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Abstract In this paper, we discuss fuzzy simplex and fuzzy convex hull, and give several
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1. Introduction

In many scientific and engineering applications, the fuzzy set concept plays an important

role. The fuzziness appears when we need to perform, on manifold, calculations with imprecision

variables. The fuzzy set theory was introduced initially by Zadeh [1] in 1965. In the theory and

applications of fuzzy sets, convexity is a most useful concept. In fact, in the basic and classical

paper [1], Zadeh paid special attention to the investigation of the convex fuzzy sets which covers

nearly the second half of the space of the paper.

Following the seminal work of Zadeh on the definition of a convex fuzzy set, Ammar and

Metz defined another type of convex fuzzy sets in [2]. A lot of scholars have discussed various

aspects of the theory and applications of fuzzy convex analysis. In [3], by use of the relations

between fuzzy points and fuzzy sets, Yuan and Lee gave some generalizations of convex fuzzy set.

In [4], Wu and Cheng introduced and studied the concept of semi-strictly convex fuzzy sets, and

presented the important connections between these convex fuzzy sets. In order to solve the open

problem in fuzzy analysis that we proposed in [5], we introduced some new and more general

definitions in the area of fuzzy starshapedness, and developed several theorems on the shadows

of starshaped fuzzy sets [6], which generalize the important results obtained by Liu [7]. The
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aim of this paper is to discuss the fuzzy simplex which is the convex hull of a set of finite fuzzy

points, and study the representations of fuzzy convex hull of a fuzzy set by fuzzy simplex. For

the new progress about fuzzy convex analysis, one can refer to [8–15].

2. Preliminaries

A fuzzy set µ of Euclidean space Rn is characterized by a membership function µ(x) which

associates with each point in Rn a real number in the interval [0, 1], with the value of µ(x) at x

representing the “grade of membership” of x in µ (see [1]). We denote the totality of fuzzy set

of Rn by F (Rn).

The ordinary subsets of Rn, sometimes called “crisp sets”, can be considered as a particular

case of a fuzzy set with membership function which maps into {0, 1}.

Definition 1 ([16]) For a fuzzy set µ, its support set, denoted by supp(µ), is defined as

supp(µ) = {x ∈ Rn : µ(x) > 0} .

Definition 2 ([17]) For a fuzzy set µ and each α ∈ [0, 1], the α-cut of µ, denoted by [µ]α, is

defined as

[µ]α =

{

{x ∈ Rn : µ(x) ≥ α}, if α ∈ (0, 1],

supp(µ), if α = 0.

Definition 3 ([18]) A fuzzy set in Rn is called a fuzzy point if and only if it takes the value 0

for all y ∈ Rn except one, say x ∈ Rn. If its value at x is r (0 < r ≤ 1) we denote the fuzzy

point by xr, where the point x is called its support.

Definition 4 ([1]) A fuzzy set µ ∈ F (Rn) is said to be fuzzy convex if, for all x, y ∈ Rn,

µ(λx + (1 − λ)y) ≥ min{µ(x), µ(y)}, 0 ≤ λ ≤ 1.

There are some well known results.

Lemma 1 ([17]) A fuzzy set µ ∈ F (Rn) is fuzzy convex if and only if its α-cuts are convex crisp

sets in Rn.

Definition 5 ([18]) The fuzzy point xλ is said to be contained in a fuzzy set µ, or to belong to

µ, denoted by xλ ∈ µ, if and only if λ ≤ µ(x).

Lemma 2 ([3]) A fuzzy set µ ∈ F (Rn) is fuzzy convex if and only if for any two fuzzy points

xλ, yγ ,

xλ, yγ ∈ µ, α ∈ [0, 1] ⇒ αxλ + (1 − α)yγ ∈ µ.

Definition 6 (Extension Principle [17]) Let X, Y be two non-empty sets of Rn, f : X → Y and

µ belong to F (X). Then f(µ) is the fuzzy set in Y defined by

f(µ)(y) =

{

sup{µ(x) : x ∈ f−1(y)}, if f−1(y) 6= ∅,

0, if f−1(y) = ∅, y ∈ Y.
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Lemma 3 Let x1
a, x2

b be two fuzzy points in Rn. Then, for any λ ∈ [0, 1], we have

λx1
a + (1 − λ)x2

b = (λx1 + (1 − λ)x2)min{a,b}.

