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Abstract In this note we define the property (ω′), a variant of Weyl’s theorem, and establish for

a bounded linear operator defined on a Hilbert space the necessary and sufficient conditions for

which property (ω′) holds by means of the variant of the essential approximate point spectrum

σ1(·) and the spectrum defined in view of the property of consistency in Fredholm and index. In

addition, the perturbation of property (ω′) is discussed.

Keywords property (ω′); spectrum; Weyl’s theorem.

Document code A

MR(2010) Subject Classification 47A53; 47A10; 47A55

Chinese Library Classification O177.2

1. Introduction

Weyl [1] examined the spectra of all compact perturbations of a hermitian operator on Hilbert

space and found in 1909 that their intersection consisted precisely of those points of the spec-

trum which were not isolated eigenvalues of finite multiplicity. This “Weyl’s theorem” has been

considered by many authors. Variants have been discussed by Harte and Lee [2] and Rakočevic̀

[3, 4]. In this note, we introduce a new variant of Weyl’s theorem called property (ω′) and show

how property (ω′) follows from properties of the variant (σ1) of the essential approximate point

spectrum and the spectrum defined in view of the property of consistency in Fredholm and index

(defined in Section 2). In addition, the perturbation of property (ω′) is discussed.

Throughout this note, let B(H) (K(H)) denote the algebra of bounded linear operators

(compact operators) acting on a complex, infinite dimensional Hilbert space H . If T ∈ B(H),

write N(T ) and R(T ) for the null space and the range of T ; σ(T ) for the spectrum of T ;

π00(T ) = π0(T )∩ isoσ(T ), where π0(T ) = {λ ∈ C : 0 < dim N(T −λI) < ∞} are the eigenvalues

of finite multiplicity. An operator T ∈ B(H) is called upper semi-Fredholm if it has closed range

with finite dimensional null space and if R(T ) has finite co-dimension, T ∈ B(H) is called a

lower semi-Fredholm operator. We call T ∈ B(H) Fredholm if it has closed range with finite

dimensional null space and its range of finite co-dimension. For a semi-Fredholm operator, let
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n(T ) = dimN(T ) and d(T ) = dimH/R(T ) = codimR(T ). The index of a Fredholm operator

T ∈ B(H) is given by ind(T ) = dim N(T )−dimH/R(T ) = n(T )−d(T ). The ascent of T , asc(T ),

is the least non-negative integer n such that N(T n) = N(T n+1) and the descent, dsc(T ), is the

least non-negative integer n such that R(T n) = R(T n+1). An operator T ∈ B(H) is called Weyl

if it is Fredholm of index zero. And T ∈ B(H) is called Browder if it is Fredholm “of finite ascent

and descent”: equivalently if T is Fredholm and T − λI is invertible for sufficiently small λ 6= 0

in C. The essential spectrum σe(T ), the Weyl spectrum σw(T ), the Browder spectrum σb(T ),

the upper semi-Fredholm spectrum σSF+
(T ) and the lower semi-Fredholm spectrum σSF

−

(T ) of

T ∈ B(H) are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm},

σw(T ) = {λ ∈ C : T − λI is not Weyl},

σb(T ) = {λ ∈ C : T − λI is not Browder},

σSF+
(T ) = {λ ∈ C : T − λI is not upper semi-Fredholm},

σSF
−

(T ) = {λ ∈ C : T − λI is not lower semi-Fredholm}.

The property (ω′) which we will define has close relations with Weyl’s theorem. The rest

of this paper is organized as follows. In Section 2, by defining two new spectrums, we give the

definition of property (ω′) and the necessary and sufficient conditions for T such that property

(ω′) holds. As a consequence of the main result, the perturbation of property (ω′) is discussed.

2. CFI operator and Property (ω′)

We begin with a definition and a lemma [5]:

Definition 2.1 We say T ∈ B(H) is consistent in Fredholm and index (abbrev. a CFI operator),

if for each B ∈ B(H), one of the following cases occurs:

(1) TB and BT are Fredholm together and ind(TB) = ind(BT ) = ind(B);

(2) Both TB and BT are not Fredholm.

Lemma 2.1 T ∈ B(H) is a CFI operator if and only if one of the following three mutually

disjoint cases occurs:

(1) T is Weyl;

(2) R(T ) is not closed;

(3) R(T ) is closed and dimN(T ) = codimR(T ) = ∞.

