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Abstract This paper focuses on the study of the boundedness of convolution-type Calderón-

Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular

decomposition and interpolation theory, the author establishes the boundedness on certain end-
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1. Introduction

Let D = D(Rn) denote the space of Schwartz test functions {ϕ ∈ C∞(Rn) : suppϕ is

compact} and D ′ the space of Schwartz distributions (the dual of D). Suppose that we have a

linear continuous mapping T : D → D ′ associated with a kernel K(x, y) in the sense that

〈Tf, g〉 =

∫∫
g(x)K(x, y)f(y)dxdy (1)

for test functions f and g with disjoint support. Assume that K(x, y) is continuous on Ω =

Rn × R
n\{x = y} and satisfies:

|K(x, y)| ≤ C1|x− y|−n. (2)

If 2|x− x′| ≤ |x− y|, then

|K(x, y) −K(x′, y)| + |K(y, x) −K(y′, x)| ≤
C2|x− x′|γ

|x− y|n+γ
(3)

for 0 < γ ≤ 1. And for f ∈ L2(Rn) with compact support, Tf(x) =
∫
K(x, y)f(y)dy holds

for almost every x ∈ (supp f)c. Assume also that T extends to a bounded operator on L2(Rn).

Then T is said to be a Calderón-Zygmund (C-Z) operator [1], and written as T ∈ CZOγ .
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Since C-Z operators were introduced by Coifman and Meyer, there has been significant

progress on the study of their boundedness on various function spaces. The prototypical re-

sult is the famous T1 theorem of David and Journé [2], which states that under the conditions

(2) and (3), T extends to a bounded operator on L2 iff it satisfies the T1 condition:

T 1 ∈ BMO, T ∗1 ∈ BMO, (4)

and the weak bounded condition:

|〈Tf, g〉| ≤ C3R
n(‖f‖∞ +R‖∇f‖∞)(‖g‖∞ +R‖∇g‖∞),

∀R > 0, u ∈ R
n, f, g ∈ C1

0 (B(u,R)).
(5)

Since then, many authors have been devoted to relaxing the regularity condition (3) (see [3, 4]).

But up to now, it is still unknown whether (3) can be replaced by Hörmander condition. To scale

the extent of being close to Hörmander condition, Yabuta [4] replaced the smooth condition by

the weak pointwise condition. For R = 1, 2, . . ., he introduced the following notation:

ω(R) = sup
r>0

sup
|x−x′|≤r

2Rr≤|x−y|<2R+1r

|x− y|n{|K(x, y) −K(x′, y)| + |K(y, x) −K(y, x′)|}. (6)

It is clear that the condition
∑

R≥1 ω(R) < ∞ approaches Hörmander condition infinitely. On

the other hand, Deng et al. [5] proved that Hörmander condition cannot ensure the boundedness

at least on certain endpoint function spaces; with the index used to measure the extent close to

Hörmander condition, Meyer and Yang achieved the boundedness on Ḟ 0,q
1 (1 ≤ q ≤ 2) under the

condition that the index is at least 1. As a result, we try to consider convolution-type operators

and Hörmander condition.

For an operator T associated with a kernel K(x, y) in the sense of (1), suppose also that T

is a convolution-type operator, then K(x, y) can be written as

K(x, y) = K(x− y). (7)

In [6], it is proved that Hörmander condition can ensure the boundedness on Besov spaces

Ḃ0,q
p (1 ≤ p, q ≤ ∞) and on Triebel-Lizorkin spaces Ḟ 0,q

p (1 < p, q < ∞ or 1 = p ≤ q ≤ 2),

but this idea does not work for endpoint Triebel-Lizorkin spaces Ḟ 0,q
1 (2 < q ≤ ∞). Also, up to

the best knowledge of the author, it is not clear whether Hörmander condition can ensure the

boundedness on Ḟ 0,q
1 (2 < q ≤ ∞). Motivated by Yabuta’s notion (6), we introduce the following

notion:

