Dirichlet Shift of Finite Multiplicity

Lian Kuo ZHAO
School of Mathematics and Computer Science, Shanxi Normal University, Shanxi 041004, P. R. China

Abstract

In this paper, we show that a multiplication operator on the Dirichlet space \mathcal{D} is unitarily equivalent to Dirichlet shift of multiplicity $n+1(n \geq 0)$ if and only if its symbol is $c z^{n+1}$ for some constant c. The result is very different from the cases of both the Bergman space and the Hardy space.

Keywords Dirichlet space; Dirichlet shift; multiplication operator; unitary equivalence.
Document code A
MR(2010) Subject Classification 47B32
Chinese Library Classification O177.1

1. Introduction

Let \mathbb{D} be the open unit disk and $d A$ denote the normalized Lebesgue area measure on \mathbb{D}. The Dirichlet space \mathcal{D} consists of analytic function f on \mathbb{D} with finite Dirichlet integral

$$
D(f)=\int_{\mathbb{D}}\left|f^{\prime}\right|^{2} \mathrm{~d} A<\infty
$$

Endow \mathcal{D} with norm $\|f\|=\left(|f(0)|^{2}+D(f)\right)^{\frac{1}{2}}, \quad f \in \mathcal{D} . \mathcal{D}$ is a Hilbert space with inner product

$$
\langle f, g\rangle=f(0) \overline{g(0)}+\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)} \mathrm{d} A(z), f, g \in \mathcal{D}
$$

It is well known that \mathcal{D} is a reproducing function space with reproducing kernel

$$
K_{\lambda}(z)=1+\log \frac{1}{1-\bar{\lambda} z}, \quad \lambda, z \in \mathbb{D}
$$

In recent years, the Dirichlet space has received a lot attention from the analysts. We refer readers to the survey paper [1] for more information about the Dirichlet space.

A function ϕ on \mathbb{D} is called a multiplier of \mathcal{D} if $\phi \mathcal{D} \subset \mathcal{D}$. Denote by \mathcal{M} the multiplier space of \mathcal{D}. For $\phi \in \mathcal{M}$, a simple application of the closed graph theorem shows that the multiplication operator $M_{\phi}: f \rightarrow \phi f, f \in \mathcal{D}$, is bounded.

The multiplication operator M_{z} known as the Dirichlet shift is an important operator and has been studied deeply [2-5]. In this paper, we study when a multiplication operator M_{ϕ} on \mathcal{D} is

[^0]essentially the Dirichlet shift, i.e., M_{ϕ} is unitarily equivalent to M_{z}. More generally, we study the multiplication operator on \mathcal{D} which is unitarily equivalent to $M_{z^{n+1}}(n \geq 0)$, the Dirichlet shift of multiplicity $n+1$. Recall that two operators A, B on Hilbert spaces H and K respectively are called unitarily equivalent if there exists a unitary operator $U: H \rightarrow K$ such that $U A U^{*}=B$. To characterize the condition for two operators to be unitarily equivalent is an important topic in the operator theory [6]. For the unitary equivalence of Toeplitz operators or multiplication operators on the Hardy space or the Bergman space, see [7-9].

On the Hardy space, every finite Blaschke product is a unilateral shift of finite multiplicity [7]. On the Bergman space, Sun, Zheng and Zhong [10] completely characterized the multiplication operators which are unitarily equivalent to a weighted unilateral shift of finite multiplicity.

On the Dirichlet space, the author [11] characterized the unitarily equivalent multiplication operators to $M_{z^{2}}$ by the characterization of reducing subspaces of such operators. In [12], the unitary equivalence of the multiplication operator defined by finite Blaschke product of order two is considered. In this paper, we will show that a multiplication operator is unitarily equivalent to the Dirichlet shift of multiplicity $n+1(n \geq 0)$ if and only if its symbol is a constant multiple of z^{n+1}.

Theorem 1.1 Let $\phi \in \mathcal{M}$. Then M_{ϕ} is unitarily equivalent to $M_{z^{n+1}}(n \geq 0)$ if and only if $\phi(z)=c z^{n+1}$ for some constant c with $|c|=1$.

2. Proof of the main result

Since the proof of the main result depends on a representation formula for the Dirichlet integral given by Carleson [13], here we give some discussion about the Carleson formula.

