Journal of Mathematical Research & Exposition Sept., 2011, Vol. 31, No. 5, pp. 898–904 DOI:10.3770/j.issn:1000-341X.2011.05.016 Http://jmre.dlut.edu.cn

A New Ky Fan Matching Theorem in Noncompact L-Convex Spaces with the Application to Systems of General Quasiequilibrium Problems

Kai Ting WEN

College of Civil Engineering and Architecture, Bijie University, Guizhou 551700, P. R. China

Abstract In this paper, a new Ky Fan matching theorem is established in noncompact L-convex spaces. As applications, a fixed point theorem and equilibrium existence theorems for systems of general quasiequilibrium problems and systems of quasiequilibrium problems in noncompact L-convex spaces are obtained.

Keywords L-convex space; matching; weakly transfer compactly open (closed); fixed point; system of general quasiequilibrium problems; equilibrium.

Document code A MR(2010) Subject Classification 47H04; 47H10; 52A99 Chinese Library Classification O177.91

1. Introduction

In 1998, Ben-El-Mechaiekh, et al. [1] introduced and studied the abstract convexity concept and the L-convexity structure on topological spaces. Recently, Ding [2] studied the class KKM(X,Y) of mappings and Himmelberg type fixed point theorems. Ding [3] introduced the GLKKM mapping, and obtained some GLKKM theorems, Ky Fan matching theorems, fixed point theorems and a minimax inequality in L-convex spaces. Ding [4] proved a continuous selection theorem, coincidence theorems, fixed point theorems, a minimax inequality and existence theorems of solutions for generalized equilibrium problems in L-convex spaces. Ding [5] presented some KKM theorems, coincidence theorems and some fixed point theorems in L-convex spaces. Liu and Tang [6] established an intersection theorem, fixed point theorem, maximal element theorem, coincidence theorem, minimax inequalities and saddle point theorem in L-convex spaces. In 2007, Fang and Hang [7] introduced some generalized L-KKM type theorems and an existence theorem of equilibrium points for abstract generalized vector equilibrium problems. In 2008, Wen [8] established a new KKM theorem, matching theorem, coincidence theorem, fixed point theorem, maximal element theorem and equilibrium existence theorems for abstract economies and qualitative games in L-convex spaces. In 2009, Wen [9, 10] obtained a new GLKKM theorem, Ky Fan matching theorems, variational inequality, section theorem, coincidence theorem, maximal element theorem and fixed point theorem in L-convex spaces.

Received January 22, 2010; Accepted May 28, 2010

Supported by the Natural Science Foundation of Guizhou Province (Grant No. [2011]2093) and the Natural Science Research Foundation of Guizhou Provincial Education Department (Grant No. 2008072).

E-mail address: wenkaiting_2004@sina.com.cn

The aim of this paper is to establish a new Ky Fan matching theorem in L-convex spaces. As application, a new fixed point theorem is obtained. Finally, we introduce and study the following system of general quasiequilibrium problem SGQEP(T_i, A_i, ψ_i) $_{i \in I}$ which includes QEP(T_i, A_i, f_i) of Noor, et al. [11–13], GQEP(T_i, A_i, ψ_i) of Ding [14,15], QEP(T_i, A_i, f_i) of Ding [16] and Lin and Park [17], SQEP(T_i, A_i, f_i) $_{i \in I}$ of Zheng and Ding [18] and many fundamental mathematical problems, e.g., optimization problems, quasicomplementarity problems, variational inequality problems and others as special cases. Let T_i be a finite or infinite index set, T_i and T_i are T_i and T_i and T_i and T_i and T_i are T_i and T_i and T_i and T_i are T_i and T_i and T_i are T_i and T_i and T_i are T_i and T_i and T_i and T_i are T_i and T_i and T_i and T_i are T_i and T_i and T_i and T_i and T_i are T_i are T_i and T_i and T_i are T_i and T_i and T_i are T_i and T_i and T_i are T_i are T_i and T_i are T_i and T_i are T_i and T_i are T_i and T_i are T_i are T_i and T_i are T_i and T_i are T_i are T_i and T_i are T_i and T_i are T_i are T_i and T_i are T_i and T_i ar

$$\begin{cases} \hat{x_i} := \pi_i(\hat{x}) \in A_i(\hat{x}), & \forall i \in I, \\ \psi_i(\hat{x}, T_i \hat{x}, y) \le 0, & \forall y \in A(\hat{x}), & \forall i \in I. \end{cases}$$

2. Preliminaries

Let X be a nonempty set. We denote by $\langle X \rangle$ and 2^X the family of all nonempty finite subsets of X and the family of all subsets of X, respectively. Let X, Y be two nonempty sets and $F: X \to 2^Y$ a mapping. Then the mapping $F^*: Y \to 2^X$ is defined by $F^*(y) := X \setminus F^{-1}(y)$ for each $y \in Y$. Let X and Y be two topological spaces. We denote by $\mathcal{C}(X,Y)$ the class of single-valued continuous maps of X into Y. Let (X,Γ) be an L-convex space [1–10]. A set $D \subset X$ is said to be L-convex if for each $A \in \langle D \rangle$, $\Gamma(A) \subset D$.