B(R) = sup
j∈Z

sup
|m|≤2−j−1

sup
2R−j−1≤|x|<2R−j

|x|n|K(x) −K(x+m)|, (8)

where R ∈ Z and R ≥ 0. And it is easy to verify that {B(R)}R≥0 is a monotonically decreasing

sequence. In this paper, we try to introduce a new idea to get the boundedness on Ḟ 0,q
1 (2 < q ≤

∞) under the weak pointwise regularity condition:

∑

R≥0

B(R) <∞. (9)
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Definition 1 We say that K(x) ∈ H if it satisfies (9) and cancellation condition:

∣∣
∫
K(x)ψR(x)dx

∣∣ ≤ C0(‖ψ‖∞ + ‖∂1ψ‖∞ + ‖∂2ψ‖∞), ∀ψ(x) ∈ C2
0 (B(0, 1)), (10)

where ψR(x) = ψ( x
R

) (R > 0).

The purpose of this paper is to prove

Theorem 1 Suppose that T is a convolution-type operator associated with a kernel K(x) in

the sense of (1) and (7). If K(x) ∈ H , then T is bounded on Ḟ 0,q
1 (2 < q ≤ ∞).

This paper is organized as follows. Some preliminaries will be introduced in Section 2. Section

3 is devoted to the analysis of the kernel-distribution K(x). The proof of Theorem 1 relies on

wavelets and molecular decomposition, which will be given at the end of Section 4.

2. Preliminaries

Firstly, let us introduce some notation. Let N be the collection of all positive integers. As

usual, Z is the collection of all integers, and Z
n, where n ∈ N, denotes the lattice of all points

m = (m1, . . . ,mn) ∈ R
n with mj ∈ Z. By S = S(Rn) we denote the Schwartz space of all

rapidly decreasing and infinitely differentiable functions, and by S′ its topological dual, that is,

the space of all tempered distributions. If ϕ ∈ S, then

ϕ̂(ξ) =

∫

R⋉

e−ixξϕ(x)dx, ξ ∈ R
n

denotes the Fourier transform of ϕ. Here ξx is the scalar product in R
n. Throughout this paper,

C denotes a positive constant which is independent of the main parameters involved, but it may

vary from line to line.

In this paper, we use tensorial real-valued Meyer wavelets. For t ∈ R, denote by Φ0(t) and

Φ1(t) the father and mother wavelet, respectively. For x ∈ R
n and ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n,

let Φε(x) =
∏n

i=1 Φεi(xi). Then there exist two positive numbers C, C′ such that

supp Φ̂ε(ξ) ⊂ {ξ : C ≤ |ξ| ≤ C′}, ∀ε 6= 0. (11)

For j ∈ Z and k ∈ Z
n, let

fj,k(x) = 2
jn
2 f(2jx− k).

Denote

En = {0, 1}n \ {0} and Λn ={λ = (ε, j, k), ε ∈ En, j ∈ Z, k ∈ Z
n},

then {Φε
j,k(x)}λ∈Λn

is an orthonormal basis in L2(Rn).

Let S′/P be the collection of distributions modulo polynomial functions. For any distribution

f(x) ∈ S′/P , if we can define fε
j,k = 〈f(x),Φε

j,k(x)〉 (∀(ε, j, k) ∈ Λn), then the following equality

is true in the sense of distribution

f(x) =
∑

(ε,j,k)∈Λn

fε
j,kΦε

j,k(x). (12)
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For Besov spaces Ḃ0,q
p (1 ≤ p, q ≤ ∞) and Triebel-Lizorkin spaces Ḟ 0,q

p (1 ≤ p <∞, 1 ≤ q ≤ ∞),

which are defined by Triebel in [7], they can be characterized by wavelets [8]. For j ∈ Z and

k ∈ Z
n, let Qj,k = {x : 2jx− k ∈ [0, 1)n} and let χ(2jx− k) be the characteristic function on the

cube Qj,k.

Lemma 1 Let f(x) ∈ S′/P be represented as (12).