Let $f \in \mathcal{D}, f=B S F$ be the canonical factorization of f as a function in the Hardy space, where $B=\prod_{j=1}^{\infty} \frac{\bar{a}_{j}}{\left|a_{j}\right|} \frac{a_{j}-z}{1-\bar{a}_{j} z}$ is a Blaschke product, S is the singular part of f and F is the outer part of f. Then

$$
\begin{aligned}
D(f)= & \int_{\mathbb{T}} \sum_{n=1}^{\infty} P_{\alpha_{n}}(\xi)|f(\xi)|^{2} \frac{|\mathrm{~d} \xi|}{2 \pi}+\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{2}{|\zeta-\xi|^{2}}|f(\xi)|^{2} \mathrm{~d} \mu(\zeta) \frac{|\mathrm{d} \xi|}{2 \pi}+ \\
& \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left(e^{2 u(\zeta)}-e^{2 u(\xi)}\right)(u(\zeta)-u(\xi))}{|\zeta-\xi|^{2}} \frac{|\mathrm{~d} \zeta|}{2 \pi} \frac{|\mathrm{~d} \xi|}{2 \pi}
\end{aligned}
$$

where $u(\xi)=\log |f(\xi)|, P_{\alpha}(\xi)$ is the Poisson kernel and μ is the singular measure corresponding to S.

Let

$$
\varphi_{\lambda}(z)=\frac{\lambda-z}{1-\bar{\lambda} z}, \quad \lambda, z \in \mathbb{D}
$$

be the Möbius transform. For $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{D}, \phi=\varphi_{\lambda_{0}} \varphi_{\lambda_{1}} \varphi_{\lambda_{2}} \cdots \varphi_{\lambda_{n}}$ is a finite Blaschke product of order $n+1$.

By the Carleson formula, for $f, g \in \mathcal{D}$, and integer $m \geq 1, k=0,1,2,3$, we have

$$
D\left(\phi^{m}\left(f+i^{k} g\right)\right)=m \int_{\mathbb{T}}\left(\left(P_{\lambda_{0}}+P_{\lambda_{1}}+\cdots+P_{\lambda_{n}}\right)\left|f(\xi)+i^{k} g(\xi)\right|^{2}\right) \frac{|\mathrm{d} \xi|}{2 \pi}+D\left(f+i^{k} g\right)
$$

$$
\begin{aligned}
= & m \int_{\mathbb{T}}\left(\left(P_{\lambda_{0}}+P_{\lambda_{1}}+\cdots+P_{\lambda_{n}}\right)\left|f(\xi)+i^{k} g(\xi)\right|^{2}\right) \frac{|\mathrm{d} \xi|}{2 \pi}+ \\
& \left\|f+i^{k} g\right\|^{2}-\left|f(0)+i^{k} g(0)\right|^{2}
\end{aligned}
$$

where i is the imaginary unit.
By the polarization identity, we have

$$
\begin{align*}
\left\langle\phi^{m} f, \phi^{m} g\right\rangle= & \sum_{k=0}^{3} \frac{i^{k}}{4}\left\|\phi^{m}\left(f+i^{k} g\right)\right\|^{2} \\
= & \sum_{k=0}^{3} \frac{i^{k}}{4}\left(D\left(\phi^{m}\left(f+i^{k} g\right)\right)+\left|\phi^{m}(0)\left(f(0)+i^{k} g(0)\right)\right|^{2}\right) \\
= & m \int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+\cdots+P_{\lambda_{n}}\right) f(\xi) \overline{g(\xi)} \frac{|\mathrm{d} \xi|}{2 \pi}+ \\
& \langle f, g\rangle-f(0) \overline{g(0)}+\left|\phi^{m}(0)\right|^{2} f(0) \overline{g(0)} . \tag{1}
\end{align*}
$$

To continue, we need the following lemma, which has appeared in [11].
Lemma 2.1 Let $\phi \in \mathcal{M}$. If M_{ϕ} is unitarily equivalent to $M_{z^{n+1}}$, then ϕ is a Blaschke product of order $n+1$.

