Journal of Mathematical Research & Exposition Sept., 2011, Vol. 31, No. 5, pp. 781–790 DOI:10.3770/j.issn:1000-341X.2011.05.003 Http://jmre.dlut.edu.cn

Local Derivations of a Matrix Algebra over a Commutative Ring

Xian WANG

Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, P. R. China

Abstract Let R be a commutative ring with identity, $N_n(R)$ the matrix algebra consisting of all $n \times n$ strictly upper triangular matrices over R. Several types of proper local derivations of $N_n(R)$ $(n \leq 4)$ are constructed, based on which all local derivations of $N_n(R)$ $(n \leq 4)$ are characterized when R is a domain.

Keywords derivations; local derivations; *R*-algebras.

Document code A MR(2010) Subject Classification 15A04; 15A27; 16S50 Chinese Library Classification 0152.2

1. Introduction

Let R be a commutative ring with identity, n a positive integer. We denote by R^* the set of nonzero elements in R. By $M_n(R)$ we denote the set of all $n \times n$ matrices over R, and by R^n we mean the set of all $1 \times n$ matrices over R. We denote by $N_n(R)$ (resp., $D_n(R)$) the set consisting of all $n \times n$ strictly upper triangular matrices (resp., diagonal matrices) over R. Let E denote the $n \times n$ identity matrix and E_{ij} $(1 \le i, j \le n)$ denote the standard matrix unit whose (i, j)-entry is 1 and whose other entries are 0. By definition, an algebra over R (or simply an R-algebra), is a set \mathcal{A} with a ring structure and an R-module structure that share the same addition operation with the additional property that (rA)B = r(AB) = A(rB) for any $r \in R$ and $A, B \in \mathcal{A}$. Recall that an R-linear map $\phi : \mathcal{A} \to \mathcal{A}$ is called a derivation if $\phi(A_1A_2) = \phi(A_1)A_2 + A_1\phi(A_2)$ for any $A_1, A_2 \in \mathcal{A}$. An R-linear map $\phi : \mathcal{A} \to \mathcal{A}$ is said to be a local derivation if for every $A \in \mathcal{A}$ there exists a derivation ϕ_A , depending on A, such that $\phi(A) = \phi_A(A)$. It is natural that

derivations \Rightarrow local derivations.

Larson [1] initially considered local maps in his examination of reflexivity and interpolation for subspaces of $\mathcal{B}(\mathcal{H})$, where \mathcal{H} is a Hilbert space. The notion local derivation was originally introduced by Larson and Sourour. A proper local derivation (means a local derivation which fails to be a derivation) on an operator algebra was found by Crist in [3]. Kadison [4] constructed an example of an algebra which has proper local derivations. Other work on the description of

Received January 19, 2010; Accepted October 8, 2010

Supported by the K.C. Wang Education Foundation of Hong Kong.

E-mail address: wx2008117@163.com

the local derivations on operator algebras can be found in [5–10]. In these articles all local derivations are actually global derivations. Concerning reports on derivations of matrix algebras and those of classic Lie algebras we refer to [11–15].

Certain special maps on $N_n(R)$ have been studied by several authors. For example, Cao [16–18] characterized all its automorphisms and Lie automorphisms and Ou [11] determined all its Lie derivations. In this article, we consider the local derivations of the matrix algebra $N_n(R)$ when $2 \leq n \leq 4$. Although, as stated in [2], it is somewhat difficult to construct proper local maps for an algebra system, yet three types of proper local derivations on $N_4(R)$ are constructed by us (see Section 2). We organize this article as follows. In Section 2, six types of standard local derivations of $N_n(R)$ ($n \leq 4$) are constructed, for R an arbitrary commutative ring with identity. In Section 3, we characterize any local derivations of $N_n(R)$ ($n \leq 4$) when R is a domain. The idea is to decompose each derivation into the sum of those standard derivations. Thus we can express all local derivations of $N_n(R)$ ($n \leq 4$) in an explicit form.

Remark 1.1 We are regretful for leaving the general case that $n \ge 5$ unsolved. We suffer from the difficulty in verifying whether the standard maps are local derivations.

2. Construction of standard local derivations of $N_n(R)$ $(n \le 4)$

We now construct several types of standard local derivations on $N_n(R)$, which will be used to generate all local derivations when $n \leq 4$.

(1) Inner derivations

Let $X \in N_n(R)$. Then the map ad $X : N_n(R) \to N_n(R)$, defined by $Y \mapsto XY - YX$, is a derivation of $N_n(R)$, called an inner derivation of $N_n(R)$ induced by X.

(2) Diagonal derivations

Let $H \in D_n(R)$. Then the map $\eta_H : N_n(R) \to N_n(R)$, defined by $Y \mapsto HY - YH$, is a derivation of $N_n(R)$, called a diagonal derivation of $N_n(R)$ induced by H.

