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Abstract This paper focuses on the study of the boundedness of convolution-type Calderén-
Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular
decomposition and interpolation theory, the author establishes the boundedness on certain end-
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1. Introduction

Let 2 = 2(R™) denote the space of Schwartz test functions {¢ € C°°(R"™) : suppy is
compact} and 2’ the space of Schwartz distributions (the dual of 2). Suppose that we have a

linear continuous mapping T : 2 — 2’ associated with a kernel K (x,y) in the sense that

(Tf.g) = / / 9()K (z,9) f(y)dady (1)

for test functions f and g with disjoint support. Assume that K(z,y) is continuous on 2 =
R" x R"\{z = y} and satisfies:

|K(z,y)| < Cilz —y[™™. (2)

If 2|z — 2| < |x — y|, then
Cylx — 'Y

|z —y|m+ ®)

for 0 < v < 1. And for f € L*(R") with compact support, Tf(z) = [ K(z,y)f(y)dy holds
for almost every x € (supp f)°. Assume also that T extends to a bounded operator on L?(R™).
Then T is said to be a Calderén-Zygmund (C-Z) operator [1], and written as T € CZO,,.

K (2,y) — K(2',y)| + | K (y,2) = K(y', z)| <
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Since C-Z operators were introduced by Coifman and Meyer, there has been significant
progress on the study of their boundedness on various function spaces. The prototypical re-
sult is the famous T1 theorem of David and Journé [2], which states that under the conditions
(2) and (3), T extends to a bounded operator on L? iff it satisfies the T1 condition:

T1 € BMO, T*1 e BMO, (4)

and the weak bounded condition:

(Tf,9)| < CsR"([ flloe + BRIV flloc)(lgllsc + RIVllso), )

VR >0, u€R", f, g€ C(B(u,R)).
Since then, many authors have been devoted to relaxing the regularity condition (3) (see [3,4]).
But up to now, it is still unknown whether (3) can be replaced by Hormander condition. To scale

the extent of being close to Hérmander condition, Yabuta [4] replaced the smooth condition by

the weak pointwise condition. For R = 1,2,.. ., he introduced the following notation:
w(R) = sup _sup |z —y["{|K(z,y) — K", y)| + |K(y,2) — K(y,2)[}.  (6)
T z—z'|<r

2BRr<|z—y|<2R+1r

It is clear that the condition ) -, w(R) < oo approaches Hormander condition infinitely. On
the other hand, Deng et al. [5] pro_ved that Hormander condition cannot ensure the boundedness
at least on certain endpoint function spaces; with the index used to measure the extent close to
Hérmander condition, Meyer and Yang achieved the boundedness on F7°? (1 < ¢ < 2) under the
condition that the index is at least 1. As a result, we try to consider convolution-type operators
and Hormander condition.

For an operator T associated with a kernel K (x,y) in the sense of (1), suppose also that T'

is a convolution-type operator, then K(z,y) can be written as

K(z,y) = K(z —y). (7)

In [6], it is proved that Hormander condition can ensure the boundedness on Besov spaces
Bqu (1 < p,q < o0) and on Triebel-Lizorkin spaces F]g’q (I<pg<ooorl=p<gq<2),
but this idea does not work for endpoint Triebel-Lizorkin spaces Flo 1 (2 < g < 0). Also, up to
the best knowledge of the author, it is not clear whether Hérmander condition can ensure the
boundedness on F*? (2 < ¢ < o0). Motivated by Yabuta’s notion (6), we introduce the following
notion:

B(R) =sup sup sup ||| K () — K (z + m)|, (8)

JEZ |m|<2-i—1 2R—i—1< || <2R—i

where R € Z and R > 0. And it is easy to verify that { B(R)}r>0 is a monotonically decreasing
sequence. In this paper, we try to introduce a new idea to get the boundedness on F 10 12<qg<

o0) under the weak pointwise regularity condition:

> B(R) < . (9)

R>0
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Definition 1 We say that K (z) € H if it satisfies (9) and cancellation condition:
| [ K@n(@)ds] < Coll + 10"l + [0%0]), W0(a) € CRBO.1),  (10)

where Yr(x) = ¢(F) (R > 0).
The purpose of this paper is to prove

Theorem 1 Suppose that T is a convolution-type operator associated with a kernel K(x) in
the sense of (1) and (7). If K(z) € H, then T is bounded on F"¢ (2 < q < 00).