(i) For 1 ≤ p, q ≤ ∞, there exist two constants Cp,q and C′
p,q such that

Cp,q‖f(x)‖
Ḃ

0,q
p

≤
( ∑

j

2jqn( 1
2−

1
p
)(

∑

ε,k

|fε
j,k|

p)
q
p

) 1
q ≤ C′

p,q‖f(x)‖
Ḃ

0,q
p
.

(ii) Similarly, for 1 ≤ p <∞, 1 ≤ q ≤ ∞, there exist two constants Cp,q and C′
p,q such that

Cp,q‖f(x)‖
Ḟ

0,q
p

≤
∥∥∥
( ∑

ε,j,k

2
jqn
2 |fε

j,k|
qχ(2jx− k)

) 1
q

∥∥∥
Lp

≤ C′
p,q‖f(x)‖

Ḟ
0,q
p
.

In addition, we know that Ḃ0,q
q = Ḟ 0,q

q (1 ≤ q ≤ ∞) (see [7]).

Next, we review some facts about the molecular decomposition of Triebel-Lizorkin spaces

Ḟ 0,q
1 (1 ≤ q ≤ ∞) (see [8]). Put Θ = {Qj,k, j ∈ Z, k ∈ Z

n}.

Definition 2 Given 1 ≤ q ≤ ∞. We call a(x) an Ḟ 0,q
q -molecule in Ḟ 0,q

1 , if there exists a cube

Qs,p ∈ Θ such that:

(i) a(x) =
∑

(ε,j,k)∈Λn
Qj,k⊂Qs,p

aε
j,kΦε

j,k(x); (2) ‖a(x)‖
Ḟ

0,q
q

≤ |Qs,p|
1
q
−1.

Lemma 2 Given 1 ≤ q ≤ ∞. The following two conditions are equivalent:

(i) f(x) ∈ Ḟ 0,q
1 ;

(ii) There exist {λm}m∈N ∈ l1 and Ḟ 0,q
q -molecules bm(x) (m ∈ N) such that f(x) =

∑
m λmbm(x).

This lemma will be pivotal in our paper. In fact, to prove that an operator T is bounded

on Ḟ 0,q
1 , it suffices to check that the Ḟ 0,q

1 -norm of Ta(x) is bounded and the boundedness is

independent of a(x), where a(x) is an arbitrary Ḟ 0,q
q -molecule. This strategy will be used in

Section 4.

In what follows, we recall the well-known interpolation property of Triebel-Lizorkin spaces,

which is proved in many real analysis books [8]. For 0 < θ < 1, 1 ≤ p0, p1 < ∞ and 1 ≤ q0,

q1 ≤ ∞, let 1
p

= 1−θ
p0

+ θ
p1

and 1
q

= 1−θ
q0

+ θ
q1

.

Lemma 3 If ‖T ‖
Ḟ

0,qi
pi

→Ḟ
0,qi
pi

≤ Ci (i = 0, 1), then ‖T ‖
Ḟ

0,q
p →Ḟ

0,q
p

≤ C1−θ
0 Cθ

1 .

Finally, we need also some known results related to the boundedness of non-convolution C-Z

operators. Here, we introduce a definition first.

Definition 3 Given γ ∈ (0, 1]. For a non-convolution operator T in the sense of (1), we say

that T ∈ SCZOγ if T satisfies (2), (3), (5) and the following strong T 1 condition:

T 1 = T ∗1 = 0. (13)

For an operator T ∈ SCZOγ , the constant Ci (i = 1, 2, 3) appearing in its definition is called
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C-Z constant of T . And the following lemma can be directly deduced from the result of Frazier

et al. [9].

Lemma 4 Given 1 ≤ q ≤ ∞ and 0 < γ ≤ 1. If T ∈ SCZOγ , then T is bounded on Ḟ 0,q
1 .

