ matrix unit; by $E^{(k)}$ the $k \times k$ identity matrix. Then

$$
\phi_{1}\left(E_{k, k+1}\right)=X E_{k, k+1}-E_{k, k+1} X=\left(\begin{array}{cc}
X_{1} E_{k k}^{(k)} & 0 \\
0 & 0
\end{array}\right) E_{k, k+1}-E_{k, k+1}\left(\begin{array}{cc}
0 & 0 \\
0 & E_{11}^{(n-k)} X_{3}
\end{array}\right) .
$$

For $1 \leq i \leq k-2$, since $E_{i, i+1}+E_{k, k+1}$ and $E_{k, k+1}$ are square nilpotent, by Lemma 3.1 we have

$$
\phi_{1}\left(E_{k, k+1}\right) E_{i, i+1}+E_{i, i+1} \phi_{1}\left(E_{k, k+1}\right)=0
$$

This shows that $a_{i+1, k}=0$ for $i=1,2, \ldots, k-2$. Set $Y_{1}=\sum_{i=1}^{k-1} a_{i, k} E_{i, k}^{(k)}$ and set $Y=$ $\left(\begin{array}{cc}Y_{1} & 0 \\ 0 & X_{3}\end{array}\right)$. It can be verified that

$$
\phi_{1}\left(E_{k, k+1}\right)=\left(\begin{array}{cc}
Y_{1} E_{k k}^{(k)} & 0 \\
0 & 0
\end{array}\right) E_{k, k+1}-E_{k, k+1}\left(\begin{array}{cc}
0 & 0 \\
0 & E_{11}^{(n-k)} X_{3}
\end{array}\right)=Y E_{k, k+1}-E_{k, k+1} Y
$$

Let $\psi_{2}=-\operatorname{ad} Y$. Then $\psi_{2}+\phi_{1}$ maps $E_{k, k+1}$ to zero. Simultaneously, $\psi_{2}+\phi_{1}$ maps E_{12}, E_{23}, \ldots, $E_{k-1, k}$ to zero, respectively (recall that $a_{i, k}=0$ for $i=2,3, \ldots, k-1$). This means that if we choose $\psi=-\operatorname{ad} Y+\mu_{\alpha_{k}}+\eta_{H_{k}}$, then $\psi+\phi$ maps $E_{12}, E_{23}, \ldots, E_{k, k+1}$ to zero, respectively, as desired.

When the latter occurs, Y, H_{k} are selected as above, and let $\psi=\eta_{H_{k}}-\operatorname{ad} Y$. Then the assertion also holds.

Lemma 3.4 Let ϕ be a local derivation of $N_{4}(R)$. Suppose $\phi\left(E_{13}\right)=\sum_{1 \leq i<j \leq 4} a_{i j} E_{i j}$ and $\phi\left(E_{24}\right)=\sum_{1 \leq i<j \leq 4} b_{i j} E_{i j}$. If $\phi\left(E_{i, i+1}\right)=0$ for $i=1,2,3$, then
(i) $a_{i, i+1}=a_{24}=b_{i, i+1}=b_{13}=0$ for $i=1,2,3$;
(ii) $a_{13}=b_{24}$, and a_{13} is divisible when R is a domain;
(iii) Both a_{14} and b_{14} are generalized divisible.

Proof By Lemma 3.2, we know that $a_{i, i+1}=b_{i, i+1}=0$ for $i=1,2,3$. Since $E_{12}+E_{13}$ and E_{13}
are square nilpotent, by Lemma 3.1 we have

$$
E_{12} \phi\left(E_{13}\right)+\phi\left(E_{13}\right) E_{12}=0
$$

This results in $a_{24}=0$. Similarly, $b_{13}=0$. This completes (i).
Now we consider the action of ϕ on $E_{12}+E_{13}-E_{34}+E_{24}$. On the one hand, the result is $a_{13} E_{13}+b_{24} E_{24}\left(\bmod R E_{14}\right)$. On the other hand, this action agrees with a derivation of $N_{4}(R)$ on it. Thus by Lemma 2.1, there exist $D=\operatorname{diag}\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\} \in D_{4}(R)$ and $X=$ $\sum_{1 \leq i<j \leq 4} r_{i j} E_{i j} \in N_{4}(R)$ such that