This paper is organized as follows. Some preliminaries will be introduced in Section 2. Section
3 is devoted to the analysis of the kernel-distribution K (z). The proof of Theorem 1 relies on

wavelets and molecular decomposition, which will be given at the end of Section 4.

2. Preliminaries

Firstly, let us introduce some notation. Let N be the collection of all positive integers. As
usual, Z is the collection of all integers, and Z™, where n € N, denotes the lattice of all points
m = (mq,...,my) € R* with m; € Z. By S = S(R") we denote the Schwartz space of all
rapidly decreasing and infinitely differentiable functions, and by S’ its topological dual, that is,
the space of all tempered distributions. If ¢ € S, then

a6 = [ e olar, cer

denotes the Fourier transform of ¢. Here {x is the scalar product in R™. Throughout this paper,
C denotes a positive constant which is independent of the main parameters involved, but it may
vary from line to line.

In this paper, we use tensorial real-valued Meyer wavelets. For ¢ € R, denote by ®°(¢) and
®l(t) the father and mother wavelet, respectively. For x € R™ and ¢ = (g1, ¢€2,...,6,) € {0,1}",
let ®°(z) = [[;—, ®°(x;). Then there exist two positive numbers C, C’ such that

supp &<(€) C {€: C < [¢| < O}, Ve £0. (11)
For j € Z and k € Z™, let
Fin(x) =2% f(2z — k).

Denote

Eﬂ = {051}n\{0} and An:{)\ = (E,j,k),é‘ S Ena.] € Zak € Zn}v

then {®%, (z)}xea, is an orthonormal basis in L?(R™).

Let S’/ P be the collection of distributions modulo polynomial functions. For any distribution
f(x) € 8"/ P, if we can define f5, = (f(z), @5, (z)) (V(e,4,k) € Ay), then the following equality
is true in the sense of distribution

fz) = Z ff,kq’?,k(x)- (12)

(e,5,k)EA,
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For Besov spaces BS*‘I (1 <p,q < o) and Triebel-Lizorkin spaces Fz?’q (1<p<oo,1<g< ),
which are defined by Triebel in [7], they can be characterized by wavelets [8]. For j € Z and
keZ let Qi = {x:2'x—k €[0,1)"} and let (272 — k) be the characteristic function on the
cube Q; -

Lemma 1 Let f(x) € 8'/P be represented as (12).
(i) For 1< p, q¢ < oo, there exist two constants Cyp 4 and C,, , such that

) a
C.allf (2 ”BO"— Z2jqn(2 i Z| ikl”) ” i <C;I),q||f($)|\ggw

(ii) Similarly, for 1 < p < 00, 1 < ¢ < o0, there exist two constants C,, , and C]'qu such that

Coall 7@l gge < [ (30 2% 154175 = ) 7|

€.,k

< )@ o

In addition, we know that Bg’q = Fg’q (1 <q<o0) (see [7]).
Next, we review some facts about the molecular decomposition of Triebel-Lizorkin spaces
FP9(1 < g < 00) (see [8]). Put © = {Q,x,j € Z, k € Z"}.

Definition 2 Given 1 < g < co. We call a(x) an Fg)’q—molecule in B9, if there exists a cube
Qs,p € © such that:

. 1_
() a(e) = 5 gm0, 05@)i (2) lla@)lggr < 1Qupl
3,k CQs,p

Lemma 2 Given 1 < g < co. The following two conditions are equivalent:

(i) f(z) € P

(ii) There exist {A\m}tmen € ' and Fg’q—molecules bm(x) (m € N) such that f(x) =
D Ambm ().