(3) Central derivations

Assume that $n \geq 3$. For $\alpha = (c_2, c_3, \ldots, c_{n-2}) \in \mathbb{R}^{n-3}$, the map $\mu_{\alpha} : N_n(R) \to N_n(R)$, defined by $\sum_{1 \leq i < j \leq n} a_{ij} E_{ij} \mapsto (\sum_{k=2}^{n-2} a_{k,k+1} c_k) E_{1n}$ is a derivation of $N_n(R)$, called a central derivation of $N_n(R)$ induced by α .

In [11] we have known these types of Lie derivations for $N_n(R)$ and a description for any Lie derivation of $N_n(R)$. Since any derivation on $N_n(R)$ is a Lie derivation on $N_n(R)$, and another two types of standard Lie derivation on $N_n(R)$ (defined in [11]) are not derivations of $N_n(R)$, we can easily get any derivation on $N_n(R)$.

Lemma 2.1 (following from the main theorem of [11]) Let ρ be a derivation of $N_n(R)$.

- (i) When n = 2, then $\rho = \eta_H$ with $H \in D_n(R)$.
- (ii) When n = 3, then $\rho = \eta_H + \operatorname{ad} X$ with $H \in D_n(R)$, $X \in N_n(R)$.
- (iii) When n > 3, then $\rho = \eta_H + \operatorname{ad} X + \mu_\alpha$ with $H \in D_n(R)$, $\alpha \in \mathbb{R}^{n-3}$, $X \in N_n(R)$.
- (4) Extensible local derivations of $N_n(R)$ (n = 3 or n = 4).

Definition 2.2 Let $v \in R$. If any nonzero $r \in R$ is a factor of v, that is v = ra for $a \in R$, then v is called divisible in R. The set of all divisible elements in R is denoted by V(R).

Let $v \in V(R)$ be divisible. We define $\psi_v : N_n(R) \to N_n(R)$, by

1

$$\sum_{\leq i < j \leq n} a_{ij} E_{ij} \mapsto v a_{1n} E_{1n}.$$

Then ψ_v is an *R*-linear map of $N_n(R)$ to itself.

Lemma 2.3 Suppose n = 3 or n = 4. Then ψ_v is a local derivation of $N_n(R)$. It is a derivation of $N_n(R)$ if and only if v = 0.

Proof We only consider the case when n = 4. Since the proof is very easy, we here omit the proof when n = 3. For a given $A = \sum_{1 \le i < j \le 4} a_{ij} E_{ij} \in N_4(R)$, we intend to show that the action of ψ_v on A exactly agrees with that of a derivation on it. If $a_{12} \ne 0$, suppose that $v = a_{12}b_{12}$ for $b_{12} \in R$ (by assumption on v). Then $\psi_v(A) = [-\operatorname{ad}(b_{12}a_{14}E_{24})](A)$, as desired. Similarly, if $a_{34} \ne 0$, we suppose that $v = a_{34}b_{34}$ for $b_{34} \in R$, then $\psi_v(A) = [\operatorname{ad}(b_{34}a_{14}E_{13})](A)$. If $a_{23} \ne 0$, suppose that $v = a_{23}b_{23}$ for $b_{23} \in R$, then $\psi_v(A) = \mu_{b_{23}a_{14}}(A)$. Now we suppose that $a_{12} = a_{23} = a_{34} = 0$, then $\psi_v(A) = \eta_H(A)$, where $H = \operatorname{diag}\{v, 0, v, 0\}$. It has been shown that ψ_v is a local derivation of $N_4(R)$. If ψ_v is a derivation of $N_4(R)$, then ψ_v must be the zero map (note that ψ_v maps E_{12}, E_{23}, E_{34} to zero, respectively), which leads to v = 0. On the contrary, if v = 0, then ψ_v is the zero map and is naturally a derivation of $N_4(R)$. \Box

 ψ_v is called an extensible local derivation of $N_n(R)$ induced by $v \in V(R)$.

(5) Contractible local derivations of $N_4(R)$

Definition 2.4 Let V(R) be as above. $s \in V(R)$ is said to be strongly divisible, if for any given $a_{12}, a_{23}, a_{34} \in R^*$ and $a_{13}, a_{24} \in R$, the system of linear equations

$$\begin{cases} a_{23}x_{12} - a_{12}x_{23} = sa_{13}, \\ a_{34}x_{23} - a_{23}x_{34} = sa_{24}, \\ a_{24}x_{12} + a_{34}x_{13} - a_{13}x_{34} - a_{12}x_{24} + a_{23}x_{14} = 0, \end{cases}$$

$$(2.1)$$

on variables: $\{x_{12}, x_{23}, x_{34}, x_{13}, x_{24}, x_{14}\}$ has at least one solution in \mathbb{R}^6 . The set of all strongly divisible elements in \mathbb{R} is denoted by $S(\mathbb{R})$.