Proof Define the mapping f : Rn × Rn → Rn as f(x1, x2) = x1 + x2, and define g : Rn → Rn

as g(x) = kx, where k ∈ R is a constant. By Extension Principle, we have that for fuzzy points

x1
a, x2

b , x1
a +x2

b = (x1 +x2)min{a,b}, kx1
a = (kx1)a and kx2

b = (kx2)b for any k ∈ R. Consequently,

we have that

λx1
a + (1 − λ)x2

b = (λx1 + (1 − λ)x2)min{a,b}

for each λ ∈ [0, 1]. 2

Remark 1 By this statement we have for k, h ∈ R, kxr + hxr = (kx + hx)r = (k + h)xr and

for fuzzy points x1
a, x2

b , if a < b, then 0x1
a + x2

b = x2
a 6= x2

b .

Lemma 4 A fuzzy set µ ∈ F (Rn) is fuzzy convex if and only if for any two fuzzy points xλ, yγ

and α ∈ [0, 1],

xλ, yγ ∈ µ and λ = µ(x), γ = µ(y) ⇒ αxλ + (1 − α)yγ ∈ µ.

Proof Suppose µ is fuzzy convex. By Lemma 2 we have that for any two fuzzy points xλ, yγ

and α ∈ [0, 1], if xλ, yγ belong to µ and λ = µ(x), then γ = µ(y) implies αxλ + (1 − α)yγ ∈

µ. Conversely, let xλ, yγ belong to µ, that is, λ ≤ µ(x) and γ ≤ µ(y). Thus min{λ, γ} ≤

min{µ(x), µ(y)}. Since fuzzy points xµ(x), yµ(y) belong to µ, by the hypothesis we have αxµ(x) +

(1−α)yµ(y) ∈ µ, for each α ∈ [0, 1]. Consequently, by Lemma 3 we have αxλ + (1−α)yγ ∈ µ. 2

Definition 7 ([19]) If µ is a fuzzy set, then its convex hull is defined as

conv(µ) = inf{ν : µ ⊆ ν, ν is convex} = the smallest convex fuzzy set containing µ.

As usual, I will be used to denote the unit interval. For any x ∈ Rn and p ∈ N, put

C(x, p) = {{x1, . . . , xp} ⊂ Rn : there exist αi ∈ I, x =

p
∑

i=1

αixi,

p
∑

i=1

αi = 1},

and put

D(x, n + 1) = {{y1, . . . , yk} ⊂ Rn :

there exist αi ∈ I, x =

n+1
∑

i=1

αixi,

n+1
∑

i=1

αi = 1, xi ∈ {y1, . . . , yk}, k ≤ n + 1}.

In the sequel, we will use Proposition 6.3 in [19].

Proposition 6.3 in [19] is as follows:

The convex hull of a fuzzy set µ is given by

convµ(x) = sup
p∈N

sup
A∈C(x,p)

inf{µ(y) : y ∈ A}.

Definition 8 The convex hull ∆̃n of a finite union set of n + 1 fuzzy points x1
r1

, x2
r2

, . . . , xn+1
rn+1

in Rm is called an n-dimensional fuzzy simplex if the flat of minimal dimension containing the
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support set {x1, x2, . . . , xn+1} has dimension n. The points xi
ri

(i = 1, . . . , n+1) are called fuzzy

vertices.

3. Fuzzy simplex and convex hull

In this section, we will give the main results about fuzzy simplex and convex hull.

Theorem 1 If ∆̃n is an n-dimensional fuzzy simplex in Rm with fuzzy vertices xi
ri

(i = 1, . . . , n+

1), then ∆̃n consists of all fuzzy points xr in Rm for which constants αj ≥ 0 (j = 1, . . . , n + 1)

exist such that

xr =
∑n+1

j=1
αjy

j
rj

,
∑n+1

j=1
αj = 1, yj

rj
∈ {xi

ri
: i = 1, . . . , n + 1}. (1)

Proof The theorem is clearly true for n = 0. Let the set of fuzzy point xr for which (1) holds

be denoted by L(∆̃n).

Firstly, we show that L(∆̃n) is a fuzzy convex set. Suppose n = 1. If xr ∈ L(∆̃1), zl ∈

L(∆̃1), then, without loss of generality, let xr =
∑2

j=1 αjy
j
rj

, zl =
∑2

k=1 βkyk
rk

,
∑2

j=1 αj = 1,
∑2

k=1 βk = 1, yj
rj

, yk
rk

∈ {xi
ri

: i = 1, 2}.