This lemma will be pivotal in our paper. In fact, to prove that an operator T is bounded
on F% it suffices to check that the F{"%norm of Ta(z) is bounded and the boundedness is
independent of a(x), where a(z) is an arbitrary ngq—molecule. This strategy will be used in
Section 4.

In what follows, we recall the well-known interpolation property of Triebel-Lizorkin spaces,

which is proved in many real analysis books [8]. For 0 < 8 < 1,1 < pg, p1 < oo and 1 < g,

1_1-0_ 6 1_1-0 9
@1 < oo, let o =1=F+ % and ;= =F + -
Lemma 3 If||THFo ai_ poa; < C (i=0,1), then ||THF0q o0 < ciey.

Finally, we need also some known results related to the boundedness of non-convolution C-Z

operators. Here, we introduce a definition first.

Definition 3 Given v € (0,1]. For a non-convolution operator T' in the sense of (1), we say
that T' € SCZO,, if T satisfies (2), (3), (5) and the following strong T'1 condition:

T1="T*1=0. (13)

For an operator T' € SCZO,, the constant C; (i = 1,2,3) appearing in its definition is called
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C-Z constant of T'. And the following lemma can be directly deduced from the result of Frazier
et al. [9)].

Lemma 4 Given1 <g<ooand0 <~y <1. IfT € SCZO,, then T is bounded on Flo’q.

For |e||e'| # 0, if m > 0, denote &5 () = (@f,;o % ®)(27™x); if m < 0, denote ¥ (z) =
(@;ﬁ;_o * ®°)(x). In fact, since de (&) is compactly supported, there exists some constant C' such
that ®%¢ () = 0, |m| > C. In addition, for |¢||¢’| # 0 and |m| < C, we apply the properties of
Meyer wavelets to easily verify that << (z) € S and

/xi%if/ (x)dz =0, Va€Z, a>0,

where 7. denotes the smallest index i such that e; # 0. For |e||¢’| # 0 and m € Z, let TS be
the operator whose kernel is
K (w,y) = > 205 (272 — k)@ (27y — k).
Jik

Then we have

Lemma 5 For |¢||¢'| # 0 and |m| < C, there exists y € (0,1] such that T5° € SCZO.,. And
the C-Z constants of Tﬁf, are independent of €, &', m.

In fact, by the idea used to prove that H' defined by a wavelet basis is independent of the
wavelet basis chosen (see more details in Section 4 of Chapter 7 in Meyer [10]), we can easily

deduce this lemma.

3. Analysis of some distributions

This section is aimed to analyze some kernel-distributions. Assume that M is some positive
integer large enough. For any integer R > M + 3, set
7(R)=B(R—2)+27%(Co+ > B(R)).
R>1

V(e, j, k) € An, define b5, = (K (z), 5, (z)), then

J

Theorem 2 Given R > M + 6 and R € Z. There exists a constant C such that

(i) |65l < % V(e 3. k) € Ay and 2771 < [k < 2%
(i) Y pezn 054l < C2% (Co+ 35013 B(r)), Ve € E,, and j € Z.
And C is only dependent on M and n.
To prove it, we will apply the appropriate decomposition of Meyer wavelets which can be
deduced from the result in [6]. For € # 0, let i. be the smallest index ¢ such that €; # 0. Denote

by e € Z™ the vector whose component is 1 at the it"-position, and is 0 elsewhere.