Let

ρ2(T ) = {λ ∈ C : T − λI is a CFI operator}

and let σ2(T ) = C\ρ2(T ). Clearly, λ0 ∈ σ2(T ) if and only if T −λ0I is a semi-Fredholm operator

but ind(T − λ0I) 6= 0. By perturbation theorem of semi-Fredholm operator, σ2(T ) is an open

set in the spectrum σ(T ) of operator T . Let H(T ) be the class of complex-valued functions

which are analytic in a neighborhood of σ(T ) and are not constant on any neighbourhood of any
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component of σ(T ).

Remark 2.1 (1) If intσ(T ) = ∅, then σ2(T ) = ∅;

(2) It is easy to prove that σ2(f(T )) ⊆ f(σ2(T )) for any f ∈ H(T ); But in general the

converse inclusion fails.

For example, suppose A1, A2 ∈ B(ℓ2) are defined by:

A1(x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .),

A2(x1, x2, x3, . . .) = (x1, 0, 0, . . .).

Let T =

(

A1 0

0 A2

)

and p(T ) = T ( I
2
−T ). Then p(T ) is a CFI operator, that is, 0 /∈ σ2(p(T )).

But since 1

2
∈ σ2(T ), we know that 0 ∈ p(σ2(T )), which means that the inclusion f(σ2(T )) ⊆

σ2(f(T )) fails.

(3) For any f ∈ H(T ), σ2(f(T )) = f(σ2(T )) if and only if σ2(T ) = ∅.

Suppose σ2(T ) = ∅, then f(σ2(T )) = ∅. Since σ2(f(T )) ⊆ f(σ2(T )), σ2(f(T )) = ∅. Then

σ2(f(T )) = f(σ2(T )) for any f ∈ H(T ).

Conversely, suppose that spectrum mapping theorem holds for σ2(·). If σ2(T ) 6= ∅, let

λ0 ∈ σ2(T ), that is T − λ0I is a semi-Fredholm operator. Since σSF+
(T ) ∩ σSF

−

(T ) 6= ∅, take

µ0 ∈ σSF+
(T )∩σSF

−

(T ), and let f(T ) = (T −λ0I)(T −µ0I). If R(T −µ0I) is not closed, R(f(T ))

must not be closed, in this case f(T ) is a CFI operator. In the following we suppose R(T −µ0I) is

closed, then n(T−µ0I) = d(T−µ0I) = ∞. Using the fact that R(f(T )) = R(T−λ0I)∩R(T−µ0I)

and N(T −µ0I) ⊆ N(f(T )), we know that R(f(T )) is closed and n(f(T )) = d(f(T )) = ∞, which

means that f(T ) is a CFI operator again, that is 0 /∈ σ2(f(T ))(= f(σ2(T ))). Then λ0 /∈ σ2(T ),

it is in contradiction to the fact that λ0 ∈ σ2(T ).

(4) σ2(T ) = ∅ if and only if σSF+
(T ) = σSF

−

(T ) = σw(T ).

Weyl’s theorem for an operator says that the complement in the spectrum of the Weyl spec-

trum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity.

Weyl [1] discovered that this property holds for hermitian operators and it has been extended

to many other operators. In recent years, a number of researchers have considered the Weyl’s

theorem for operators and operator matrices (such as [2, 6–9], et.) In the following, we consider

a variant of Weyl’s theorem called property (ω′).

We say that the Weyl’s theorem holds for T ∈ B(H) if there is equality

σ(T )\σw(T ) = π00(T ).

Let SF−

+ (H) = {A ∈ B(H) : A is an upper semi-Fredholm operator with ind(A) ≤ 0}. The

essential approximate point spectrum σea(T ) of T is defined by: σea(T ) = {λ ∈ C : T − λI /∈

SF−

+ (H)}. Rakočevic̀ has looked at variants of “ Weyl’s theorem ” in which the spectrum is

replaced by the approximate point spectrum: “the a-Weyl’s theorem holds ” for T if

σa(T )\σea(T ) = πa
00(T ),
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where we write σa(T ) for the approximate point spectrum of T , πa
00(T ) for the set of all λ ∈ C

such that λ is isolated point in σa(T ) and 0 < dimN(T − λI) < ∞.

Definition 2.2 T ∈ B(H) is said to satisfy property (ω′) if

σ(T )\σw(T ) = πa
00(T ).

Remark 2.2 (1) Property (ω′) implies Weyl’s theorem, but the converse is not true.

