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1. Introduction

In 1998, Ben-El-Mechaiekh, et al. [1] introduced and studied the abstract convexity con-
cept and the L-convexity structure on topological spaces. Recently, Ding [2] studied the class
KKM(X,Y) of mappings and Himmelberg type fixed point theorems. Ding [3] introduced the
GLKKM mapping, and obtained some GLKKM theorems, Ky Fan matching theorems, fixed
point theorems and a minimax inequality in L-convex spaces. Ding [4] proved a continuous se-
lection theorem, coincidence theorems, fixed point theorems, a minimax inequality and existence
theorems of solutions for generalized equilibrium problems in L-convex spaces. Ding [5] presented
some KKM theorems, coincidence theorems and some fixed point theorems in L-convex spaces.
Liu and Tang [6] established an intersection theorem, fixed point theorem, maximal element the-
orem, coincidence theorem, minimax inequalities and saddle point theorem in L-convex spaces.
In 2007, Fang and Hang [7] introduced some generalized L-KKM type theorems and an existence
theorem of equilibrium points for abstract generalized vector equilibrium problems. In 2008,
Wen [8] established a new KKM theorem, matching theorem, coincidence theorem, fixed point
theorem, maximal element theorem and equilibrium existence theorems for abstract economies
and qualitative games in L-convex spaces. In 2009, Wen [9, 10] obtained a new GLKKM theo-
rem, Ky Fan matching theorems, variational inequality, section theorem, coincidence theorem,

maximal element theorem and fixed point theorem in L-convex spaces.
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The aim of this paper is to establish a new Ky Fan matching theorem in L-convex spaces. As
application, a new fixed point theorem is obtained. Finally, we introduce and study the following
system of general quasiequilibrium problem SGQEP(T;, A;,¥;):cr which includes QEP(T), A, f)
of Noor, et al. [11-13], GQEP(T, A, v) of Ding [14,15], QEP(A, f) of Ding [16] and Lin and
Park [17], SQEP(T;, A, fi)ier of Zheng and Ding [18] and many fundamental mathematical
problems, e.g., optimization problems, quasicomplementarity problems, variational inequality
problems and others as special cases. Let I be a finite or infinite index set, {X;};cr and {Y;}ier
be two families of nonempty sets. Suppose that for each i € I, A; : X = Hjel X; — 2Xi is a
mapping, T; : X — Y; amap, ¢¥; : X XxY; x X — R := RU {£o0} a function, m; : X — X;
the projection of X onto X; and A : X — 2% defined by A(z) := [[;c; Ai(z) for each z € X.
Then the system of general quasiequilibrium problems SGQEP(T;, A;, 1;)icr is to find & € X
such that

2 =m(%) € Ai(T), Viel,
{ (&, T;2,y) <0, Vy e A(z), Viel.

2. Preliminaries

Let X be a nonempty set. We denote by (X) and 2% the family of all nonempty finite
subsets of X and the family of all subsets of X, respectively. Let X, Y be two nonempty sets
and F : X — 2¥ a mapping. Then the mapping F* : Y — 2% is defined by F*(y) := X \ F~!(y)
for each y € Y. Let X and Y be two topological spaces. We denote by C(X,Y") the class of
single-valued continuous maps of X into Y. Let (X,T") be an L-convex space [1-10]. A set D C X
is said to be L-convex if for each A € (D), T'(4) C D.

Following [1-10], let X be a nonempty set and (Y,T") be an L-convex space. A mapping
G : X — 2Y is said to be a GLKKM mapping if for each {x1,...,2,} € (X), there exists
{y1,-.-,yn} € (Y) such that for any nonempty subset {yi,,..., %} C {y1,.--,yn}, we have

F({yil’ s Yy }) - U?:l G(Ilg)

Definition 2.1 ([9]) Let X be a nonempty set, Y a topological space and K a nonempty
compact subset of Y. A mapping G : X — 2Y is said to be weakly transfer compactly open
(resp., closed) valued relative to K if the family {G(x) () K }+cx is transfer open (resp.,closed).