Lemma 6 For ®°(z) (¢ # 0) and N € N, there exist ®(5N)(z), ;Iv)iN(:v)(k € Z™) such that
% (x) = Y pepm ai Y OERN) (2 — k) and

: N .
(i) 1™ < s
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(ii) RN (2) = Bf y(2) - B v (@ — 3e°);

(iii) supp @5, () C B(0,2");

(iv) Y0 <m < N, ||}, y(2)lcm < Cn;

(v) Vo €Z and 0 < a < N, fxi%iN(x)dx =0.

Fix ¢ € E,, m € Z" and N € N. For k(z) € K, set d51"" = (K(2), @\ (2)).

Lemma 7 Givene € E,, m € Z" and N € N, let ®(&™N)(z) be defined as in Lemma 6. Then
1) a5 < 002% Vj € Z and |k| < 2M+3.

(ii) |dj;,’j=N|<%k‘Rl> Vj€Z, R>M+4, 2871 < |k| < 2R

The above constant C' is only dependent on M, N and n.

Proof Given j € Z and |k| < 2M+3. By Lemma 6, we know that supp ®&™N)(z — k) C
B(0,2M+4). Further, we have supp ®(&"M) (2M+45 — k)  B(0,1). Together with the condition

(10), we have
oM+4

i — k)da| < 2%

|d§]r€n,N|_2T|/K smN)(
Next, we consider (ii). For R > M + 4 and 281 < |k| < 2% by Lemma 6, we get

N = [ K@ @)

in 1
- 27’/K(gc)( mN(2jx— k) — mN(QJx —k— 56 )d:v’
=9% ] / (K(z) — K(x+2777)) @5, y(272 — k)da|. (14)
And by supp ;Iv)an(x) C B(0,2M), one knows that, if x € supp &Dfn)N@jx — k), then 27 |z| ~ (1+

|k|) and 277 (|k| —2M) < |z| < 279(|k|+2M). Further, one gets that suppifn_’N(Wx—k)C A;(R)
where A;(R) = {z : 287277 <|z| < 2B+17}, Since A4,(R) can be decomposed into three parts:

{z: 287270 < |z| < 287170) Lo 287170 <o < 2879} and {z: 2879 < |z| < 2810,
together with (7), we have
|2|"|K () — K(z +2777'%)| < CB(R — 1), Yz € A;(R). (15)
Hence, from (14) and (15),

c2% 2% B(R-1
Ervand : 2J"/|<1> (2 — ylde < 22 BED)

- (1+|k| - (RO
Proof of Theorem 2 For any (¢, j, k) € A,,, by Lemma 6, there exists an integer N > n large
enough such that

b, = | / K (2)85 (x)dz| = 2%

/Z aSNoEmN) (97 — | — m)K (z)dz|.
Further,
05 ] = 27| / S N @tk (27 — 1) K (2)da. (16)
t
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Fix N = 2n + 1. Firstly, we consider (i) in Theorem 2. Given R > M + 6 and 2! < |k| < 25

k|<2—y/ S N eEthN (9l ) K (z)da|+

|t <2M+3

2% | / Z at_ (=R N) (97 — t)K (z)dz|

[t]>2M+3

= ]{%k +II],]€

For the term I fk, we apply Lemma 7 to get

jn 1
I < CCp2% —
sk = GGz Z (1+ |t — k|)2n+1

|t|<2M+3
in 1
<CCy2=z
) D T
CCy2%
(1 + [kt

Then, we estimate 11 JRk By Lemma 7, we have

in B(r—-1)
foecat Yy :
- _ n+1 n
D N e )
c2% B(r—1)
D DD DR o e nivest
ST Sz (1 H IR
c2% B(r —1)
o Z Y. ar—meat
_ n+1
1+|k| r=M+4 27— 1<|t\<2r( +t = k)
> Y e
_ n+1
r>R—127—1<|t|<2" (1 + |t k|)
2%
(TR

As for IIRk , by Lemma 7 and |t — k| > |k| — |t| > 5 > [t], it follows that

{IIRl IRQ}

R-2

R-2
R,1 B(r—1) C
i =€ 2 L T S e, 2, P

r=M+42r—1|t|<2" r=M+4

As for I If,’f, noting the monotonically decreasing property of { B(R)}r>0, we have