Proof Let $U: \mathcal{D} \rightarrow \mathcal{D}$ be a unitary operator such that $U^{*} M_{\phi} U=M_{z^{n+1}}$, and let I be the identity operator and k_{λ} be the normalization of K_{λ} for $\lambda \in \mathbb{D}$, that is, $k_{\lambda}=K_{\lambda} /\left\|K_{\lambda}\right\|$.

It is easy to verify that $M_{z^{n+1}} M_{z^{n+1}}^{*}-I$ is compact and k_{λ} weakly converges to 0 as $|\lambda| \rightarrow 1$. Hence, as $|\lambda| \rightarrow 1$

$$
\left\langle M_{\phi} M_{\phi}^{*} k_{\lambda}, k_{\lambda}\right\rangle-1=\left\langle U\left(M_{z^{n+1}} M_{z^{n+1}}^{*}-I\right) U^{*} k_{\lambda}, k_{\lambda}\right\rangle \rightarrow 0 .
$$

As we know

$$
\left\langle M_{\phi} M_{\phi}^{*} k_{\lambda}, k_{\lambda}\right\rangle-1=|\phi(\lambda)|^{2}-1
$$

which means that $|\phi(\lambda)|^{2} \rightarrow 1$ as $|\lambda| \rightarrow 1$. It follows that ϕ is an inner function. We claim that ϕ is a Blaschke product of finite order. Otherwise we can always find infinitely many $\lambda_{m} \in \mathbb{D}$ such that $\left|\lambda_{m}\right| \rightarrow 1$, but $\phi\left(\lambda_{m}\right) \rightarrow 0$. Since $M_{z^{n+1}}$ has order $n+1, \phi$ must have order $n+1$.

Now we give the proof of Theorem 1.1.
Proof of Theorem 1.1 By Lemma 2.1, without loss of generality, assume $\phi=\varphi_{\lambda_{0}} \varphi_{\lambda_{1}} \cdots \varphi_{\lambda_{n}}$. Let U be a unitary operator on \mathcal{D} such that $U^{*} M_{\phi} U=M_{z^{n+1}}$.

Let $E_{j}(z)=z^{j}, 0 \leq j<\infty .\left\{U E_{j}\right\}_{j=0}^{n}$ is an orthogonal basis of $\mathcal{D} \ominus \phi \mathcal{D}$. Set $f_{j}=U E_{j}$. For any integer $m \geq 1, j=0,1, \ldots, n$, we have

$$
U E_{m(n+1)+j}=U M_{z^{n+1}}^{m} E_{j}=M_{\phi}^{m} U E_{j}=\phi^{m} f_{j}
$$

Therefore

$$
\begin{aligned}
\left\langle\phi^{m} f_{k}, \phi^{m} f_{j}\right\rangle & =\left\langle E_{m(n+1)+k}, E_{m(n+1)+j}\right\rangle=0, \quad j \neq k \\
\left\langle\phi^{m} f_{j}, \phi^{l} f_{j}\right\rangle & =\left\langle E_{m(n+1)+k}, E_{l(n+1)+j}\right\rangle=0, \quad m \neq l
\end{aligned}
$$

By (1),

$$
\begin{aligned}
\left\langle\phi^{m} f_{j}, \phi^{m} f_{k}\right\rangle= & m \int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+P_{\lambda_{2}}+\cdots+P_{\lambda_{n}}\right) f_{j}(\xi) \overline{f_{k}(\xi)} \frac{|\mathrm{d} \xi|}{2 \pi}+ \\
& \left\langle f_{j}, f_{k}\right\rangle+\left(\left|\phi^{m}(0)\right|^{2}-1\right) f_{j}(0) \overline{f_{k}(0)}
\end{aligned}
$$

When $j \neq k$, we have

$$
\begin{equation*}
0=\int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+P_{\lambda_{2}}+\cdots+P_{\lambda_{n}}\right) f_{j}(\xi) \overline{f_{k}(\xi)} \frac{|\mathrm{d} \xi|}{2 \pi}+\frac{\left(\left|\phi^{m}(0)\right|^{2}-1\right) f_{j}(0) \overline{f_{k}(0)}}{m} \tag{2}
\end{equation*}
$$

Let $m \rightarrow \infty$. Then

$$
0=\int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+P_{\lambda_{2}}+\cdots+P_{\lambda_{n}}\right) f_{j}(\xi) \overline{f_{k}(\xi)} \frac{|\mathrm{d} \xi|}{2 \pi}
$$