Definition 2.2 ([9]) Let X be a nonempty set, Y a topological space, K a nonempty compact
subset of Y and v € R a real number. A function f : X x Y — R := R|J{£oo} is said
to be weakly ~y-transfer compactly lower semicontinuous (in short, w.y-t.c.l.s.c) (resp., weakly
~-transfer compactly upper semicontinuous (in short, w.y-t.c.u.s.c)) relative to K in y if for all
x € X andy € K, f(x,y) > v (resp., f(x,y) < ) implies that there exist a relatively open
neighborhood N(y) of y in K and ' € X such that f(z',z) > v (resp., f(¢',z) < ) for all
z € N(y).

Lemma 2.1 ([9]) Let X be a nonempty set, Y a topological space, K a nonempty compact subset
of Y and v € R a real number. A function f : X x Y — R is w.y-t.c.l.s.c (resp., w.y-t.c.u.s.c)
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relative to K iny if and only if the mapping F : X — 2Y defined by F(z) :=={y € Y : f(z,y) > v}
(resp., F(x) :={y € Y : f(z,y) < ~}) for each x € X is weakly transfer compactly open valued
relative to K.

Lemma 2.2 ([9]) Let X be a topological space, Y a nonempty set, K a nonempty compact
subset of X and G : X — 2Y be a mapping such that G(z) # 0 for each x € K. Then the
following conditions are equivalent:

(a) G has the weakly compactly local intersection property relative to K;

(b) For each y € Y, there exists an open subset O, of X such that O, N K C G~!(y) and

(c) There exists a mapping F : X — 2Y such that for each y € Y, F~1(y) is open in X,
FHy)NK C G '(y), and K =,y (F~'(y) N K);

(d) For each x € K, there exists y € Y such that x € cintxG~'(y) N K and

K= |J(cntxG7'(y) N K) = [ J (G (y) N K);
yey yey
(e) G~ is weakly transfer compactly open valued relative to K on X.

Now, we introduce the following definitions.

Definition 2.3 Let X be a nonempty set, (Y,T') an L-convex space and A,B : X — 2Y

two mappings. A is said to be relatively L-convex valued in B if for each x € X and for each
{y1,.- - yn}t C B(x), T{y1,-- ., un}) C A(z).

Remark 2.1 Obviously, A is relatively L-convex valued in A if A is L-convex valued, but A

need not be L-convex valued if A is relatively L-convex valued in B.

Definition 2.4 Let (X,I') be an L-convex space and v € R a real number. A function
f: X — R is said to be y-L-quasiconcave(resp., quasiconvex) if the set {z € X : f(x) > ~}
(resp., {x € X : f(x) <~}) is L-convex.

Remark 2.2 Definition 2.4 generalizes the definition of L-quasiconcave (resp., quasiconvex) in
Ding and Park [4].

3. Main results

Theorem 3.1 Let X a nonempty subset of an L-convex space (Z,T'), Y be a topological space,
K a nonempty compact subset of Z and A: X — 2¥ a mapping such that

(1) A is weakly transfer compactly open valued relative to K;

(2) For each f € C(Z,Y), there exists My € (X) such that ()¢, clz(f~Y(Y \ A(z))) C K;

(3) A(X):=U,cx Ala) = V.

Then, for each f € C(Z,Y), there exist {z1,...,x,} € (X) and zy € I'({z1,...,2,}) such
that f(zo) € iz, Alz;).

Proof Suppose the conclusion is false. Then there exists fo € C(Z,Y) such that for each
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{z1,... 20} € (X), foC({z1,...,2,})) C Y \ie, A(z;). Define a mapping F : X — 2¥ by
F(z):=Y \ A(z) for each x € X. Then I'({z1,...,2,}) C Ui, (fy "F)(;). Define G : X — 27
by G(z) := (fy 'F)(z) for each * € X. Then I'({z1,...,2,}) C Ui, G(zi). Therefore, G is
a GLKKM mapping. Moreover, by (1), A is weakly transfer compactly open valued relative
to K, which implies that F' is weakly transfer compactly closed valued relative to K. By the
continuity of fo, G is also weakly transfer compactly closed valued relative to K. By (2),
there exists My, € (X) such that ﬂIero clG(x) C K. In virtue of Theorem 3.1 of Wen [9],
Neex G@) = Nuex(fo 'F)(@) #0, thus, N,cx F(z) =Y \ U,ex A(x) # 0, a contradiction to
(3). O