Let $s \in S(R)$ be strongly divisible. We define $\theta_s : N_4(R) \to N_4(R)$, by

$$\sum_{1 \le i < j \le 4} a_{ij} E_{ij} \mapsto sa_{13} E_{13} + sa_{24} E_{24}.$$

Then θ_s is an *R*-linear map of $N_4(R)$ to itself.

Lemma 2.5 θ_s is a local derivation of $N_4(R)$. It is a derivation of $N_4(R)$ if and only if s = 0.

Proof For any given $A = \sum_{1 \le i < j \le 4} a_{ij} E_{ij} \in N_4(R)$, we intend to show that the action of θ_s on A exactly agrees with that of a derivation on it.

Case 1 $a_{23} = 0.$

In this case, if $a_{34} \neq 0$, assume that $s = a_{34}b_{34}$ (by assumption on s), then

$$\theta_s(A) = [-\operatorname{ad}(b_{34}a_{14}E_{13}) + \eta_H](A), \text{ where } H = \operatorname{diag}\{s, s, 0, 0\} \in D_4(R)$$

Similarly, if $a_{12} \neq 0$, assume that $s = a_{12}b_{12}$, then

$$\theta_s(A) = [\operatorname{ad}(b_{12}a_{14}E_{24}) + \eta_H](A), \text{ where } H = \operatorname{diag}\{s, s, 0, 0\} \in D_4(R).$$

If $a_{12} = a_{34} = 0$, then

$$\theta_s(A) = \eta_{H_1}(A), \text{ where } H_1 = \text{diag}\{s, 2s, 0, s\} \in D_4(R).$$

Case 2 $a_{23} \neq 0$.

If
$$a_{12} = a_{34} = 0$$
, assume that $-2s = a_{23}b_{23}$ (note that $-2s \in V(R)$). Then

$$\theta_s(A) = [\mu_{a_{14}b_{23}} + \eta_H](A), \text{ where } H = \text{diag}\{s, 0, 0, -s\} \in D_4(R)$$

If $a_{12} = 0$ but $a_{34} \neq 0$, assume that $s = a_{34}b_{34}$ and $-s = a_{23}b_{23}$. Then

$$\theta_s(A) = [\mu_{a_{14}b_{23}} + \eta_{H_1} + \operatorname{ad}(b_{34}a_{24}E_{23})](A), \text{ where } H_1 = \operatorname{diag}\{s, 0, 0, 0\} \in D_4(R).$$

If $a_{12} \neq 0$ but $a_{34} = 0$, assume that $s = a_{12}b_{12}$ and $-s = a_{23}b_{23}$. Then

$$\theta_s(A) = [\mu_{a_{14}b_{23}} + \eta_{H_2} - \operatorname{ad}(b_{12}a_{13}E_{23})](A), \text{ where } H_2 = \operatorname{diag}\{0, 0, 0, -s\} \in D_4(R).$$

If a_{12}, a_{23}, a_{34} are all nonzero, since Equation (2.1) has at least one solution in \mathbb{R}^6 . Say

$$\begin{cases} x_{12} = r_{12}; & x_{13} = r_{13}; \\ x_{23} = r_{23}; & x_{24} = r_{24}; \\ x_{34} = r_{34}; & x_{14} = r_{14} \end{cases}$$

is a solution. Set $Y = \sum_{1 \le i < j \le 4} r_{ij} E_{ij}$. Then one can verify that

$$\theta_s(A) = [\mu_{r_{14}} + \operatorname{ad} Y](A).$$

These show that θ_s is a local derivation of $N_4(R)$. If s = 0, then obviously $\theta_s = 0$. If $s \neq 0$, since

$$\theta_s(E_{12}E_{23}) = \theta_s(E_{13}) = sE_{13} \neq \theta_s(E_{12})E_{23} + E_{12}\theta_s(E_{23}) = 0,$$

we see that θ_s is not a derivation of $N_4(R)$. \Box

- θ_s is called a contractible local derivation of $N_4(R)$ induced by $s \in S(R)$.
- (6) Local central derivations of $N_4(R)$

Definition 2.6 Let $w \in R$. If for any $a \in R^*$ there exist $b, c \in R$ such that w = ab + c and ac = 0, then w is said to be generalized divisible.

It is obvious that all such (generalized divisible) elements in R form an ideal of R. We denote it by W(R). It is clear that V(R) and S(R) also are ideals of R and $S(R) \subseteq V(R) \subseteq W(R)$. Let $w_1, w_2 \in W(R)$ both be generalized divisible. Define $\phi_{w_1,w_2} : N_4(R) \to N_4(R)$, by

$$\sum_{1 \le i < j \le 4} a_{ij} E_{ij} \mapsto (w_1 a_{13} + w_2 a_{24}) E_{14}.$$

Then ϕ_{w_1,w_2} is an *R*-linear map of $N_4(R)$ to itself.