CB(R -2
IR2 Z Z w <CB(R-2).

r>R—12r=1<|t|<2"

Taking into account (17)—(21), we get

in

2=
(L+ [&])m

in

C2=z 7(R)

el < Dl S 74
%5l < (EaE

(Co2 " +27%3 " B(R)+ B(R-2)) =
R>1

(17)

(18)

(19)

(20)

(21)
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Next, we prove (ii) in Theorem 2. By (16) and Lemma 7, one gets

CCy2%

£

Z |b7k|<z Z 1+|t_k|)2n+l+
kezn kezZ™ |t|<2M+3

in

)IIDSEDS sl
_ 2n+1 n
kEZ™ r>M+42R-1<|t|<2R (1t — kD) (141D
<CC2% +C2% Y B(r)
r>M+4

<02%(Co+ Y. B(r).

r>M+3

The proof of Theorem 2 is completed. O

4. Proof of Theorem 1

Under the conditions of Theorem 1, if T is bounded on FlO > and FlO ’1, then we can apply
the interpolation theory to get the proof of Theorem 1 easily. To obtain the boundedness of T

on Flo’oo, we consider first the action of T on each F2*°-molecule.

Lemma 8 Assume that a(x) is an F%-molecule on an arbitrary cube Q,, € © (s € Z,

p € Z"™). Under the conditions of Theorem 1, we have
ITa(x)|| g0 < C(Co+ ) B(R)), (22)
R>1

where the constant C' is dependent only on M and n.

Proof According to Definition 2, we have
Ta(z) = (K+a)(z)=>_ > Y b5 a5, (05, 85 )(x).
e’ j k" Q5 kCQs.p
Taking the Fourier transform of both sides gives
TZL({) _ Z 2_(j+g‘ )ne ie(2 k27 k)bE/ S, k(I)E( _jf)q/);l@_j/f).
(,5:k,e",5" k")

Noting that &(5) satisfies (11), we get |j — j'| < C if @(2‘j§)<1/>;'(2_j/§) #0. Set m =35 —j,

then
CU)ZZ Z Z Z b;;m,k’aik(@ k*(I)J+m w) (@)

E,EI Im‘SC k' Qj,kCQs,p
Further,

||Ta($)||plf”°° < Z Z H Z Z b;;m,k/a;k(@;k * (I)j;m,k/)(x)upfvoo

e,e’ Im|<C K QjkCQs,p

_ZZ ggm (23)

e,e’ |m|<C

Thus, to prove (22), we only need to estimate each I(e,e’, m).
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Lemma 9 Given |e||¢'| # 0 and |m| < C, we have

I(e,e,m) < C(Co+ Y B(R
R>1

Proof (i) Assume that m = 0. Put &)g’a/ (z) = (¢ * ®°)(z), then

I(e,€',0) = || Z Z b5 k051 (P5.1, % (b;:k/)(I)HF{”“’

k' QjkCQs,p

=13 > Bk @ — (kK)o
K’ Qj,kCQs,p
Let Tg’sl be the operator whose klernel is KS’El (a:,y) =3 2j"53’5/ (27z — t)®°(27y — t). By
Lemmas 4 and 5, we get that 75 is bounded on F{">. Hence, by replacing the above ¢ with

k + k', one can obtain

I(e, e 0)< O3 D 05wa5u® (@a — (k4 k)| joe
K QjkCQsp

Set I =k+ K and uS = Yo o, b5 405, then

I(e,€',0) < C’||ZZ ”CIJE 290 —1) )| 0200 SC/sup2|uj’fl|x(2jx—l)dx.
t j>s 1 ’

j>s

For j > s, let fi(z) =3, |u;’fl|x(2j:1: —1). For i € N, denote by 2'Q; , the cube which has the
same centre as Qs p, the radius being 2° times that of Q; ,, and the sides parallelling respectively
those of Q5 . Put