$$
\begin{aligned}
& \phi\left(E_{12}+E_{13}-E_{34}+E_{24}\right) \\
& \quad=(D+X)\left(E_{12}+E_{13}-E_{34}+E_{24}\right)-\left(E_{12}+E_{13}-E_{34}+E_{24}\right)(D+X) \\
& \quad \equiv\left(d_{1}-d_{2}\right) E_{12}+\left(d_{1}-d_{3}-r_{23}\right) E_{13}-\left(d_{3}-d_{4}\right) E_{34}+\left(d_{2}-d_{4}-r_{23}\right) E_{24}\left(\bmod R E_{14}\right)
\end{aligned}
$$

By comparing the two results, we have that $d_{1}=d_{2}, d_{3}=d_{4}$. Then we further get

$$
a_{13}=d_{1}-d_{3}-r_{23}=d_{2}-d_{4}-r_{23}=b_{24}
$$

Now we go on proving that a_{13} is divisible. For any $a \in R^{*}$, consider the action of ϕ on $a E_{12}+a E_{23}+E_{34}+E_{13}$. On the one hand,

$$
\phi\left(a E_{12}+a E_{23}+E_{34}+E_{13}\right) \equiv a_{13} E_{13}\left(\bmod R E_{24}+R E_{14}\right)
$$

On the other hand, by Lemma 2.1, there exist

$$
C=\operatorname{diag}\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\} \in D_{4}(R), \quad Y=\sum_{1 \leq i<j \leq 4} s_{i j} E_{i j} \in N_{4}(R)
$$

such that

$$
\begin{aligned}
\phi\left(a E_{12}+a E_{23}+E_{34}+E_{13}\right) \equiv & (C+Y)\left(a E_{12}+a E_{23}+E_{34}+E_{13}\right)- \\
& \left(a E_{12}+a E_{23}+E_{34}+E_{13}\right)(C+Y)\left(\bmod R E_{24}+R E_{14}\right) \\
\equiv & a\left(c_{1}-c_{2}\right) E_{12}+a\left(c_{2}-c_{3}\right) E_{23}+\left(c_{3}-c_{4}\right) E_{34}+ \\
& \left(c_{1}-c_{3}+a s_{12}-a s_{23}\right) E_{13}\left(\bmod R E_{24}+R E_{14}\right) .
\end{aligned}
$$

By comparing the two results, we have that $c_{1}=c_{2}=c_{3}=c_{4}$ and $a_{13}=a\left(s_{12}-s_{23}\right)$. This means that any nonzero element a in R is a factor of a_{13}, forcing $a_{13} \in V(R)$. This completes (ii).

The left task of this lemma is to show that a_{14} and b_{14} are generalized divisible. For any $a \in R^{*}$, consider the action of ϕ on $E_{13}+a E_{23}$. On the one hand, the result is $a_{13} E_{13}+a_{14} E_{14}$. On the other hand, there exist certain $H=\operatorname{diag}\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\} \in D_{4}(R), c \in R$ and $Z=$ $\sum_{1 \leq i<j \leq 4} t_{i j} E_{i j} \in N_{4}(R)$ such that

$$
\begin{aligned}
& \phi\left(E_{13}+a E_{23}\right)=(H+Z)\left(E_{13}+a E_{23}\right)-\left(E_{13}+a E_{23}\right)(H+Z)+a c E_{14} \\
& \quad=\left(h_{1}-h_{3}+a t_{12}\right) E_{13}+a\left(h_{2}-h_{3}\right) E_{23}-a t_{34} E_{24}+\left(a c-t_{34}\right) E_{14} .
\end{aligned}
$$