Lemma 2.7 ϕ_{w_1,w_2} is a local derivation of $N_4(R)$. It is a derivation of $N_4(R)$ if and only if $w_1 = w_2 = 0$.

Proof We start by proving that $\phi_{w_1,0}$ is a local derivation. For a given $A = \sum_{1 \le i < j \le 4} a_{ij} E_{ij} \in N_4(R)$, if $a_{23} = 0$, then the action of $\phi_{w_1,0}$ on A agrees with that of the inner derivation $-\operatorname{ad}(w_1 E_{34})$. If $a_{23} \ne 0$, then by assumption on w, there exist $q, r \in R$ such that $w_1 = a_{23}q + r$ and $ra_{23} = 0$. Then it is not difficult to verify that

$$\phi_{w_1,0}(A) = [\mu_{a_{13}q} - \operatorname{ad}(rE_{34})](A).$$

So $\phi_{w_1,0}$ is a local derivation of $N_4(R)$. Similarly, ϕ_{0,w_2} is a local derivation of $N_4(R)$. Then so is ϕ_{w_1,w_2} , since $\phi_{w_1,w_2} = \phi_{w_1,0} + \phi_{0,w_2}$. If $w_1 = w_2 = 0$, ϕ_{w_1,w_2} is the zero map. If w_1, w_2 are not both zero, say $w_1 \neq 0$. Since each of the generators $\{E_{12}, E_{23}, E_{34}\}$ of $N_4(R)$ is mapped to zero by ϕ_{w_1,w_2} , we see that ϕ_{w_1,w_2} fails to be a derivation of $N_4(R)$. Otherwise ϕ_{w_1,w_2} should map each element in $N_4(R)$ to zero, in contradiction with $\phi_{w_1,w_2}(E_{13}) = w_1E_{14}$. \Box

 ϕ_{w_1,w_2} is called a local central derivation of $N_4(R)$ induced by $(w_1,w_2) \in W(R) \bigoplus W(R)$.

3. Local derivations of $N_n(R)$

We start this section by giving several lemmas, then we make use of them to prove the main theorem.

Lemma 3.1 Let ϕ be a local derivation of an *R*-algebra \mathcal{A} to itself. If $A^2 = 0$, then $A\phi(A) + \phi(A)A = 0$.

Proof If $A^2 = 0$, then

$$A\phi(A) + \phi(A)A = A\phi_A(A) + \phi_A(A)A = \phi_A(A^2) = \phi_A(0) = 0,$$

where ϕ_A is a derivation of \mathcal{A} corresponding to A. \Box

Let $P_{n-1}(R) = \sum_{j-i\geq 2} RE_{ij}, P_{n-2}(R) = \sum_{j-i\geq 3} RE_{ij}, \dots, P_3(R) = \sum_{j-i\geq n-2} RE_{ij} = RE_{1,n-1} + RE_{2,n} + RE_{1,n}, P_2(R) = \sum_{j-i\geq n-1} RE_{ij} = RE_{1,n}$. By definition of local derivations one easily sees that:

Lemma 3.2 If ϕ is a local derivation of $P_n(R)$, then $P_{n-1}(R)$, $P_{n-2}(R)$, ..., $P_3(R)$, $P_2(R)$ all are stable under ϕ .

Lemma 3.3 Let ϕ be a local derivation of $N_n(R)$. Then there exists a derivation ρ of $N_n(R)$ such that $\rho + \phi$ maps each of the generators $\{E_{12}, E_{23}, \ldots, E_{n-1,n}\}$ of $N_n(R)$ to zero.

Proof For our purpose, we only need to prove that if ϕ maps $E_{01}, E_{12}, E_{23}, \ldots, E_{k-1,k}$ $(1 \leq k < n, by E_{01}$ we mean 0) to zero, respectively, then we can choose a derivation ψ of $N_n(R)$ such that $\psi + \phi$ maps $E_{01}, E_{12}, E_{23}, \ldots, E_{k-1,k}$ and $E_{k,k+1}$ to zero, respectively. Assume that $\phi(E_{i-1,i}) = 0$, $i = 1, 2, \ldots, k$, and consider the action of ϕ on $E_{k,k+1}$. By definition of local derivations, the action of ϕ on $E_{k,k+1}$ agrees with that of a derivation on it. So there exist a diagonal matrix $H = \text{diag}\{d_1, d_2, \ldots, d_n\} \in D_n(R)$, an upper triangular matrix $X = \sum_{1 \leq i < j \leq n} a_{ij} E_{ij}$ and