For |ε||ε′| 6= 0, if m ≥ 0, denote Φ̃ε,ε′

m (x) = (Φε′

m,0 ∗ Φε)(2−mx); if m < 0, denote Φ̃ε,ε′

m (x) =

(Φε′

m,0 ∗ Φε)(x). In fact, since Φ̂ε(ξ) is compactly supported, there exists some constant C such

that Φ̃ε,ε′

m (x) = 0, |m| > C. In addition, for |ε||ε′| 6= 0 and |m| ≤ C, we apply the properties of

Meyer wavelets to easily verify that Φ̃ε,ε′

m (x) ∈ S and
∫
xα

iε
Φ̃ε,ε′

m (x)dx = 0, ∀α ∈ Z, α ≥ 0,

where iε denotes the smallest index i such that εi 6= 0. For |ε||ε′| 6= 0 and m ∈ Z, let T ε,ε′

m be

the operator whose kernel is

Kε,ε′

m (x, y) =
∑

j,k

2jnΦ̃ε,ε′

m (2jx− k)Φε(2jy − k).

Then we have

Lemma 5 For |ε||ε′| 6= 0 and |m| ≤ C, there exists γ ∈ (0, 1] such that T ε,ε′

m ∈ SCZOγ . And

the C-Z constants of T ε,ε′

m are independent of ε, ε′, m.

In fact, by the idea used to prove that H1 defined by a wavelet basis is independent of the

wavelet basis chosen (see more details in Section 4 of Chapter 7 in Meyer [10]), we can easily

deduce this lemma.

3. Analysis of some distributions

This section is aimed to analyze some kernel-distributions. Assume that M is some positive

integer large enough. For any integer R ≥M + 3, set

τ(R) = B(R− 2) + 2−R
(
C0 +

∑

R≥1

B(R)
)
.

∀(ε, j, k) ∈ Λn, define bεj,k = 〈K(x),Φε
j,k(x)〉, then

Theorem 2 Given R ≥M + 6 and R ∈ Z. There exists a constant C such that

(i) |bεj,k| ≤
C2

jn
2 τ(R)

(1+|k|)n , ∀(ε, j, k) ∈ Λn and 2R−1 ≤ |k| < 2R.

(ii)
∑

k∈Zn |bεj,k| ≤ C2
jn
2 (C0 +

∑
r≥M+3B(r)), ∀ε ∈ En and j ∈ Z.

And C is only dependent on M and n.

To prove it, we will apply the appropriate decomposition of Meyer wavelets which can be

deduced from the result in [6]. For ε 6= 0, let iε be the smallest index i such that εi 6= 0. Denote

by eε ∈ Z
n the vector whose component is 1 at the ithε -position, and is 0 elsewhere.

Lemma 6 For Φε(x) (ε 6= 0) and N ∈ N, there exist Φ(ε,k,N)(x), Φ̃ε
k,N (x)(k ∈ Z

n) such that

Φε(x) =
∑

k∈Zn a
ε,N
k Φ(ε,k,N)(x− k) and

(i) |aε,N
k | ≤ CN

(1+|k|)N ;



868 Z. Y. YANG

(ii) Φ(ε,k,N)(x) = Φ̃ε
k,N (x) − Φ̃ε

k,N (x− 1
2e

ε);

(iii) supp Φ̃ε
k,N (x) ⊂ B(0, 2M );

(iv) ∀0 ≤ m ≤ N , ‖Φ̃ε
k,N (x)‖Cm ≤ CN ;

(v) ∀α ∈ Z and 0 ≤ α < N ,
∫
xα

iε
Φ̃ε

k,N (x)dx = 0.

Fix ε ∈ En, m ∈ Z
n and N ∈ N. For k(x) ∈ K, set dε,m,N

j,k = 〈K(x),Φ
(ε,m,N)
j,k (x)〉.

Lemma 7 Given ε ∈ En, m ∈ Z
n and N ∈ N, let Φ(ε,m,N)(x) be defined as in Lemma 6. Then

(i) |dε,m,N
j,k | ≤ C02

jn
2 , ∀j ∈ Z and |k| ≤ 2M+3.

(ii) |dε,m,N
j,k | ≤ C2

jn
2 B(R−1)

(1+|k|)n , ∀j ∈ Z, R ≥M + 4, 2R−1 ≤ |k| < 2R.

The above constant C is only dependent on M , N and n.