By comparing, we have that $a t_{34}=0$ and $a_{14}=a c-t_{34}$. Set $q=c$ and $r=-t_{34}$, we see that $a_{14}=a q+r$ and $a r=0$. Therefore, a_{14} is generalized divisible. Similarly, $b_{14} \in W(R)$. This
completes (iii).
Lemma 3.5 Let R be a domain and ϕ a local derivation of $N_{4}(R)$ satisfying $\phi\left(E_{i, i+1}\right)=0$ for $i=1,2,3$. If $\phi\left(E_{13}\right)=s E_{13}, \phi\left(E_{24}\right)=s E_{24}$ with $s \in R$, then s is strongly divisible.

Proof By Lemma 3.4, we have known that s is divisible. We now only need to prove that, for any given $a_{12}, a_{23}, a_{34} \in R^{*}$ and $a_{13}, a_{24} \in R$, Equation (2.1) on variables: $\left\{x_{12}, x_{23}, x_{34}, x_{13}, x_{24}, x_{14}\right\}$ has at least one solution in R^{6}. For our purpose, we consider the action of ϕ on $A=\sum_{i=1}^{3} a_{i, i+1} E_{i, i+1}$ $+a_{13} E_{13}+a_{24} E_{24}$. The result, by assumption on ϕ, is $s a_{13} E_{13}+s a_{24} E_{24}$. On the other hand, the action of ϕ on A agrees with that of a derivation on it, thus there exist $c \in R$, $X=\sum_{1 \leq i<j \leq 4} u_{i j} E_{i j} \in N_{4}(R)$ and $H=\operatorname{diag}\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\} \in D_{4}(R)$ such that $\phi(A)=$ $\left(\eta_{H}+\operatorname{ad} X+\mu_{c}\right)(A)$. The result of this action should also be

$$
\begin{aligned}
\phi(A)= & \sum_{i=1}^{3} a_{i, i+1}\left(d_{i}-d_{i+1}\right) E_{i, i+1}+ \\
& \left(d_{1} a_{13}-d_{3} a_{13}+a_{23} u_{12}-a_{12} u_{23}\right) E_{13}+\left(d_{2} a_{24}-d_{4} a_{24}+a_{34} u_{23}-a_{23} u_{34}\right) E_{24}+ \\
& \left(a_{24} u_{12}+a_{34} u_{13}-a_{13} u_{34}-a_{12} u_{24}+a_{23} c\right) E_{14}
\end{aligned}
$$

By comparing the two results, we firstly have that $d_{1}=d_{2}=d_{3}=d_{4}$, and then we further get

$$
\left\{\begin{array}{l}
a_{23} u_{12}-a_{12} u_{23}=s a_{13} \\
a_{34} u_{23}-a_{23} u_{34}=s a_{24} \\
a_{24} u_{12}+a_{34} u_{13}-a_{13} u_{34}-a_{12} u_{24}+a_{23} c=0
\end{array}\right.
$$

This shows that Equation (2.1) has a solution

$$
\begin{cases}x_{12}=u_{12} ; & x_{13}=u_{13} \\ x_{23}=u_{23} ; & x_{24}=u_{24} \\ x_{34}=u_{34} ; & x_{14}=c\end{cases}
$$

which implies that $s \in S(R)$.
The following is the main theorem of this article.
Theorem 3.6 Let R be a domain and ϕ an R-linear map of $N_{n}(R)(2 \leq n \leq 4)$ to itself. Then ϕ is a local derivation of $N_{n}(R)$ if and only if that
(i) When $n=2, \phi=\eta_{H}$;
(ii) When $n=3, \phi=\operatorname{ad} X+\eta_{H}+\psi_{v}$;
(iii) When $n=4$, $\phi=\operatorname{ad} X+\eta_{H}+\mu_{c}+\phi_{w_{1}, w_{2}}+\psi_{v}+\theta_{s}$,
where ad X is an inner derivation induced by $X \in N_{n}(R) ; \eta_{H}$ is a diagonal derivation induced by $H \in D_{n}(R)$; μ_{c} is a central derivation induced by $c \in R ; \psi_{v}$ is an extensible local derivation induced by $v \in V(R) ; \phi_{w_{1}, w_{2}}$ is a local central derivation induced by $w_{1}, w_{2} \in W(R)$ and θ_{s} is a contractible local derivation induced by $s \in S(R)$.