 $\alpha = (c_2, c_3, \dots, c_{n-2}) \in \mathbb{R}^{n-3}$ such that

$$\phi(E_{k,k+1}) = [\operatorname{ad} X + \eta_H + \mu_\alpha](E_{k,k+1}), \text{ when } 1 < k < n-1;$$

$$\phi(E_{k,k+1}) = [\operatorname{ad} X + \eta_H](E_{k,k+1}), \text{ when } k = 1 \text{ or } n-1.$$

When the first case occurs,

$$\phi(E_{k,k+1}) = (d_k - d_{k+1})E_{k,k+1} + (XE_{k,k+1} - E_{k,k+1}X) + c_kE_{1n}$$

Choose $\alpha_k = (0, 0, \dots, 0, -c_k, 0, \dots, 0) \in \mathbb{R}^{n-3}$ with $-c_k$ in the (k-1)-th position. Set

$$H_k = \text{diag}\{0, \dots, 0, d_k - d_{k+1}, 0, \dots, 0\}$$

with $d_k - d_{k+1}$ in the (k+1)-th position. Let $\psi_1 = \mu_{\alpha_k} + \eta_{H_k}$. Then $\psi_1 + \phi$, denoted by ϕ_1 , maps $E_{k,k+1}$ to $XE_{k,k+1} - E_{k,k+1}X$, and $\phi_1(E_{i,i+1}) = 0$ for $i = 1, 2, \ldots, k-1$.

Rewrite X as a block matrix: $X = \begin{pmatrix} X_1 & X_2 \\ 0 & X_3 \end{pmatrix}$, where $X_1 \in N_k(R), X_3 \in N_{n-k}(R)$. Denote by $E_{ik}^{(k)}$ the $k \times k$ matrix unit; by $E^{(k)}$ the $k \times k$ identity matrix. Then

$$\phi_1(E_{k,k+1}) = XE_{k,k+1} - E_{k,k+1}X = \begin{pmatrix} X_1E_{kk}^{(k)} & 0\\ 0 & 0 \end{pmatrix} E_{k,k+1} - E_{k,k+1} \begin{pmatrix} 0 & 0\\ 0 & E_{11}^{(n-k)}X_3 \end{pmatrix}.$$

For $1 \le i \le k-2$, since $E_{i,i+1} + E_{k,k+1}$ and $E_{k,k+1}$ are square nilpotent, by Lemma 3.1 we have

$$\phi_1(E_{k,k+1})E_{i,i+1} + E_{i,i+1}\phi_1(E_{k,k+1}) = 0$$

This shows that $a_{i+1,k} = 0$ for i = 1, 2, ..., k - 2. Set $Y_1 = \sum_{i=1}^{k-1} a_{i,k} E_{i,k}^{(k)}$ and set $Y = \begin{pmatrix} Y_1 & 0 \\ 0 & X_3 \end{pmatrix}$. It can be verified that

$$\phi_1(E_{k,k+1}) = \begin{pmatrix} Y_1 E_{kk}^{(k)} & 0\\ 0 & 0 \end{pmatrix} E_{k,k+1} - E_{k,k+1} \begin{pmatrix} 0 & 0\\ 0 & E_{11}^{(n-k)} X_3 \end{pmatrix} = Y E_{k,k+1} - E_{k,k+1} Y.$$

Let $\psi_2 = -\operatorname{ad} Y$. Then $\psi_2 + \phi_1$ maps $E_{k,k+1}$ to zero. Simultaneously, $\psi_2 + \phi_1$ maps E_{12}, E_{23}, \ldots , $E_{k-1,k}$ to zero, respectively (recall that $a_{i,k} = 0$ for $i = 2, 3, \ldots, k-1$). This means that if we choose $\psi = -\operatorname{ad} Y + \mu_{\alpha_k} + \eta_{H_k}$, then $\psi + \phi$ maps $E_{12}, E_{23}, \ldots, E_{k,k+1}$ to zero, respectively, as desired.

When the latter occurs, Y, H_k are selected as above, and let $\psi = \eta_{H_k} - \operatorname{ad} Y$. Then the assertion also holds. \Box

Lemma 3.4 Let ϕ be a local derivation of $N_4(R)$. Suppose $\phi(E_{13}) = \sum_{1 \le i < j \le 4} a_{ij} E_{ij}$ and $\phi(E_{24}) = \sum_{1 \le i < j \le 4} b_{ij} E_{ij}$. If $\phi(E_{i,i+1}) = 0$ for i = 1, 2, 3, then

(i) $a_{i,i+1} = a_{24} = b_{i,i+1} = b_{13} = 0$ for i = 1, 2, 3;

- (ii) $a_{13} = b_{24}$, and a_{13} is divisible when R is a domain;
- (iii) Both a_{14} and b_{14} are generalized divisible.

Proof By Lemma 3.2, we know that $a_{i,i+1} = b_{i,i+1} = 0$ for i = 1, 2, 3. Since $E_{12} + E_{13}$ and E_{13}

are square nilpotent, by Lemma 3.1 we have

$$E_{12}\phi(E_{13}) + \phi(E_{13})E_{12} = 0.$$

This results in $a_{24} = 0$. Similarly, $b_{13} = 0$. This completes (i).