For example, let A, B ∈ B(ℓ2) be defined by

A(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .),

B(x1, x2, x3, . . .) = (0, 0,
x2

2
,
x3

3
, . . .),

and T =

(

A 0

0 B

)

. Then σ(T ) = σw(T ) = {λ ∈ C : |λ| ≤ 1} and π00(T ) = ∅, πa
00(T ) = {0},

which means that Weyl’s theorem holds for T but property (ω′) fails for T .

(2) Property (ω′) cannot induce a-Weyl’s theorem.

For example, let A, B ∈ B(ℓ2) be defined by:

A(x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .),

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .),

and let T =

(

A 0

0 B

)

. Then σ(T ) = σw(T ) = σa(T ) = {λ ∈ C : |λ| ≤ 1}, πa
00(T ) = ∅ and

σea(T ) = {λ ∈ C : |λ| = 1}, thus T has property (ω′), but a-Weyl’s theorem is not true for T .

(3) a-Weyl’s theorem cannot induce Property (ω′).

Let T ∈ B(ℓ2) be defined by:

T (x1, x2, x3, . . .) = (x1, 0, 0, x3, x4, . . .).

Then

(a) σa(T ) = {0} ∪ {λ ∈ C : |λ| = 1}, σea(T ) = {λ ∈ C : |λ| = 1}, and πa
00(T ) = {0};

(b) σ(T ) = σw(T ) = {λ ∈ C : |λ| ≤ 1}.

This shows that a-Weyl’s theorem holds for T , but property (ω′) fails for T .

(4) Property (ω′) holds for T ⇔ Weyl’s theorem holds for T and π00(T ) = πa
00(T ) ⇔ Weyl’s

theorem holds for T and σw(T )∩πa
00(T ) = ∅ ⇔ σ(T ) = σw(T )∪πa

00(T ) and σw(T )∩πa
00(T ) = ∅.

Let ρ1(T ) = {λ ∈ C : n(T −λI) < ∞ and there exists ǫ > 0 such that T −µI ∈ SF−

+ (H) and

N(T − µI) ⊆
∞
⋂

n=1

R[(T − µI)n] if 0 < |µ − λ| < ǫ}

and let σ1(T ) = C\ρ1(T ). Clearly, σ1(T ) ⊆ σea(T ) ⊆ σa(T ) and σ1(T ) ⊆ σb(T ). T is called

a-isoloid if λ ∈ isoσa(T ) ⇒ N(T − λI) 6= {0}. The following theorems give the relation between

property (ω′) and property of consistency in Fredholm and index.

Theorem 2.1 T ∈ B(H) is a-isoloid and property (ω′) holds for T if and only if σb(T ) =
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σ1(T ) ∪ [σ2(T ) ∩ accσa(T )] ∪ [ρa(T ) ∩ σ(T )].

Proof Suppose that σb(T ) = σ1(T )∪ [σ2(T )∩accσa(T )]∪ [ρa(T )∩σ(T )]. Let λ0 ∈ σ(T )\σw(T ).

Then λ0 /∈ [σ1(T ) ∪ ρa(T )]. By the perturbation theorem of semi-Fredholm operators, we know

that λ0 /∈ σ2(T ), then λ0 /∈ [σ2(T )∩ accσa(T )]. Thus λ0 /∈ σ1(T )∪ [σ2(T )∩ accσa(T )]∪ [ρa(T )∩

σ(T )], which means that T − λ0I is Browder, and hence λ0 ∈ πa
00(T ). For the converse, let

λ0 ∈ πa
00(T ). It is easy to see that λ0 /∈ σ1(T ) ∪ [σ2(T ) ∩ accσa(T )] ∪ [ρa(T ) ∩ σ(T )]. Then

λ0 /∈ σb(T ), that is λ0 ∈ σ(T )\σw(T ). This shows that σ(T )\σw(T ) = πa
00(T ) and property

(ω′) holds for T . For the a-isoloid, let λ0 ∈ isoσa(T ) and suppose that n(T − λ0I) = 0, then

λ0 /∈ σ1(T ) ∪ [σ2(T ) ∩ accσa(T )] ∪ [ρa(T ) ∩ σ(T )]. This induces that T − λ0I is Browder and

n(T − λ0I) = 0. Thus T − λ0I is invertible. It is in contradiction to the fact that λ0 ∈ σ(T ).