Proof Given j ∈ Z and |k| ≤ 2M+3. By Lemma 6, we know that supp Φ(ε,m,N)(x − k) ⊂

B(0, 2M+4). Further, we have supp Φ(ε,m,N)(2M+4x− k) ⊂ B(0, 1). Together with the condition

(10), we have

|dε,m,N
j,k | = 2

jn
2

∣∣
∫
K(x)Φ(ε,m,N)(

2M+4x

2M+4−j
− k)dx

∣∣ ≤ C02
jn
2 .

Next, we consider (ii). For R ≥M + 4 and 2R−1 ≤ |k| < 2R, by Lemma 6, we get

|dε,m,N
j,k | =

∣∣
∫
K(x)Φ

(ε,m,N)
j,k (x)dx

∣∣

= 2
jn
2

∣∣
∫
K(x)

(
Φ̃ε

m,N (2jx− k) − Φ̃ε
m,N (2jx− k −

1

2
eε)

)
dx

∣∣

= 2
jn
2

∣∣
∫ (

K(x) −K(x+ 2−j−1eε)
)
Φ̃ε

m,N (2jx− k)dx
∣∣. (14)

And by supp Φ̃ε
m,N(x) ⊂ B(0, 2M ), one knows that, if x ∈ supp Φ̃ε

m,N (2jx− k), then 2j |x| ∼ (1+

|k|) and 2−j(|k|−2M ) ≤ |x| ≤ 2−j(|k|+2M ). Further, one gets that supp Φ̃ε
m,N (2jx−k)⊂ Aj(R)

where Aj(R) = {x : 2R−2−j ≤ |x| ≤ 2R+1−j}. Since Aj(R) can be decomposed into three parts:

{x : 2R−2−j ≤ |x| < 2R−1−j}, {x : 2R−1−j ≤ |x| < 2R−j} and {x : 2R−j ≤ |x| < 2R+1−j},

together with (7), we have

|x|n|K(x) −K(x+ 2−j−1eε)| ≤ CB(R − 1), ∀x ∈ Aj(R). (15)

Hence, from (14) and (15),

|dε,m,N
j,k | ≤

C2
jn
2 B(R − 1)

(1 + |k|)n
2jn

∫
|Φ̃ε

m,N(2jx− k)|dx ≤
C2

jn
2 B(R− 1)

(1 + |k|)n
. 2

Proof of Theorem 2 For any (ε, j, k) ∈ Λn, by Lemma 6, there exists an integer N > n large

enough such that

|bεj,k| =
∣∣
∫
K(x)Φε

j,k(x)dx
∣∣ = 2

jn
2

∣∣
∫ ∑

m

aε,N
m Φ(ε,m,N)(2jx− k −m)K(x)dx

∣∣.

Further,

|bεj,k| = 2
jn
2

∣∣
∫ ∑

t

aε,N
t−kΦ(ε,t−k,N)(2jx− t)K(x)dx

∣∣. (16)
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Fix N = 2n+ 1. Firstly, we consider (i) in Theorem 2. Given R ≥M + 6 and 2R−1 ≤ |k| < 2R.

|bεj,k| ≤2
jn
2

∣∣
∫ ∑

|t|≤2M+3

aε,N
t−kΦ(ε,t−k,N)(2jx− t)K(x)dx

∣∣+

2
jn
2

∣∣
∫ ∑

|t|>2M+3

aε,N
t−kΦ(ε,t−k,N)(2jx− t)K(x)dx

∣∣

:=IR
j,k + IIR

j,k. (17)

For the term IR
j,k, we apply Lemma 7 to get

IR
j,k ≤ CC02

jn
2

∑

|t|≤2M+3

1

(1 + |t− k|)2n+1

≤ CC02
jn
2

∑

|t|≤2M+3

1

(1 + |t− k|)2n+1(1 + |t|)n+1

≤
CC02

jn
2

(1 + |k|)n+1
. (18)

Then, we estimate IIR
j,k. By Lemma 7, we have

IIR
j,k ≤C2

jn
2

∑

r≥M+4

∑

2r−1≤|t|<2r

B(r − 1)