Remark 3.1.1 If A is transfer open valued or transfer compactly open valued, then the
condition (1) is satisfied, of course. If X =Y = Z is a compact L-convex space, by letting
K = X =Y = Z, then the condition (2) holds trivially. Therefore, Theorem 3.1 improves and
generalizes Theorem 2.2 of Wen [8], Theorems 2.1 and 2.2 of Wen [10], Lemma 2.1 of Wen [19],
Lemma 3.1 of Wen [20], Theorem 2 of Chang and Ma [21] and Theorem 1 of Park [22].

Remark 3.1.2 If the condition (2) in Theorem 3.1 is replaced by that for f € C(Z,Y), there
exists My € (X) such that ﬂmer clz(f~Y(Y \ A(z))) C K, then the conclusion of Theorem
3.1 is replaced by that there exist {x1,...,2,} € (X) and zo € T'({z1,...,2,}) such that

f(zo) € Ny A(z;), respectively.

Theorem 3.2 Let X be a topological space, Y a nonempty subset of an L-convex space (Z,T'),
K a nonempty compact subset of Y. Suppose that s € C(Z,X) and A, B : X — 2Y \ {(} such
that

(1) B satisfies one of conditions (a)—(e) in Lemma 2.2;

(2) There exists M € (Y') such that ﬂyeMclz(s_lB*(y)) C K;

(3) A is relatively L-convex valued in B.

Then, there exists yo € Y such that yo € A(s(yo))-

Proof By (1), B~! is weakly transfer compactly open valued relative to K. By (2), there
exists M € (Y') such that ﬂyeMclz(s_l(Y \ B~Y(y))) C K. Since B is nonempty valued, then
X =Uyey B71(y). In virtue of Theorem 3.1 and Remark 3.1.2, there exist {y1,--- ,yn} € (V)
and yo € T'({y1,...,yn}) such that s(yo) € (N, B~'(y:), which results in that {y1,...,yn} C
B(s(yo)). By (3), we have I'({v1,...,yn}) C A(s(yo)), and hence, yo € I'({y1,...,yn}) C
Als(yo)). O

Remark 3.2 Let X =Y = Z, s = Ix and A = B be L-convex valued. Then Theorem 3.1
reduces to Theorem 3.5 of Wen [9]. Therefore, Theorem 3.1 unifies, improves and generalizes
Theorem 3.5 of Wen [9], Theorem 3 of Park [22], Theorem 3.1 of Kirk, et al. [23], Lemma 2.2
of Zhang [24], Lemma 1 of Wu [25], Theorem 2.3-A of Chowdhury, et al. [26], Theorem 2.4 of
Verma [27], Theorems 2, 3, 4, 8 of Park [28], Corollaries 2 and 3 of Chen and Shen [29], Theorem
2 of Horvath [30, p350], Theorem 3.6 of Yuan [31], Corollary 2.3 of Tarafdar [32], Theorem 2.1,
Corollaries 2.1-2.3 of Tarafdar [33] and Theorem 4.1 of Watson [34], and so on.
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Theorem 3.3 Let I be a finite or infinite index set, {(X;,T';) }ier be a family of L-convex spaces,
{Yi}ier a family of nonempty sets. Suppose that for eachi € I, A;: X :=[[;c; X; — 2%\ {0}
is a mapping, T; : X — Y; amap, ¢; : X xY; x X — R a function, m; : X — X, the projection of
X onto X;, K a nonempty compact subset of X and A : X — 2% defined by A(z) := [];c; Ai(z)
for each x € X satisfying

(1) For eachi € I and for each x € X, y — ;(x, T;x,y) is 0-L-quasiconcave;

(2) For eachi € I, fi(z,y) := ¢i(x, Tiz,y) is w.0-t.c.Ls.c. relative to K in x;

(3) A is L-convex valued;

(4) A satisfies one of conditions (a)—(e) in Lemma 2.2;

(5) D:={xe€ X :z € A(x)} is compactly closed;

(6) There exists M € (X) such that (\,c, clxA*(z) € K and (\,cpclx({z € D :
maxie¥i(z, Tiz,y) < 0}) C K;

(7) For eachi € I and for each x € X, ¢;(z, Tyz,z) < 0.