Suppose that T is a-isoloid and property (ω′) holds for T . The inclusion σ1(T ) ∪ [σ2(T ) ∩

accσa(T )] ∪ [ρa(T ) ∩ σ(T )] ⊆ σb(T ) is clear. For the converse inclusion, let λ0 /∈ σ1(T ) ∪

[σ2(T ) ∩ accσa(T )] ∪ [ρa(T ) ∩ σ(T )]. Then n(T − λ0I) < ∞ and there exists ǫ > 0 such

that T − λI ∈ SF−

+ (H) and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if 0 < |λ − λ0| < ǫ. Also,

λ0 /∈ [ρa(T ) ∩ σ(T )] and λ0 /∈ [σ2(T ) ∩ accσa(T )]. Without loss of generality, we suppose that

λ0 /∈ ρa(T ), that is λ0 ∈ σa(T ). There are two cases to consider.

Case 1 Suppose λ0 /∈ σ2(T ). Then T − λI is CFI operator if 0 < |λ − λ0| is small sufficiently.

But since T − λI ∈ SF−

+ (H) and N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] if 0 < |λ − λ0| < ǫ. Then

T −λI is Weyl if 0 < |λ−λ0| is sufficiently small by Lemma 2.1. Since property (ω′) holds for T ,

it follows that T −λI is Browder. Then N(T −λI) = N(T −λI)∩
⋂

∞

n=1
R[(T −λI)n] = {0} (see

[10, Lemma 3.4]), which means that T − λI is invertible. This proves that λ0 ∈ isoσ(T ). Using

the fact that T is a-isoloid and n(T − λ0I) < ∞ we know that λ0 ∈ πa
00(T ). Since property (ω′)

holds for T , it follows that T − λ0I is Browder. Then λ0 /∈ σb(T ).

Case 2 Suppose λ0 /∈ accσa(T ). Then λ0 ∈ isoσa(T ) and hence λ0 ∈ πa
00(T ). Using the same

way, we know that λ0 /∈ σb(T ). 2

In the same way, we can prove

Corollary 2.1 T ∈ B(H) satisfies property (ω′) ⇔ σb(T ) = σ1(T ) ∪ [σ2(T ) ∩ accσa(T )] ∪ {λ ∈

σ(T ) : n(T − λI) = 0}.

If σ2(T ) = ∅, then ρa(T ) ∩ σ(T ) = ∅. Thus:

Corollary 2.2 Suppose σ2(T ) = ∅, then

(1) T is a-isoloid and property (ω′) holds for T ⇔ σb(T ) = σ1(T );

(2) Property (ω′) holds for T ⇔ σb(T ) = σ1(T ) ∪ {λ ∈ σ(T ) : n(T − λI) = 0}.

“T is a-isoloid” is essential in Theorem 2.1. For example, T ∈ B(ℓ2) is defined by

T (x1, x2, x3, . . .) = (0, x1,
x2

2
,
x3

3
, . . . ,

xn

n
, . . .),

then σ(T ) = σw(T ) = σa(T ) = {0} and πa
00(T ) = ∅, which shows that T has property (ω′) and T

is not a-isoloid. But we know that σb(T ) = {0} and σ1(T )∪[σ2(T )∩accσa(T )]∪[ρa(T )∩σ(T )] = ∅,
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that is σb(T ) 6= σ1(T ) ∪ [σ2(T ) ∩ accσa(T )] ∪ [ρa(T ) ∩ σ(T )].

Theorem 2.2 Suppose T ∈ B(H) is a-isoloid and property (ω′) holds for T , then the following

statements are equivalent:

(1) For any f ∈ H(T ), property (ω′) holds for f(T );

(2) For any f ∈ H(T ), σw(f(T )) = f(σw(T )), and σ(T ) = σw(T ) or σ(T ) = σa(T );

(3) For each pair λ, µ ∈ C\σe(T ), ind(T − λI)ind(T − µI) ≥ 0, and σ(T ) = σw(T ) or

σ(T ) = σa(T ).

Proof (1) ⇒ (2). σw(f(T ))) ⊆ f(σw(T )) is clear. We need to prove f(σw(T )) ⊆ σw(f(T )).

Suppose µ0 /∈ σw(f(T )), then f(T ) − µ0I is Weyl. Let

f(T ) − µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Thus T − λiI is Fredholm operator and µ0 /∈ σ(f(T )) or

µ0 ∈ σ(f(T ))\σw(f(T )). If µ0 /∈ σ(f(T )), then f(T ) − µ0I is invertible, which means that each

T − λiI is invertible. Then µ0 /∈ f(σw(T )). If µ0 ∈ σ(f(T ))\σw(f(T )), since property (ω′) holds

for f(T ), we know that f(T )−µ0I is Browder. Hence T −λiI is Browder and λi /∈ σw(T ). Then

µ0 /∈ f(σw(T )).