(1 + |t− k|)2n+1(1 + |t|)n

≤
C2

jn
2

(1 + |k|)n

∑

r≥M+4

∑

2r−1≤|t|<2r

B(r − 1)

(1 + |t− k|)n+1

=
C2

jn
2

(1 + |k|)n

{ R−2∑

r=M+4

∑

2r−1≤|t|<2r

B(r − 1)

(1 + |t− k|)n+1
+

∑

r≥R−1

∑

2r−1≤|t|<2r

B(r − 1)

(1 + |t− k|)n+1
}

:=
C2

jn
2

(1 + |k|)n
{IIR,1

j,k + IIR,2
j,k }. (19)

As for IIR,1
j,k , by Lemma 7 and |t− k| ≥ |k| − |t| ≥ |k|

2 ≥ |t|, it follows that

IIR,1
j,k ≤ C

R−2∑

r=M+4

∑

2r−1≤|t|<2r

B(r − 1)

(1 + |t|)n(1 + |k|)
≤

C

1 + |k|

R−2∑

r=M+4

B(r − 1). (20)

As for IIR,2
j,k , noting the monotonically decreasing property of {B(R)}R≥0, we have

IIR,2
j,k ≤

∑

r≥R−1

∑

2r−1≤|t|<2r

CB(R − 2)

(1 + |t− k|)n+1
≤ CB(R − 2). (21)

Taking into account (17)–(21), we get

|bεj,k| ≤
C2

jn
2

(1 + |k|)n
(C02

−R + 2−R
∑

R≥1

B(R) +B(R − 2)) =
C2

jn
2 τ(R)

(1 + |k|)n
.



870 Z. Y. YANG

Next, we prove (ii) in Theorem 2. By (16) and Lemma 7, one gets

∑

k∈Zn

|bεj,k| ≤
∑

k∈Zn

∑

|t|<2M+3

CC02
jn
2

(1 + |t− k|)2n+1
+

∑

k∈Zn

∑

r≥M+4

∑

2R−1≤|t|<2R

C2
jn
2 B(r)

(1 + |t− k|)2n+1(1 + |t|)n

≤CC02
jn
2 + C2

jn
2

∑

r≥M+4

B(r)

≤C2
jn
2

(
C0 +

∑

r≥M+3

B(r)
)
.

The proof of Theorem 2 is completed. 2

4. Proof of Theorem 1

Under the conditions of Theorem 1, if T is bounded on Ḟ 0,∞
1 and Ḟ 0,1

1 , then we can apply

the interpolation theory to get the proof of Theorem 1 easily. To obtain the boundedness of T

on Ḟ 0,∞
1 , we consider first the action of T on each Ḟ 0,∞

∞ -molecule.

Lemma 8 Assume that a(x) is an Ḟ 0,∞
∞ -molecule on an arbitrary cube Qs,p ∈ Θ (s ∈ Z,

p ∈ Z
n). Under the conditions of Theorem 1, we have

‖Ta(x)‖
Ḟ

0,∞
1

≤ C(C0 +
∑

R≥1

B(R)), (22)

where the constant C is dependent only on M and n.

Proof According to Definition 2, we have

Ta(x) = (K ∗ a)(x) =
∑

ε,ε′

∑

j′,k′

∑

Qj,k⊂Qs,p

bε
′

j′,k′aε
j,k(Φε

j,k ∗ Φε′

j′,k′)(x).

Taking the Fourier transform of both sides gives

T̂ a(ξ) =
∑

(ε,j,k,ε′,j′,k′)

2−
(j+j′)n

2 e−iξ(2−jk+2−j′k′)bε
′

j′,k′aε
j,kΦ̂ε(2−jξ)Φ̂ε′(2−j′ξ).

Noting that Φ̂ε(ξ) satisfies (11), we get |j − j′| ≤ C if Φ̂ε(2−jξ)Φ̂ε′(2−j′ξ) 6= 0. Set m = j′ − j,

then

Ta(x) =
∑

ε,ε′

∑

|m|≤C

∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,k(Φε

j,k ∗ Φε′

j+m,k′ )(x).