Now we consider the action of ϕ on $E_{12} + E_{13} - E_{34} + E_{24}$. On the one hand, the result is $a_{13}E_{13} + b_{24}E_{24} \pmod{RE_{14}}$. On the other hand, this action agrees with a derivation of $N_4(R)$ on it. Thus by Lemma 2.1, there exist $D = \text{diag}\{d_1, d_2, d_3, d_4\} \in D_4(R)$ and $X = \sum_{1 \le i \le j \le 4} r_{ij}E_{ij} \in N_4(R)$ such that

$$\begin{split} \phi(E_{12} + E_{13} - E_{34} + E_{24}) \\ &= (D + X)(E_{12} + E_{13} - E_{34} + E_{24}) - (E_{12} + E_{13} - E_{34} + E_{24})(D + X) \\ &\equiv (d_1 - d_2)E_{12} + (d_1 - d_3 - r_{23})E_{13} - (d_3 - d_4)E_{34} + (d_2 - d_4 - r_{23})E_{24} \pmod{RE_{14}}. \end{split}$$

By comparing the two results, we have that $d_1 = d_2$, $d_3 = d_4$. Then we further get

$$a_{13} = d_1 - d_3 - r_{23} = d_2 - d_4 - r_{23} = b_{24}.$$

Now we go on proving that a_{13} is divisible. For any $a \in R^*$, consider the action of ϕ on $aE_{12} + aE_{23} + E_{34} + E_{13}$. On the one hand,

$$\phi(aE_{12} + aE_{23} + E_{34} + E_{13}) \equiv a_{13}E_{13} \pmod{RE_{24} + RE_{14}}.$$

On the other hand, by Lemma 2.1, there exist

$$C = \text{diag}\{c_1, c_2, c_3, c_4\} \in D_4(R), \quad Y = \sum_{1 \le i < j \le 4} s_{ij} E_{ij} \in N_4(R)$$

such that

$$\phi(aE_{12} + aE_{23} + E_{34} + E_{13}) \equiv (C + Y)(aE_{12} + aE_{23} + E_{34} + E_{13}) - (aE_{12} + aE_{23} + E_{34} + E_{13})(C + Y) \pmod{RE_{24} + RE_{14}}$$
$$\equiv a(c_1 - c_2)E_{12} + a(c_2 - c_3)E_{23} + (c_3 - c_4)E_{34} + (c_1 - c_3 + as_{12} - as_{23})E_{13}(\mod{RE_{24} + RE_{14}}).$$

By comparing the two results, we have that $c_1 = c_2 = c_3 = c_4$ and $a_{13} = a(s_{12} - s_{23})$. This means that any nonzero element a in R is a factor of a_{13} , forcing $a_{13} \in V(R)$. This completes (ii).

The left task of this lemma is to show that a_{14} and b_{14} are generalized divisible. For any $a \in R^*$, consider the action of ϕ on $E_{13} + aE_{23}$. On the one hand, the result is $a_{13}E_{13} + a_{14}E_{14}$. On the other hand, there exist certain $H = \text{diag}\{h_1, h_2, h_3, h_4\} \in D_4(R)$, $c \in R$ and $Z = \sum_{1 \le i < j \le 4} t_{ij}E_{ij} \in N_4(R)$ such that

$$\phi(E_{13} + aE_{23}) = (H + Z)(E_{13} + aE_{23}) - (E_{13} + aE_{23})(H + Z) + acE_{14}$$
$$= (h_1 - h_3 + at_{12})E_{13} + a(h_2 - h_3)E_{23} - at_{34}E_{24} + (ac - t_{34})E_{14}.$$

By comparing, we have that $at_{34} = 0$ and $a_{14} = ac - t_{34}$. Set q = c and $r = -t_{34}$, we see that $a_{14} = aq + r$ and ar = 0. Therefore, a_{14} is generalized divisible. Similarly, $b_{14} \in W(R)$. This

completes (iii). \Box

Lemma 3.5 Let R be a domain and ϕ a local derivation of $N_4(R)$ satisfying $\phi(E_{i,i+1}) = 0$ for i = 1, 2, 3. If $\phi(E_{13}) = sE_{13}$, $\phi(E_{24}) = sE_{24}$ with $s \in R$, then s is strongly divisible.