Now there are several cases. We only prove three cases of them, and the others can be proved

similarly.

Case 1 If xr = α1x
1
r1

+ (1 − α1)x
2
r2

and zl = β1x
1
r1

+ (1 − β1)x
2
r2

. Then for each λ ∈ [0, 1], we

have

λxr + (1 − λ)zl = (λα1 + (1 − λ)β1)x
1
r1

+ (λ(1 − α1) + (1 − λ)(1 − β1))x
2
r2

,

and (λα1 +(1−λ)β1)+ (λ(1−α1)+ (1−λ)(1−β1)) = 1 which implies λxr +(1−λ)zl ∈ L(∆̃1).

Case 2 If xr = α1x
2
r2

+ (1 − α1)x
1
r1

and zl = β1x
1
r1

+ (1 − β1)x
2
r2

. Then for each λ ∈ [0, 1], we

have

λxr + (1 − λ)zl = (λ(1 − α1) + (1 − λ)β1)x
1
r1

+ (λα1 + (1 − λ)(1 − β1))x
2
r2

,

and (λ(1−α1)+ (1−λ)β1)+ (λα1 +(1−λ)(1−β1)) = 1 which implies λxr +(1−λ)zl ∈ L(∆̃1).

Case 3 If xr = α1x
1
r1

+(1−α1)x
1
r1

= x1
r1

and zl = β1x
1
r1

+(1−β1)x
2
r2

. Then for each λ ∈ [0, 1],

we have

λxr + (1 − λ)zl = (λ + (1 − λ)β1)x
1
r1

+ (1 − λ)(1 − β1)x
2
r2

,

and (λ + (1 − λ)β1) + (1 − λ)(1 − β1) = 1 which implies λxr + (1 − λ)zl ∈ L(∆̃1).

All in all, by Lemma 4 we have L(∆̃1) is fuzzy convex. Also x1
r1

, x2
r2

∈ L(∆̃1). Hence

L(∆̃1) ⊇ ∆̃1. Similarly, we can prove L(∆̃n) is fuzzy convex and L(∆̃n) ⊇ ∆̃n.

In fact, by Remark 1, the condition (1) is equivalent to that there are constants αj ≥ 0 (j =

1, . . . , k; k ≤ n + 1) such that

xr =
∑k

j=1
αjy

j
rj

,
∑k

j=1
αj = 1, {yj

rj
: j = 1, . . . , k} ⊆ {xi

ri
: i = 1, . . . , n + 1}. (2)

We prove L(∆̃n) ⊆ ∆̃n by induction. It is clearly true for n = 0. Assume it is true for

1, . . . , n − 1. Let xr ∈ L(∆̃n) and xr =
∑k

j=1 αjy
j
rj

. Rearranging if necessary, we may suppose
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0 ≤ α1 < 1 and y1
r1

= x1
r1

. Then xr = α1x
1
r1

+
∑k

j=2 αjy
j
rj

≡ α1x
1
r1

+ (1 − α1)zβ , where

zβ =

k
∑

j=2

αjy
j
rj

/(1 − α1),

k
∑

j=2

αj/(1−α1) = 1

and {yj
rj

: j = 2, . . . , k} ⊆ {xi
ri

: i = 2, . . . , n + 1}. By our induction assumption, zβ ∈

conv(
⋃k

j=2 yj
rj

). Since conv(
⋃k

j=2 yj
rj

) ⊆ ∆̃n, we have xr = α1x
1
r1

+ (1 − α1)zβ ∈ ∆̃n, so that

L(∆̃n) ⊆ ∆̃n. This completes the whole proof that L(∆̃n) = ∆̃n. 2

Corollary 1 If ∆̃n is an n-dimensional fuzzy simplex in Rm with fuzzy vertices xi
ri

(i =

1, . . . , n+1), then ∆̃n consists of all points xr in Rm for which constants αj ≥ 0 (j = 1, . . . , m+1)

exist such that

xr =

m+1
∑

j=1

αjy
j
rj

,

m+1
∑

j=1

αj = 1, yj
rj

∈ {xi
ri

: i = 1, . . . , n + 1}. (3)

Proof If n = m, then we have nothing to prove. Assume n < m. By Theorem 1, there are

constants αj ≥ 0 (j = 1, . . . , n + 1) such that

xr =
n+1
∑

j=1

αjy
j
rj

,
n+1
∑

j=1

αj = 1, yj
rj

∈ {xi
ri

: i = 1, . . . , n + 1}.