Proof The sufficiency is obvious by Section 2. For the necessity, we give the proof in three cases.

Case $1 \quad n=2$.

It is clear that $\phi\left(E_{12}\right)=d E_{12}$ for $d \in R$. Then we see that $\phi=\eta_{H}$, where $H=\operatorname{diag}\{d, 0\}$.
Case $2 n=3$.
By Lemma 3.3, we can choose $H \in D_{3}(R), X \in N_{3}(R)$ such that $\eta_{H}+\operatorname{ad} X+\phi$ maps E_{12}, E_{23} to zero, respectively. Denote $\eta_{H}+\operatorname{ad} X+\phi$ by ϕ_{1} and suppose $\phi_{1}\left(E_{13}\right)=v E_{13}$ (using Lemma 3.2). For any $a \in R^{*}$, consider the action of ϕ_{1} on $A=a E_{12}+a E_{23}+E_{13}$, we have that

$$
\phi_{1}(A)=v E_{13} .
$$

On the other hand, the action of ϕ_{1} on A agrees with that of a derivation of $N_{3}(R)$ on it. Thus there exist $D=\operatorname{diag}\left\{d_{1}, d_{2}, d_{3}\right\} \in D_{3}(R), Y=\sum_{1 \leq i<j \leq 3} a_{i j} E_{i j}^{(3)} \in N_{3}(R)$ such that

$$
\phi_{1}(A)=\left(\eta_{D}+\operatorname{ad} Y\right)(A)=a\left(d_{1}-d_{2}\right) E_{12}+a\left(d_{2}-d_{3}\right) E_{23}+\left(d_{1}-d_{3}+a a_{12}-a a_{23}\right) E_{13}
$$

By comparing, we see that $d_{1}=d_{2}=d_{3}$. We further get $v=a\left(a_{12}-a_{23}\right)$. Therefore v is divisible. Using $v \in V(R)$, we construct the extensible local derivation ψ_{v} of $N_{3}(R)$. It is easy to see that ϕ_{1} is exactly ψ_{v}. So $\phi=-\operatorname{ad} X-\eta_{H}+\psi_{v}$, as desired.

Case $3 n=4$.
By Lemma 3.3, we can choose $H \in D_{4}(R), X \in N_{4}(R)$ and $c \in R$ such that $\mu_{c}+\eta_{H}+\operatorname{ad} X+\phi$ maps E_{12}, E_{23}, E_{34} to zero, respectively. Denote $\mu_{c}+\eta_{H}+\operatorname{ad} X+\phi$ by ϕ_{1}. By Lemma 3.4, we may assume that $\phi_{1}\left(E_{13}\right)=s E_{13}+c E_{14}$ and $\phi_{1}\left(E_{24}\right)=s E_{24}+d E_{14}$, where $c, d \in W(R)$. Set $w_{1}=-c, w_{2}=-d$. Then w_{1}, w_{2} also are generalized divisible. Using w_{1}, w_{2}, we construct the local central derivation $\phi_{w_{1}, w_{2}}$ of $N_{4}(R)$. Denote $\phi_{w_{1}, w_{2}}+\phi_{1}$ by ϕ_{2}. Then one can verify that $\phi_{2}\left(E_{13}\right)=s E_{13}$ and $\phi_{2}\left(E_{24}\right)=s E_{24}$. Suppose that $\phi_{2}\left(E_{14}\right)=v E_{14}$. As in case 2 we can prove that $v \in V(R)$ (the similar process is omitted). Using $v \in V(R)$, we construct the extensible local derivation ψ_{v} of $N_{4}(R)$, and denote $-\psi_{v}+\phi_{2}$ by ϕ_{3}. Then $\phi_{3}\left(E_{i, i+1}\right)=0$ for $i=1,2,3$, $\phi_{3}\left(E_{14}\right)=0$ and ϕ_{3} maps E_{13} to $s E_{13}$, maps E_{24} to $s E_{24}$, respectively. By Lemma 3.5, we know that s is strongly divisible. We use s to construct the contractible local derivation θ_{s} of $N_{4}(R)$. It is easy to check that ϕ_{3} is exactly θ_{s}. In the end we obtain