Then there exists ¢ € X such that

4 =m(2) € Ai(2), Viel,
{ i(#, Tid,y) <0,  Vye A@), Viel.

Proof For each i € I, define a mapping P; : X — 2% by P;(z) := {y € X : ¢;(z, Tiz,y) > 0}
for each 2 € X. Then, by (1), P; is L-convex valued, and for each y € X, P, '(y) = {z € X :
Y (z, Tyx,y) > 0}, so that PZ-_1 is weakly transfer compactly open valued relative to K by (2)
and Lemma 2.1.

We claim that there exists # € D such that A(Z)((U,c; Pi(2)) = 0. Otherwise, define a
mapping G : X — 2% by

A(x), xreX\D,
G(z) A@)(JPi(@), zeD.

el

Note that A is also nonempty valued. Then G is nonempty valued. Moreover, since P; is L-

convex valued for each i € I, |J,.; Pi(x) is L-convex for each € X. Therefore, G is L-convex

el
valued by (3). By the definition of G, for each y € X, we have

G ) ={zr e X :yecCG)}
={zeX\D:yec A} JzeD:yecA@)[ (P

i€l

=(x\D)nA' ) JoNA NP
i€l
=A" ) & \D)JlJ P

i€l

and

G(y) =X \G ' (y) = X\ (A () (X \ D) UP
_A* UDmmP*

el



A matching theorem in L-convex spaces with the application 903

By (4), A1 is weakly transfer compactly open valued relative to K. By (5), X \ D is compactly
open. Note that PZ-_1 is also weakly transfer compactly open valued relative to K for each i € I.
Then, G~' is weakly transfer compactly open valued relative to K. Since D ((N;c; By (v)) =
{z € D: (x, Tix,y) <0,Vi € I} = {x € D : max;er ¢;(x, Tix,y) < 0} for each y € X, by (6),
there exists M € (X) such that (), ,, clx(G*(2)) C K. In virtue of Theorem 3.2, there exists
xo € X such that z¢ € G(xp).

On the other hand, if 29 € D, 29 € G(x0) = A(zo) ((U;er Pi(w0)) € Ujer Pi(zo), then
there exists ig € I such that xg € P;,(z0), hence, ©;, (zo, Ti, o, o) > 0, which contradicts the
condition (7). If zp € X \ D, z¢ € G(xg) = A(zg), then zo € D, which is also a contradiction.
Therefore, there exists # € D such that A(Z)((U;c; Pi(2)) = 0. Namely, there exists & € X
such that

£ = mi(2) € Ai(z), Viel;
{ bi(, Tid,y) <0,  Vye A(@), Yiel. D

As a special case of Theorem 3.3, we have the equilibrium existence theorem for the system
of quasiequilibrium problems SQEP (T3, 4, f;).

Theorem 3.4 Let I be a finite or infinite index set, {(X;,T';) }scr be a family of L-convex spaces,
{Yi}ier a family of nonempty sets. Suppose that for each i € I, A;: X := [[;¢; X; — 2%\ {0}
is a mapping, T; : X — Y; a map, and f; : X xY; — R a function, m; : X — X, the projection
of X onto X; and A: X — 2% defined by A(z) := [[;c; Ai(x) for each x € X satisfying

(1) For eachi € I and for each x € X, y — fi(x,T;x) — fi(y, Tix) is 0-L-quasiconcave;

(2) Foreachie€ I, ¢i(z,y) = fi(zx, Tix) — fi(y, Tiz) is O-t.c.l.s.c. in x;

(3) A is L-convex valued;

(4) A satisfies one of conditions (a)—(e) in Lemma 2.2;

(5) D:={x e X :a € A(x)} is compactly closed;

(6) There exists M € (X) such that () ¢, clx(A*(z)) € K and (o clx({z € D :
maxier(fi(z, Tiz) — fily, Tiw)) < 0}) C K;

Then there exists £ € X such that

T; = Wz(j)EAZ(QA?), V’L'GI,
filz, Tix) < fi(y, Tixz), Vye A(z), Viel.
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