Let αn+2 =, . . . , = αm+1 = 0 and yn+2
rn+2

=, . . . , = ym+1
rm+1

= yn+1
rn+1

. Then by Remark 1, we get the

desired result. 2

Let Fc(R
m) denote the collection of all fuzzy sets with the following properties:

1) µ is upper semi-continuous;

2) the closure of supp(µ) is compact.

Theorem 2 Let µ ∈ Fc(R
m). Then xr ∈ conv(µ) if and only if xr is contained in a finite-

dimensional fuzzy simplex ∆̃ whose vertices belong to µ.

Proof The union of all n-dimensional fuzzy simplices whose vertices belong to µ is denoted

by ∪∞
n=1Ãn and define K(µ) = ∪∞

n=1Ãn. Then K(µ) is fuzzy convex. To prove this, choose

xa, yb ∈ K(µ), smin{a,b} ≡ λxa + (1 − λ)yb, λ ∈ [0, 1].

Firstly we prove there exists a fuzzy simplex ∆̃h ⊆ K(µ) (h ≤ m) such that xa belongs to ∆̃h.

If a < K(µ)(x), then by the definition of K(µ), there exists a fuzzy simplex ∆̃h ⊆ K(µ) such that

∆̃h(x) > a which implies ∆̃h is the desired simplex. If a = K(µ)(x). Then for any positive integer

n, there exists an i(n)-dimensional fuzzy simplex ∆̃i(n) with vertices x
1(n)
r1(n), x

2(n)
r2(n), . . . , x

(i(n)+1)(n)
ri(n)+1(n)

such that ∆̃i(n)(x) ≥ (a−1/n). By Corollary 1, there are constants α(n)j ≥ 0 (j = 1, . . . , m+1)

such that

x∆̃i(n)(x) =

m+1
∑

j=1

α(n)jy(n)j ,

m+1
∑

j=1

α(n)j = 1, y(n)j ∈ {x
l(n)
rl(n) : l = 1, . . . , i(n) + 1}.

Since the closure of supp(µ) is compact and α(n)j belongs to [0, 1] (j = 1, . . . , m + 1, n =

1, 2, 3, . . .), passing to subsequence if necessary, we may assume that the sequences {α(n)jy(n)j}∞n=1
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(j = 1, . . . , m + 1) converge to the fuzzy points βjz
j
rj

(j = 1, . . . , m + 1) such that

xa =

m+1
∑

j=1

βjz
j
rj

,

m+1
∑

j=1

βj = 1.

For the fuzzy points zj
rj

(j = 1, . . . , m+1), without loss of generality, denote the set of all distinct

fuzzy points by B = {zj
rj

: j = 1, . . . , k + 1, k ≤ m}. Evidently, conv(B) is a fuzzy simplex ∆̃h

whose vertices belong to B, so that xa ∈ ∆̃h.

Similarly, there exists a fuzzy simplex ∆̃l ⊆ K(µ) (l ≤ m) with fuzzy vertices wi
ci

(i =

1, . . . , l + 1) such that yb ∈ ∆̃l.

Now for smin{a,b} ≡ λxa + (1 − λ)yb, one can prove by induction that smin{a,b} is contained

in a fuzzy simplex whose vertices belong to the set of fuzzy points {zj
rj

: j = 1, . . . , k + 1, } ∪

{wi
ci

: i = 1, . . . , l + 1}. Hence, smin{a,b} ∈ K(µ), so that K(µ) is fuzzy convex. Consequently,

conv(µ) ⊆ K(µ). Since Ãn ⊆ conv(µ) for each n, we have K(µ) ⊆ conv(µ). Thus, we have

K(µ) = conv(µ). 2

Proposition 6.10 in [19] is as follows:

For any fuzzy set µ and any α ∈ I we have

(conv µ)−1[α, 1] = conv(µ−1[α, 1])

and

(conv µ)−1]α, 1] = conv(µ−1]α, 1]).