Proof By Lemma 3.4, we have known that s is divisible. We now only need to prove that, for any given $a_{12}, a_{23}, a_{34} \in R^*$ and $a_{13}, a_{24} \in R$, Equation (2.1) on variables: $\{x_{12}, x_{23}, x_{34}, x_{13}, x_{24}, x_{14}\}$ has at least one solution in R^6 . For our purpose, we consider the action of ϕ on $A = \sum_{i=1}^{3} a_{i,i+1}E_{i,i+1} + a_{13}E_{13} + a_{24}E_{24}$. The result, by assumption on ϕ , is $sa_{13}E_{13} + sa_{24}E_{24}$. On the other hand, the action of ϕ on A agrees with that of a derivation on it, thus there exist $c \in R$, $X = \sum_{1 \leq i < j \leq 4} u_{ij}E_{ij} \in N_4(R)$ and $H = \text{diag}\{d_1, d_2, d_3, d_4\} \in D_4(R)$ such that $\phi(A) = (\eta_H + \text{ad } X + \mu_c)(A)$. The result of this action should also be

$$\phi(A) = \sum_{i=1}^{3} a_{i,i+1}(d_i - d_{i+1})E_{i,i+1} + (d_1a_{13} - d_3a_{13} + a_{23}u_{12} - a_{12}u_{23})E_{13} + (d_2a_{24} - d_4a_{24} + a_{34}u_{23} - a_{23}u_{34})E_{24} + (a_{24}u_{12} + a_{34}u_{13} - a_{13}u_{34} - a_{12}u_{24} + a_{23}c)E_{14}.$$

By comparing the two results, we firstly have that $d_1 = d_2 = d_3 = d_4$, and then we further get

$$\begin{cases} a_{23}u_{12} - a_{12}u_{23} = sa_{13}, \\ a_{34}u_{23} - a_{23}u_{34} = sa_{24}, \\ a_{24}u_{12} + a_{34}u_{13} - a_{13}u_{34} - a_{12}u_{24} + a_{23}c = 0. \end{cases}$$

This shows that Equation (2.1) has a solution

$$\begin{cases} x_{12} = u_{12}; & x_{13} = u_{13}; \\ x_{23} = u_{23}; & x_{24} = u_{24}; \\ x_{34} = u_{34}; & x_{14} = c, \end{cases}$$

which implies that $s \in S(R)$. \Box

The following is the main theorem of this article.

Theorem 3.6 Let R be a domain and ϕ an R-linear map of $N_n(R)$ $(2 \le n \le 4)$ to itself. Then ϕ is a local derivation of $N_n(R)$ if and only if that

- (i) When n = 2, $\phi = \eta_H$;
- (ii) When n = 3, $\phi = \operatorname{ad} X + \eta_H + \psi_v$;
- (iii) When n = 4, $\phi = \operatorname{ad} X + \eta_H + \mu_c + \phi_{w_1,w_2} + \psi_v + \theta_s$,

where ad X is an inner derivation induced by $X \in N_n(R)$; η_H is a diagonal derivation induced by $H \in D_n(R)$; μ_c is a central derivation induced by $c \in R$; ψ_v is an extensible local derivation induced by $v \in V(R)$; ϕ_{w_1,w_2} is a local central derivation induced by $w_1, w_2 \in W(R)$ and θ_s is a contractible local derivation induced by $s \in S(R)$.

Proof The sufficiency is obvious by Section 2. For the necessity, we give the proof in three cases.

Case 1 n = 2.

It is clear that $\phi(E_{12}) = dE_{12}$ for $d \in \mathbb{R}$. Then we see that $\phi = \eta_H$, where $H = \text{diag}\{d, 0\}$.

Case 2 n = 3.

By Lemma 3.3, we can choose $H \in D_3(R), X \in N_3(R)$ such that $\eta_H + \operatorname{ad} X + \phi$ maps E_{12}, E_{23} to zero, respectively. Denote $\eta_H + \operatorname{ad} X + \phi$ by ϕ_1 and suppose $\phi_1(E_{13}) = vE_{13}$ (using Lemma 3.2). For any $a \in R^*$, consider the action of ϕ_1 on $A = aE_{12} + aE_{23} + E_{13}$, we have that

$$\phi_1(A) = vE_{13}$$

On the other hand, the action of ϕ_1 on A agrees with that of a derivation of $N_3(R)$ on it. Thus there exist $D = \text{diag}\{d_1, d_2, d_3\} \in D_3(R), Y = \sum_{1 \le i < j \le 3} a_{ij} E_{ij}^{(3)} \in N_3(R)$ such that

$$\phi_1(A) = (\eta_D + \operatorname{ad} Y)(A) = a(d_1 - d_2)E_{12} + a(d_2 - d_3)E_{23} + (d_1 - d_3 + aa_{12} - aa_{23})E_{13}$$

By comparing, we see that $d_1 = d_2 = d_3$. We further get $v = a(a_{12} - a_{23})$. Therefore v is divisible. Using $v \in V(R)$, we construct the extensible local derivation ψ_v of $N_3(R)$. It is easy to see that ϕ_1 is exactly ψ_v . So $\phi = -\operatorname{ad} X - \eta_H + \psi_v$, as desired.