Further,

‖Ta(x)‖
Ḟ

0,∞
1

≤
∑

ε,ε′

∑

|m|≤C

∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,k(Φε

j,k ∗ Φε′

j+m,k′ )(x)
∥∥

Ḟ
0,∞
1

:=
∑

ε,ε′

∑

|m|≤C

I(ε, ε′,m). (23)

Thus, to prove (22), we only need to estimate each I(ε, ε′,m).
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Lemma 9 Given |ε||ε′| 6= 0 and |m| ≤ C, we have

I(ε, ε′,m) ≤ C
(
C0 +

∑

R≥1

B(R)
)
.

Proof (i) Assume that m = 0. Put Φ̃ε,ε′

0 (x) = (Φε′

∗ Φε)(x), then

I(ε, ε′, 0) =
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j,k′aε
j,k(Φε

j,k ∗ Φε′

j,k′)(x)
∥∥

Ḟ
0,∞
1

=
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j,k′aε
j,kΦ̃ε,ε′

0 (2jx− (k + k′))
∥∥

Ḟ
0,∞
1

.

Let T ε,ε′

0 be the operator whose kernel is Kε,ε′

0 (x, y) =
∑

j,t 2jnΦ̃ε,ε′

0 (2jx − t)Φε(2jy − t). By

Lemmas 4 and 5, we get that T ε,ε′

0 is bounded on Ḟ 0,∞
1 . Hence, by replacing the above t with

k + k′, one can obtain

I(ε, ε′, 0) ≤ C
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j,k′aε
j,kΦε(2jx− (k + k′))

∥∥
Ḟ

0,∞
1

.

Set l = k + k′ and uε,ε′

j,l =
∑

k:Qj,k⊂Qs,p
bε

′

j,l−ka
ε
j,k, then

I(ε, ε′, 0) ≤ C
∥∥ ∑

j≥s

∑

l

uε,ε′

j,l Φε(2jx− l)
∥∥

Ḟ
0,∞
1

≤ C

∫
sup
j≥s

∑

l

|uε,ε′

j,l |χ(2jx− l)dx.

For j ≥ s, let fj(x) =
∑

l |u
ε,ε′

j,l |χ(2jx − l). For i ∈ N, denote by 2iQs,p the cube which has the

same centre as Qs,p, the radius being 2i times that of Qs,p, and the sides parallelling respectively

those of Qs,p . Put

Q0 = 2Qs,p and Qi = 2i+1Qs,p\2
iQs,p, i = 1, 2, . . . , (24)

then we have

I(ε, ε′, 0) ≤ C
∑

i≥0

∫

Qi

sup
j≥s

fj(x)dx. (25)

For 0 ≤ i < 3M , by Theorem 2, we can easily get
∫

Qi

sup
j≥s

fj(x)dx ≤ C(C0 +
∑

R≥1

B(R)).

On the other hand, for i ≥ 3M , we estimate supj≥s fj(x) (x ∈ Qi) first.

Given i ≥ 3M and x0 ∈ Qi. For any j ≥ s, there exists l(x0, j) ∈ Z
n such that x0 ∈

Qj,l(x0,j) ⊂ Qi. Together with Qj,k ⊂ Qs,p, we can get |k − l(x0, j)| ∼ 2j−s+i. And from

‖a(x)‖
Ḟ

0,∞
∞

≤ |Qs,p|
−1 and Theorem 2, we get

fj(x0) ≤ C
∑

k:Qj,k⊂Qs,p

|bε
′

j,l(x0,j)−k||a
ε
j,k| ≤ C

τ(j − s+ i−M)

2in|Qs,p|
.

Notice that {τ(R)}R≥M+3 is a monotonically decreasing sequence, then

fj(x0) ≤ C
τ(i−M)

2in|Qs,p|
.