It follows from (2) that $\left(\left|\phi^{m}(0)\right|^{2}-1\right) f_{j}(0) \overline{f_{k}(0)}=0$, and thus $f_{j}(0) \overline{f_{k}(0)}=0$.
If for all $j=0,1, \ldots, n, f_{j}(0)=0$, then $1 \perp \mathcal{D} \ominus \phi \mathcal{D}$ and hence $1 \in \phi \mathcal{D}$. This is impossible. So there exists j in $\{0,1, \ldots, n\}$ such that $f_{j}(0) \neq 0$, say $j=0$, and hence for $j \neq 0, f_{j}(0)=0$.

By (1),

$$
\begin{aligned}
\left\langle\phi^{m+1} f_{0}, \phi^{m} f_{0}\right\rangle= & m \int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+P_{\lambda_{2}}+\cdots+P_{\lambda_{n}}\right) \phi(\xi)\left|f_{0}(\xi)\right|^{2} \frac{|\mathrm{~d} \xi|}{2 \pi}+ \\
& \left\langle\phi f_{0}, f_{0}\right\rangle+\left(\left|\phi^{m}(0)\right|^{2}-1\right) \phi(0)\left|f_{0}(0)\right|^{2}
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
0= & m \int_{\mathbb{T}}\left(P_{\lambda_{0}}+P_{\lambda_{1}}+P_{\lambda_{2}}+\cdots+P_{\lambda_{n}}\right) \phi(\xi)\left|f_{0}(\xi)\right|^{2} \frac{|\mathrm{~d} \xi|}{2 \pi}+ \\
& \left(\left|\phi^{m}(0)\right|^{2}-1\right) \phi(0)\left|f_{0}(0)\right|^{2} .
\end{aligned}
$$

Reasoning as above, we have $\left(\left|\phi^{m}(0)\right|^{2}-1\right) \phi(0)\left|f_{0}(0)\right|^{2}=0$. Consequently,

$$
\phi(0)=0 .
$$

Without loss of generality, assume $\lambda_{0}=0$.
Since $\phi(0)=0,1 \in \mathcal{D} \ominus \phi \mathcal{D}$. Let $\left\{1, \mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\}$ be an orthonormal basis of $\mathcal{D} \ominus \phi \mathcal{D}$ and

$$
f_{j}=a_{j 0}+a_{j 1} \mathcal{E}_{1}+\cdots+a_{j n} \mathcal{E}_{n}, \quad j=0,1, \ldots, n
$$

For $j=1,2, \ldots, n$, we have $a_{j 0}=0$ since $f_{j}(0)=0$. So

$$
\begin{equation*}
0=\left\langle f_{j}, f_{0}\right\rangle=a_{j 1} \bar{a}_{01}+a_{j 2} \bar{a}_{02}+\cdots+a_{j n} \bar{a}_{0 n}, \quad j=1,2, \ldots, n \tag{3}
\end{equation*}
$$

Since

$$
a_{00}\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{4}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=\left|\begin{array}{ccccc}
a_{00} & a_{01} & a_{02} & \cdots & a_{0 n} \\
a_{10} & a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{20} & a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 0} & a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \neq 0
$$

it follows from (3) that $a_{01}=a_{02}=\cdots=a_{0 n}=0$. Hence $f_{0}=a_{00}$. By the formula (1), for $j=1,2, \ldots, n$,

$$
0=\left\langle\phi f_{j}, \phi f_{0}\right\rangle=\int_{\mathbb{T}}\left(1+P_{\lambda_{1}}+\cdots+P_{\lambda_{n}}\right) f_{j}(\xi) \overline{f_{0}(\xi)} \frac{|\mathrm{d} \xi|}{\pi}
$$

Hence

$$
f_{j}\left(\lambda_{1}\right)+\cdots+f_{j}\left(\lambda_{n}\right)=0 .
$$

In other words, for $j=1,2, \ldots, n$,

$$
a_{j 1}\left(\mathcal{E}_{1}\left(\lambda_{1}\right)+\mathcal{E}_{1}\left(\lambda_{2}\right)+\cdots+\mathcal{E}_{1}\left(\lambda_{n}\right)\right)+\cdots+a_{j n}\left(\mathcal{E}_{n}\left(\lambda_{1}\right)+\mathcal{E}_{n}\left(\lambda_{2}\right)+\cdots+\mathcal{E}_{n}\left(\lambda_{n}\right)\right)=0
$$