However, as shown in the following counterexample, the first equation is not true in general.

Counterexample 1 Define a fuzzy set µ of R as

µ(x) =























1 + x, x ∈ [−1, 0),

1 − x, x ∈ (0, 1],

0.5, x = 0,

0, otherwise.

It is easy to see that

convµ(x) =











1 + x, x ∈ [−1, 0],

1 − x, x ∈ (0, 1],

0, otherwise.

For α = 1, by a simple calculation we have (conv µ)−1[1, 1] = (conv µ)−1{1} = {0}, but

conv(µ−1[1, 1]) = conv(µ−1{1}) = ∅, which contradicts Proposition 6.10 in [19].

In order to correct Proposition 6.10 in [19], we give a lemma which improves Proposition 6.3

in [19].

Lemma 5 The convex hull of a fuzzy set of n-dimensional Euclidean space Rn is given by

convµ(x) = supA∈D(x,n+1) inf{µ(y) : y ∈ A}.
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Proof Put

⌢
µ(x) = sup

p∈{1,...,n+1}

sup
A∈C(x,p)

inf{µ(y) : y ∈ A}, µ̂(x) = sup
A∈D(x,n+1)

inf{µ(y) : y ∈ A}.

Firstly, we prove
⌢
µ(x) = µ̂(x). Indeed for any A = {x1, . . . , xp} ∈ C(x, p), p ≤ n+1, let yj = xj ,

j = 1, . . . , p. Then there are

αi ∈ I, x =

n+1
∑

i=1

αixi,

n+1
∑

i=1

αi = 1,

where αp+1 =, . . . , = αn+1 = 0 and xp = xp+1, . . . , = xn+1 = yp. Thence A ∈ D(x, n + 1).

Conversely, for any A = {y1, . . . , yk} ∈ D(x, n + 1), there exist

αi ∈ I, x =

n+1
∑

i=1

αixi,

n+1
∑

i=1

αi = 1, xi ∈ {y1, . . . , yk}, k ≤ n + 1.

Rearranging those coefficients according to yi, we can get that there exist

βi ∈ I, x =

k
∑

i=1

βiyi,

k
∑

i=1

βi = 1, k ≤ n + 1,

which implies A ∈ C(x, k).

Now we prove
⌢
µ(x) = convµ(x). Evidently,

⌢
µ(x) ≤ convµ(x). Conversely, for any A =

{x1, . . . , xp} ∈ C(x, p) with p ≥ n + 2, there are αi ∈ I such that

x =

p
∑

i=1

αixi,

p
∑

i=1

αi = 1.

By Caratheodory Theorem [20] there exist n + 1 points in A such that the other points are the

convex combinations of those points. Without loss of generality, suppose they are x1, . . . , xn+1.

Thus there are bi(j) ∈ I, j = n + 2, . . . , p, i = 1, . . . , n + 1 such that

xj =

n+1
∑

i=1

bi(j)xi,

n+1
∑

i=1

bi(j) = 1.

Consequently, we have

x =

n+1
∑

i=1

αixi +

p
∑

j=n+2

αj

n+1
∑

i=1

bi(j)xi =

n+1
∑

i=1

(

αi +

p
∑

j=n+2

bi(j)αj

)

xi,

and
n+1
∑

i=1

(

αi +

p
∑

j=n+2

bi(j)αj

)

= 1,

which implies {x1, . . . , xn+1} ∈ C(x, n + 1). Since inf{µ(xi) : i = 1, . . . , p} ≤ inf{µ(xi) : i =

1, . . . , n + 1} and by the arbitrariness of A we have
⌢
µ(x) ≥ convµ(x) which completes the whole

proof. 2

Now, we state the correct form of Proposition 6.10 in [19] as follows.

Theorem 3 For any fuzzy set µ and any α ∈ I we have

(conv µ)−1]α, 1] = conv(µ−1]α, 1]).
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Furthermore, if µ belongs to Fc(R
m), then (conv µ)−1[α, 1] = conv(µ−1[α, 1]).

Proof Since R. Lowen did not give the detailed proof of Proposition 6.10 in [19], we will prove

the whole modified statement.

On the one hand, since convµ is a convex fuzzy set containing µ, we have that

(conv µ)−1]α, 1] ⊇ conv(µ−1]α, 1]) for α ∈ I.