Case 3 n = 4.

By Lemma 3.3, we can choose $H \in D_4(R), X \in N_4(R)$ and $c \in R$ such that $\mu_c + \eta_H + \operatorname{ad} X + \phi$ maps E_{12}, E_{23}, E_{34} to zero, respectively. Denote $\mu_c + \eta_H + \operatorname{ad} X + \phi$ by ϕ_1 . By Lemma 3.4, we may assume that $\phi_1(E_{13}) = sE_{13} + cE_{14}$ and $\phi_1(E_{24}) = sE_{24} + dE_{14}$, where $c, d \in W(R)$. Set $w_1 = -c, w_2 = -d$. Then w_1, w_2 also are generalized divisible. Using w_1, w_2 , we construct the local central derivation ϕ_{w_1,w_2} of $N_4(R)$. Denote $\phi_{w_1,w_2} + \phi_1$ by ϕ_2 . Then one can verify that $\phi_2(E_{13}) = sE_{13}$ and $\phi_2(E_{24}) = sE_{24}$. Suppose that $\phi_2(E_{14}) = vE_{14}$. As in case 2 we can prove that $v \in V(R)$ (the similar process is omitted). Using $v \in V(R)$, we construct the extensible local derivation ψ_v of $N_4(R)$, and denote $-\psi_v + \phi_2$ by ϕ_3 . Then $\phi_3(E_{i,i+1}) = 0$ for i = 1, 2, 3, $\phi_3(E_{14}) = 0$ and ϕ_3 maps E_{13} to sE_{13} , maps E_{24} to sE_{24} , respectively. By Lemma 3.5, we know that s is strongly divisible. We use s to construct the contractible local derivation θ_s of $N_4(R)$. It is easy to check that ϕ_3 is exactly θ_s . In the end we obtain

$$\phi = -\operatorname{ad} X - \eta_H - \mu_c - \phi_{w_1, w_2} + \psi_v + \theta_s.$$

This completes the proof. \Box

Remark 3.7 It is easy to see that the decomposition of a local derivation ϕ on $N_n(R)$ $(n \leq 4)$ into the sum of those standard ones (as in Theorem 3.6) is unique. In Theorem 3.6, R is assumed to be a domain. We conjecture that Theorem 3.6 also holds when this assumption is removed.

References

- LARSON D R. Reflexivity, algebraic reflexivity and linear interpolation [J]. Amer. J. Math., 1988, 110(2): 283–299.
- [2] CRIST R. Local automorphisms [J]. Proc. Amer. Math. Soc., 2000, **128**(5): 1409–1414.
- [3] CRIST R L. Local derivations on operator algebras [J]. J. Funct. Anal., 1996, 135(1): 76–92.
- [4] KADISON R V. Local derivations [J]. J. Algebra, 1990, 130(2): 494–509.
- [5] MOLNÁR L. Local automorphisms of operator algebras on Banach spaces [J]. Proc. Amer. Math. Soc., 2003, 131(6): 1867–1874.

- [6] ZHANG Jianhua, PAN Fangfang, YANG Aili. Local derivations on certain CSL algebras [J]. Linear Algebra Appl., 2006, 413(1): 93–99.
- [7] HADWIN D, LI Jiankui. Local derivations and local automorphisms [J]. J. Math. Anal. Appl., 2004, 290(2): 702-714.
- [8] BREŠAR M, ŠEMRL P. Mappings which preserve idempotents, local automorphisms, and local derivations
 [J]. Canad. J. Math., 1993, 45(3): 483–496.
- [9] ŠEMRL P. Local automorphisms and derivations on $\mathscr{B}(H)$ [J]. Proc. Amer. Math. Soc., 1997, 125(9): 2677–2680.
- [10] ZHANG Jianhua, JI Guoxing, CAO Huaixin. Local derivations of nest subalgebras of von Neumann algebras
 [J]. Linear Algebra Appl., 2004, 392: 61–69.
- [11] OU Shikun, WANG Dengyin, YAO Ruiping. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2007, 424(2-3): 378–383.
- [12] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369–377.
- BENKOVIČ D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl., 2005, 397: 235–244.
- [14] BJERREGAARD P A, LOOS O, GONZÁLEZ C M. Derivations and automorphisms of Jordan algebras in characteristic two [J]. J. Algebra, 2005, 285(1): 146–181.
- [15] BREŠAR M. Jordan mappings of semiprime rings [J]. J. Algebra, 1989, 127(1): 218–228.
- [16] CAO You'an, WANG Jingtong. A note on algebra automorphisms of strictly upper triangular matrices over commutative rings [J]. Linear Algebra Appl., 2000, **311**(1-3): 187–193.
- [17] CAO You'an. Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings [J]. Linear Algebra Appl., 2001, **329**(1-3): 175–187.
- [18] CAO You'an, TAN Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105–122.