$$
\phi=-\operatorname{ad} X-\eta_{H}-\mu_{c}-\phi_{w_{1}, w_{2}}+\psi_{v}+\theta_{s}
$$

This completes the proof.
Remark 3.7 It is easy to see that the decomposition of a local derivation ϕ on $N_{n}(R)(n \leq 4)$ into the sum of those standard ones (as in Theorem 3.6) is unique. In Theorem 3.6, R is assumed to be a domain. We conjecture that Theorem 3.6 also holds when this assumption is removed.

References

[1] LARSON D R. Reflexivity, algebraic reflexivity and linear interpolation [J]. Amer. J. Math., 1988, 110(2): 283-299.
[2] CRIST R. Local automorphisms [J]. Proc. Amer. Math. Soc., 2000, 128(5): 1409-1414.
[3] CRIST R L. Local derivations on operator algebras [J]. J. Funct. Anal., 1996, 135(1): 76-92.
[4] KADISON R V. Local derivations [J]. J. Algebra, 1990, 130(2): 494-509.
[5] MOLNÁR L. Local automorphisms of operator algebras on Banach spaces [J]. Proc. Amer. Math. Soc., 2003, 131(6): 1867-1874.
[6] ZHANG Jianhua, PAN Fangfang, YANG Aili. Local derivations on certain CSL algebras [J]. Linear Algebra Appl., 2006, 413(1): 93-99.
[7] HADWIN D, LI Jiankui. Local derivations and local automorphisms [J]. J. Math. Anal. Appl., 2004, 290(2): 702-714.
[8] BREŠAR M, ŠEMRL P. Mappings which preserve idempotents, local automorphisms, and local derivations [J]. Canad. J. Math., 1993, 45(3): 483-496.
[9] SEMRL P. Local automorphisms and derivations on $\mathscr{B}(H)$ [J]. Proc. Amer. Math. Soc., 1997, 125(9): 2677-2680.
[10] ZHANG Jianhua, JI Guoxing, CAO Huaixin. Local derivations of nest subalgebras of von Neumann algebras [J]. Linear Algebra Appl., 2004, 392: 61-69.
[11] OU Shikun, WANG Dengyin, YAO Ruiping. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2007, 424(2-3): 378-383.
[12] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369-377.
[13] BENKOVIČ D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl., 2005, 397: 235-244.
[14] BJERREGAARD P A, LOOS O, GONZÁLEZ C M. Derivations and automorphisms of Jordan algebras in characteristic two [J]. J. Algebra, 2005, 285(1): 146-181.
[15] BREŠAR M. Jordan mappings of semiprime rings [J]. J. Algebra, 1989, 127(1): 218-228.
[16] CAO You'an, WANG Jingtong. A note on algebra automorphisms of strictly upper triangular matrices over commutative rings [J]. Linear Algebra Appl., 2000, 311(1-3): 187-193.
[17] CAO You'an. Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings [J]. Linear Algebra Appl., 2001, 329(1-3): 175-187.
[18] CAO You'an, TAN Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105-122.

[^0]: Received January 19, 2010; Accepted October 8, 2010
 Supported by the K.C. Wang Education Foundation of Hong Kong.
 E-mail address: wx2008117@163.com