Next we will prove if σ(T ) 6= σw(T ), then σ(T ) = σa(T ). Let λ0 ∈ σ(T )\σw(T ). Then T−λ0I

is Browder because property (ω′) holds for T . For any µ0 /∈ σa(T ), let f(T ) = (T −µ0I)(T −λ0I).

Then f(T ) is an upper semi-Fredholm operator with asc(f(T )) < ∞ and n(f(T )) > 0. Thus

0 ∈ πa
00(f(T )). Since f(T ) satisfies property (ω′), f(T ) is Browder. This implies that T − µ0I is

Browder. Using the fact that T −µ0I is bounded from below, we know that T −µ0I is invertible.

Then we prove that σ(T ) = σa(T ) if σ(T ) 6= σw(T ).

(2) ⇒ (1). If σ(T ) = σw(T ), then πa
00(T ) = ∅ since T satisfies property (ω′). In this case,

σ(f(T )) = f(σ(T )) = f(σw(T )) = σw(f(T )) and πa
00(f(T )) = ∅. Then σ(f(T ))\σw(f(T )) =

πa
00(f(T )), which means that f(T ) satisfies property (ω′). In the following, we suppose that

σ(T ) 6= σw(T ), then σ(T ) = σa(T ). Let µ0 ∈ σ(f(T ))\σw(f(T )). Then f(T ) − µ0I is Weyl and

n(f(T ) − µ0I) > 0. Let

f(T ) − µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Since σw(f(T )) = f(σw(T )) and µ0 /∈ σw(f(T )), it follows

that λi /∈ σw(T ). Then T − λiI is Weyl. Since property (ω′) holds for T , it follows that T − λiI

is Browder. Then f(T ) − µ0I is Browder, thus µ0 ∈ πa
00(f(T )). Conversely, let µ0 ∈ πa

00(f(T ))

and let f(T ) − µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ), where λi 6= λj and g(T ) is

invertible. Let T − λiI is bounded from below if 1 ≤ i ≤ j and λi ∈ σa(T ) if j < i ≤ k. Then

T −λiI is invertible if 1 ≤ i ≤ j since σ(T ) = σa(T ). If j < i ≤ k, then λi ∈ πa
00(T ). Since T has

property (ω′), T − λiI is Browder. Thus f(T ) − µ0I is Browder and µ0 ∈ σ(f(T ))\σw(f(T )).

Hence property (ω′) holds for f(T ).

(2) ⇔ (3). By Theorem 2 in [2], we can get the result. 2

If σ1(T ) = σb(T ), using the perturbation theorem of semi-Fredholm operators, we can prove
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that σa(T ) = σ(T ) and ind(T − λI) ≥ 0 for any λ ∈ C\σe(T ). By Corollary 2.2 and Theorem

2.2, we get:

Corollary 2.3 If σ1(T ) = σb(T ), then property (ω′) holds for f(T ) for any f ∈ H(T ).

From Theorem 1.10 in [11], for each pair λ, µ ∈ C\σSF+
(T ), ind(T − λI)ind(T − µI) ≥ 0 if

and only if for any f ∈ H(T ), f(σ1(T )) ⊆ σ1(f(T )).

Corollary 2.4 Suppose that T ∈ B(H) is a-isoloid and property (ω′) holds for T . If for any

f ∈ H(T ), f(σ1(T )) ⊆ σ1(f(T )), then for any f ∈ H(T ), property (ω′) holds for f(T ) if and

only if σ(T ) = σw(T ) or σ(T ) = σa(T ).

If σ2(T ) = ∅, we have that σe(T ) = σw(T ) and σ(T ) = σa(T ). Then f(σ1(T )) ⊆ σ1(f(T )) for

any f ∈ H(T ). In this case, if T ∈ B(H) is a-isoloid and property (ω′) holds for T , by Corollary

2.2, σb(T ) = σ1(T ). Then for any f ∈ H(T ), property (ω′) holds for f(T ) (Corollary 2.3) and

f(σ1(T )) = f(σb(T )) = σb(f(T )) ⊇ σ1(f(T )).

Corollary 2.5 Suppose that T ∈ B(H) is a-isoloid and property (ω′) holds for T . If σ2(T ) = ∅,

then

(1) f(σ1(T )) = σ1(f(T )) for any f ∈ H(T );

(2) For any f ∈ H(T ), property (ω′) holds for f(T ).