By (4), for $l=1,2, \ldots, n$,

$$
\mathcal{E}_{l}\left(\lambda_{1}\right)+\mathcal{E}_{l}\left(\lambda_{2}\right)+\cdots+\mathcal{E}_{l}\left(\lambda_{n}\right)=0
$$

i.e.,

$$
\left\langle\mathcal{E}_{l}, K_{\lambda_{1}}+K_{\lambda_{2}}+\cdots+K_{\lambda_{n}}\right\rangle=0
$$

Since $K_{\lambda_{1}}, K_{\lambda_{2}}, \ldots, K_{\lambda_{n}} \in \mathcal{D} \ominus \phi \mathcal{D}$, we have

$$
K_{\lambda_{1}}+K_{\lambda_{2}}+\cdots+K_{\lambda_{n}}=\gamma
$$

for some constant γ. Obviously $\gamma=n$. Then for any integer $m \geq 1$,

$$
\left\langle z^{m}, K_{\lambda_{1}}+K_{\lambda_{2}}+\cdots+K_{\lambda_{n}}\right\rangle=\lambda_{1}^{m}+\lambda_{2}^{m}+\cdots+\lambda_{n}^{m}=0 .
$$

So $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$, and thus $\phi(z)=c z^{n+1}$ for some constant c. The proof is completed.

References

[1] ROSS W. The classical Dirichlet space [C]. Recent advances in operator-related function theory, Contemp. Math. 393, Amer. Math. Soc., Providence, RI, 2006, 171-197.
[2] RICHTER S. Invariant subspaces of the Dirichlet shift [J]. J. Reine Angew. Math., 1988, 386: 205-220.
[3] RICHTER S. Unitary equivalence of invariant subspaces of Bergman and Dirichlet spaces [J]. Pacific J. Math., 1988, 133(1): 151-156.
[4] RICHTER S, SUNDBERG C. Invariant subspaces of the Dirichlet shift and pseudocontinuations [J]. Trans. Amer. Math. Soc., 1994, 341(2): 863-879.
[5] GUO Kunyu, ZHAO Liankuo. On unitary equivalence of invariant subspaces of the Dirichlet space [J]. Studia Math., 2010, 196(2): 143-150.
[6] CONWAY J. A Course in Functional Analysis (2nd ed.) [M]. Springer-Verlag, New York, 1990.
[7] COWEN C C. On equivalence of Toeplitz operators [J]. J. Operator Theory, 1982, 7(1): 167-172.
[8] SUN Shunhua. On unitary equivalence of multiplication operators on Bergman space [J]. Northeast. Math. J., 1985, 1(2): 213-222.
[9] SUN Shunhua. Some questions on unitary equivalence of Toeplitz operator [J]. Kexue Tongbao (English Ed.), 1985, 30(10): 1292-1295.
[10] SUN Shunhua, ZHENG Dechao, ZHONG Changyong. Multiplication operators on the Bergman space and weighted shifts [J]. J. Operator Theory, 2008, 59(2): 435-454.
[11] ZHAO Liankuo. Reducing subspaces for a class of multiplication operators on the Dirichlet space [J]. Proc. Amer. Math. Soc., 2009, 137(9): 3091-3097.
[12] ZHAO Liankuo. Unitary equivalence of a class of multiplication operators on the Dirichlet space [J]. Acta Math. Sinica (Chin. Ser.) (Beijing), 2011, 54(1): 169-176.
[13] CARLESON L. A representation formula for the Dirichlet integral [J]. Math. Z., 1960, 73: 190-196.

[^0]: Received June 9, 2010; Accepted April 18, 2011
 Supported by Tianyuan Foundation of China (Grant No. 10926143), Young Science Foundation of Shanxi Province (Grant No. 2010021002-2), the National Natural Science Foundation of China (Grant No. 10971195) and the Natural Science Foundation of Zhejiang Province (Grant Nos. Y6090689; Y6110260).
 E-mail address: lkzhao@sxnu.edu.cn