Qo = 2Qs,p and Q; = 21 Qs )\2'Qsp, i=1,2,..., (24)

then we have

I(e, e O<CZ/ sup f;(x (25)

i>0 7/ Qi Jzs

For 0 < i < 3M, by Theorem 2, we can easily get
/ sup fj(z)dz < C(Co + Z B(R
Qi j=s R>1
On the other hand, for i > 3M, we estimate sup,~ fj(z) (z € Q;) first.
Given i > 3M and zp € Q;. For any j > s, there exists {(xg,j) € Z"™ such that zo €
Qji(z0,5) C Qi Together with Qj1 C Qsp, we can get |k — I(20,7)] ~ 27—+ And from
la(2)]|po. < |Qs,p|~" and Theorem 2, we get

T(j—s+i—M)
27|Qs p|

f](xo)SC Z |bglzoj k||ajk|<c
k:Qj CQs,p

Notice that {7(R)}r>n+3 is a monotonically decreasing sequence, then

(i — M)
f ( ) < O2ln|Qs,p|
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Thus, we obtain sup;s fj(z0) < Camg— GZM)  Further, it follows that

27Qupl”
(i — M)
sup fj(z) < C——rr—, Vz € Q. (26)
j>s 2zn|QS7P|
Together with (25), one has
I(e,e,0) < C(Co+ > B(R)+C > 7( ) < C(Co+ Y B(R) (27)
R>1 i>3M R>1

(i) For the case where 0 < m < C, denote &= (z) = (fbf,;_ro * ®°)(27™x). By the analogous
idea in (i),

Iedm) =132 D Wmwasa®i 7 = @™k + k)| o
k" QjkCQs,p

<CIY" > b a5 (2T — (27 + KD oo
k' QjkCQs,p
Let | = 2mk + K/, usf ™ = = 3k, k@ Vbm—amp@S y and f(z) = 3, uj;f,’mqﬁ@j"'mx —1).
Then
I(g,e/,m) < C u65m<b52j+mx—l -,oo<C/su M (x)dx.
122 Mg <€ [ sup £7(@)

j>s
Similarly to (25), we have
I(g,e',m) <CZ/ sup f" (z)d, (28)
>0/ Qi J=s
where @Q; (i = 0,1,...) is defined as (4.3). Then, as we deal with sup;> f;(z) (x € Q;) in (i),
then

/ sup f"(z)dz < C(Co+ »_ B(R)), 0<i<3M (29)
Qi J=s R>1
and
/ sup f;"(r) < Cr(i — M), i>3M. (30)
Q; j>s

Together with (28), we have I(e,&’,m) < C(Co + Y g~y B(R)).

(iii) For —C' <'m < 0, set <I>f7f () = ((I)m,o % ®¢)(x). As we do in (i) and (ii), it is not hard

to obtain

I(g,e',m) = H Z Z b;;m,k’a;k&)fﬁa/(2jx —(k+ 2_mk/))HF{”°°
k" Q;jkCQs,p

<CIY° D0 Bemwtia® @ = (k4 27| o
k' Qi xCQs,p

C(Co+ > B(R))
R>1
This completes the proof of Lemma 9. O
As for FlO ! we know that FlO 1 — B?’l and Hormander condition can ensure the boundedness

of convolution operators on BY"" (see Theorem 3.1 in [6]). On the other hand, since the condition
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(9) is stronger than Hormander condition, we have

Lemma 10 Under the conditions of Theorem 1, T is bounded on Flo’l.

Now, we are in a position to prove Theorem 1. By Lemmas 2 and 8, T is bounded on

Flo "°°. Together with Lemma 10, we apply the interpolation property (Lemma 3) to get that T
is bounded on F"%(2 < ¢ < c0).
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