Oberai [12] has examples showing that the Weyl’s theorem for T is not sufficient for the

Weyl’s theorem for T + F with finite rank F . For property (ω′), it has the same case. For

example, let T = A⊕ I acting on H ⊕H with A an injective quasinilpotent operator. It is clear

that T satisfies property (ω′). Take any finite rank projection P ∈ B(H), and let F = 0⊕ (−P ).

Then TF = FT , but property (ω′) fails for T + F because 0 ∈ πa
00(T + F ) ∩ σw(T + F ).

Corollary 2.6 Suppose that T ∈ B(H) is a-isoloid and property (ω′) holds for T . If F ∈ B(H)

is a finite rank operator commuting with T and σa(T ) = σa(T + F ), then T + F is a-isoloid and

property (ω′) holds for T + F .

Proof By Theorem 2.1, we need to prove that σb(T +F ) ⊆ σ1(T +F )∪ [σ2(T + F )∩accσa(T +

F )]∪[ρa(T+F )∩σ(T+F )]. Let λ0 /∈ σ1(T+F )∪[σ2(T + F )∩acc σa(T+F )]∪[ρa(T+F )∩σ(T+F )].

Without loss of generality, we suppose that λ0 ∈ σa(T +F ). Then n(T +F −λ0I) < ∞ and there

exists ǫ > 0 such that T + F − λI ∈ SF−

+ (H) and N(T + F − λI) ⊆
⋂

∞

n=1
R[(T + F − λI)n] if

0 < |λ−λ0| < ǫ. Also λ0 /∈ [σ2(T + F )∩accσa(T+F )]. Then n(T−λ0I) < ∞. If λ0 /∈ σ2(T + F ),

we can prove that T + F − λI is Weyl if 0 < |λ − λ0| is small enough. Then T − λI is Weyl.

Since property (ω′) holds for T , we know that T − λI is Browder. This shows that T + F − λI

is Browder. Then we can get that T + F −λI is invertible. Now we get λ0 ∈ isoσ(T + F ). Thus

λ0 ∈ isoσa(T ). The fact that T is a-isoloid tells us that λ0 ∈ πa
00(T ). Since property (ω′) holds

for T , it follows that T −λ0I is Browder. Then T + F −λ0I is Browder, that is λ0 /∈ σb(T + F ).

If λ0 /∈ accσa(T + F ), we can prove that λ0 ∈ isoσ(T ). Again, we get that λ0 /∈ σb(T + F ). 2

For finite rank operator F commuting with T , we know σb(T +F ) = σb(T ). If σ1(T ) = σb(T ),

we claim that σ1(T +F ) = σb(T +F ). In fact, let λ0 /∈ σ1(T +F ). Then n(T +F −λ0I) < ∞ and



886 Y. H. ZHANG and X. H. CAO

there exists ǫ > 0 such that T +F−λI ∈ SF−

+ (H) and N(T +F−λI) ⊆
⋂

∞

n=1
R[(T +F−λI)n)] if

0 < |λ−λ0| < ǫ. Thus T −λI ∈ SF−

+ (H) and n(T −λ0I) < ∞. By σ1(T ) = σb(T ) we know that

T −λI is Browder. This induces that T +F −λI is Browder if 0 < |λ−λ0| < ǫ. Then T +F −λI

is invertible. Now we get that λ0 ∈ [isoσ(T +F )∪ρ(T +F )]. We may suppose λ0 ∈ isoσ(T +F ).

Then λ0 ∈ isoσa(T + F ). Using Corollary 2.4 in [11], λ0 ∈ isoσa(T ) ∪ ρa(T ). Thus λ0 /∈ σ1(T ).

The fact that σ1(T ) = σb(T ) implies that T − λ0I is Browder. Then T + F − λ0I is Browder,

that is λ0 /∈ σb(T + F ).

Corollary 2.7 (1) Suppose σ1(T ) = σb(T ). If F ∈ B(H) is a finite rank operator commuting

with T , then T + F is a-isoloid and property (ω′) holds for T + F ;

(2) If σ2(T ) = ∅, T is a-isoloid and property (ω′) holds for T , then for any finite rank

operator F ∈ B(H) commuting with T , T + F is a-isoloid and property (ω′) holds for T + F .
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[1] WEYL H. Über beschränkte quadratische Formen, deren Differenz vollstetig ist [J]. Rend. Circ. Mat.

Palermo, 1909, 27: 373–392.
[2] HARTE R, LEE W Y. Another note on Weyl’s theorem [J]. Trans. Amer. Math. Soc., 1997, 349(5):

2115–2124.
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