872 Z. Y. YANG

Thus, we obtain supj≥s fj(x0) ≤ C τ(i−M)
2in|Qs,p|

. Further, it follows that

sup
j≥s

fj(x) ≤ C
τ(i−M)

2in|Qs,p|
, ∀x ∈ Qi. (26)

Together with (25), one has

I(ε, ε′, 0) ≤ C(C0 +
∑

R≥1

B(R)) + C
∑

i≥3M

τ(i−M) ≤ C
(
C0 +

∑

R≥1

B(R)
)
. (27)

(ii) For the case where 0 < m ≤ C, denote Φ̃ε,ε′

m (x) = (Φε′

m,0 ∗ Φε)(2−mx). By the analogous

idea in (i),

I(ε, ε′,m) =
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,kΦ̃ε,ε′

m (2j+mx− (2mk + k′))
∥∥

Ḟ
0,∞
1

≤ C
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,kΦε(2j+mx− (2mk + k′))

∥∥
Ḟ

0,∞
1

.

Let l = 2mk + k′, uε,ε′,m
j,l =

∑
k:Qj,k⊂Qs,p

bε
′

j+m,l−2mka
ε
j,k and fm

j (x) =
∑

l u
ε,ε′,m
j,l Φε(2j+mx − l).

Then

I(ε, ε′,m) ≤ C
∥∥ ∑

j≥s

∑

l

uε,ε′,m
j,l Φε(2j+mx− l)

∥∥
Ḟ

0,∞
1

≤ C

∫
sup
j≥s

fm
j (x)dx.

Similarly to (25), we have

I(ε, ε′,m) ≤ C
∑

i≥0

∫

Qi

sup
j≥s

fm
j (x)dx, (28)

where Qi (i = 0, 1, . . .) is defined as (4.3). Then, as we deal with supj≥s fj(x) (x ∈ Qi) in (i),

then ∫

Qi

sup
j≥s

fm
j (x)dx ≤ C(C0 +

∑

R≥1

B(R)), 0 ≤ i < 3M (29)

and ∫

Qi

sup
j≥s

fm
j (x) ≤ Cτ(i−M), i ≥ 3M. (30)

Together with (28), we have I(ε, ε′,m) ≤ C
(
C0 +

∑
R≥1 B(R)

)
.

(iii) For −C ≤ m < 0, set Φ̃ε,ε′

m (x) = (Φε′

m,0 ∗ Φε)(x). As we do in (i) and (ii), it is not hard

to obtain

I(ε, ε′,m) =
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,kΦ̃ε,ε′

m (2jx− (k + 2−mk′))
∥∥

Ḟ
0,∞
1

≤ C
∥∥ ∑

k′

∑

Qj,k⊂Qs,p

bε
′

j+m,k′aε
j,kΦε(2jx− (k + 2−mk′))

∥∥
Ḟ

0,∞
1

≤ C
(
C0 +

∑

R≥1

B(R)
)
.

This completes the proof of Lemma 9. 2

As for Ḟ 0,1
1 , we know that Ḟ 0,1

1 = Ḃ0,1
1 and Hörmander condition can ensure the boundedness

of convolution operators on Ḃ0,1
1 (see Theorem 3.1 in [6]). On the other hand, since the condition
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(9) is stronger than Hörmander condition, we have

Lemma 10 Under the conditions of Theorem 1, T is bounded on Ḟ 0,1
1 .

Now, we are in a position to prove Theorem 1. By Lemmas 2 and 8, T is bounded on

Ḟ 0,∞
1 . Together with Lemma 10, we apply the interpolation property (Lemma 3) to get that T

is bounded on Ḟ 0,q
1 (2 < q ≤ ∞).
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[2] DAVID G, JOURNÉ J L. A boundedness criterion for generalized Calderón-Zygmund operators [J]. Ann. of

Math. (2), 1984, 120(2): 371–397.
[3] DENG Donggao, YAN Lixin, YANG Qixiang. Blocking analysis and T (1) theorem [J]. Sci. China Ser. A,

1998, 41(8): 801–808.
[4] YABUTA K. Generalizations of Calderón-Zygmund operators [J]. Studia Math., 1985, 82(1): 17–31.
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