On the other hand, for any given α ∈ I, let x belong to (conv µ)−1]α, 1]. Then by Proposition

6.3 in [19] there exist {x1, . . . , xp} ∈ C(x, p) such that

inf{µ(xi) : i = 1, . . . , p} > α,

and there are real numbers αi ∈ I, such that

x =

p
∑

i=1

αixi,

p
∑

i=1

αi = 1,

which implies x1, . . . , xp ∈ µ−1]α, 1] and x ∈ conv(µ−1]α, 1]).

Obviously, for α = 0, (conv µ)−1[0, 1] = conv(µ−1[0, 1]) = Rn. Thus we will suppose α > 0.

Similarly, we can get (conv µ)−1[α, 1] ⊇ conv(µ−1[α, 1]) for α ∈ I. For the converse part, let x

belong to (conv µ)−1[α, 1]. Then by Lemma 5 we have that there exist n+1 sequences {xm
i }∞m=1,

i = 1, . . . , n + 1 such that

x =

n+1
∑

i=1

αm
i xm

i ,

n+1
∑

i=1

αm
i = 1,

and inf{µ(xm
i ) : i = 1, . . . , n + 1} ≥ α − 1/m. Since the support set µ−1]0, 1] is compact

and the sequences {αm
i }∞m=1, i = 1, . . . , n + 1 are included in [0, 1], passing to subsequence if

necessary, we may assume that the sequences {xm
i }∞m=1, i = 1, . . . , n + 1 converge to the point

xi0, i = 1, . . . , n + 1 and the sequences {αm
i }∞m=1, i = 1, . . . , n + 1 converge to the point αi0,

i = 1, . . . , n + 1. Since µ is upper semi-continuous, we get that inf{µ(xi0 : i = 1, . . . , n + 1} ≥ α.

Moreover, we have

x =

n+1
∑

i=1

αi0xi0,

n+1
∑

i=1

αi0 = 1,

which implies x ∈ conv(µ−1[α, 1]). We complete the whole proof here. 2

Remark 2 Counterexample 1 has shown that Condition (i) is indispensable and the following

example will show Condition (ii) is also necessary.

Counterexample 2 Define a fuzzy set µ of R as

µ(x) =











1 − e−x, x ∈ [0, 1) ∪ (1, +∞),

1, x = 1,

0, otherwise.
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It is easy to see that

convµ(x) =











1 − e−x, x ∈ [0, 1),

1, x ∈ [1, +∞),

0, otherwise.

For α = 1, by a simple calculation we have (conv µ)−1[1, 1] = (conv µ)−1{1} = [1, +∞), but

conv(µ−1[1, 1]) = conv(µ−1{1}) = {1}.

Corollary 2 If fuzzy set µ is closed and µ ∈ Fc(R
m), then conv µ is closed.

Proof Analogous to the proof of Theorem 3. 2

Remark 3 In general, it is not true that if µ is closed, then conv µ is closed. There exist simple

counterexamples for ordinary sets.

Corollary 3 If ∆̃n is an n-dimensional fuzzy simplex in Rm with fuzzy vertices xi
ri

(i =

1, . . . , n+1). Then for each α ∈ (0, 1], the α-cut [∆̃n]α is an ordinary simplex in Rm; furthermore,

for 0 < α ≤ β ≤ 1, dim([∆̃n]α) ≥ dim ([∆̃n]β), where dim([∆̃n]α) denotes the dimension of the

simplex [∆̃n]α.

Proof Since the finite union set of n + 1 fuzzy points x1
r1

, x2
r2

, . . . , xn+1
rn+1

belongs to Fc(R
m),

the conclusion follows immediately from Theorem 3 because (conv µ)−1[α, 1] = [conv µ]α, and

conv(µ−1[α, 1]) = conv[µ]α for all α ∈ (0, 1]. 2

4. Conclusions

In this present investigation, fuzzy simplex has been defined and discussed. The main the-

orems (Theorems 1 and 2) completely characterize the fuzzy simplex and fuzzy convex hull in

Euclidean space Rn, and also extend the counterparts in classical mathematics. Furthermore,

we have improved the characterization theorem in [19] by Lemma 5 and have corrected Propo-

sition 6.10 in [19] by Theorem 3. We hope that our results of the fuzzy simplex may lead to

significant, new and innovative results in those related fields such as image representation and

pattern recognition [21, 22].
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