Following [1–10], let X be a nonempty set and (Y,Γ) be an L-convex space. A mapping $G: X \to 2^Y$ is said to be a GLKKM mapping if for each $\{x_1, \ldots, x_n\} \in \langle X \rangle$, there exists $\{y_1, \ldots, y_n\} \in \langle Y \rangle$ such that for any nonempty subset $\{y_{i_1}, \ldots, y_{i_k}\} \subset \{y_1, \ldots, y_n\}$, we have $\Gamma(\{y_{i_1}, \ldots, y_{i_k}\}) \subset \bigcup_{j=1}^k G(x_{i_j})$.

Definition 2.1 ([9]) Let X be a nonempty set, Y a topological space and K a nonempty compact subset of Y. A mapping $G: X \to 2^Y$ is said to be weakly transfer compactly open (resp., closed) valued relative to K if the family $\{G(x) \cap K\}_{x \in X}$ is transfer open (resp., closed).

Definition 2.2 ([9]) Let X be a nonempty set, Y a topological space, K a nonempty compact subset of Y and $\gamma \in \mathbf{R}$ a real number. A function $f: X \times Y \to \overline{\mathbf{R}} := \mathbf{R} \bigcup \{\pm \infty\}$ is said to be weakly γ -transfer compactly lower semicontinuous (in short, w. γ -t.c.l.s.c) (resp., weakly γ -transfer compactly upper semicontinuous (in short, w. γ -t.c.u.s.c)) relative to K in y if for all $x \in X$ and $y \in K$, $f(x,y) > \gamma$ (resp., $f(x,y) < \gamma$) implies that there exist a relatively open neighborhood N(y) of y in K and $x' \in X$ such that $f(x',z) > \gamma$ (resp., $f(x',z) < \gamma$) for all $z \in N(y)$.

Lemma 2.1 ([9]) Let X be a nonempty set, Y a topological space, K a nonempty compact subset of Y and $\gamma \in \mathbf{R}$ a real number. A function $f: X \times Y \to \overline{\mathbf{R}}$ is $w.\gamma$ -t.c.l.s.c (resp., $w.\gamma$ -t.c.u.s.c)

900 K. T. WEN

relative to K in y if and only if the mapping $F: X \to 2^Y$ defined by $F(x) := \{y \in Y : f(x,y) > \gamma\}$ (resp., $F(x) := \{y \in Y : f(x,y) < \gamma\}$) for each $x \in X$ is weakly transfer compactly open valued relative to K.

Lemma 2.2 ([9]) Let X be a topological space, Y a nonempty set, K a nonempty compact subset of X and $G: X \to 2^Y$ be a mapping such that $G(x) \neq \emptyset$ for each $x \in K$. Then the following conditions are equivalent:

- (a) G has the weakly compactly local intersection property relative to K;
- (b) For each $y \in Y$, there exists an open subset O_y of X such that $O_y \cap K \subset G^{-1}(y)$ and $K = \bigcup_{y \in Y} (O_y \cap K)$;
- (c) There exists a mapping $F: X \to 2^Y$ such that for each $y \in Y$, $F^{-1}(y)$ is open in X, $F^{-1}(y) \cap K \subset G^{-1}(y)$, and $K = \bigcup_{y \in Y} (F^{-1}(y) \cap K)$;
 - (d) For each $x \in K$, there exists $y \in Y$ such that $x \in \text{cint}_X G^{-1}(y) \cap K$ and

$$K = \bigcup_{y \in Y} (\text{cint}_X G^{-1}(y) \cap K) = \bigcup_{y \in Y} (G^{-1}(y) \cap K);$$

(e) G^{-1} is weakly transfer compactly open valued relative to K on X.

Now, we introduce the following definitions.

Definition 2.3 Let X be a nonempty set, (Y,Γ) an L-convex space and $A,B: X \to 2^Y$ two mappings. A is said to be relatively L-convex valued in B if for each $x \in X$ and for each $\{y_1,\ldots,y_n\} \subset B(x), \Gamma(\{y_1,\ldots,y_n\}) \subset A(x)$.

Remark 2.1 Obviously, A is relatively L-convex valued in A if A is L-convex valued, but A need not be L-convex valued if A is relatively L-convex valued in B.

Definition 2.4 Let (X,Γ) be an L-convex space and $\gamma \in \mathbf{R}$ a real number. A function $f: X \to \overline{\mathbf{R}}$ is said to be γ -L-quasiconcave(resp., quasiconvex) if the set $\{x \in X : f(x) > \gamma\}$ (resp., $\{x \in X : f(x) < \gamma\}$) is L-convex.

Remark 2.2 Definition 2.4 generalizes the definition of L-quasiconcave (resp., quasiconvex) in Ding and Park [4].

3. Main results

Theorem 3.1 Let X a nonempty subset of an L-convex space (Z,Γ) , Y be a topological space, K a nonempty compact subset of Z and $A: X \to 2^Y$ a mapping such that

- (1) A is weakly transfer compactly open valued relative to K;
- (2) For each $f \in \mathcal{C}(Z,Y)$, there exists $M_f \in \langle X \rangle$ such that $\bigcap_{x \in M_f} \operatorname{cl}_Z(f^{-1}(Y \setminus A(x))) \subset K$;
- (3) $A(X) := \bigcup_{x \in X} A(x) = Y$.

Then, for each $f \in \mathcal{C}(Z,Y)$, there exist $\{x_1,\ldots,x_n\} \in \langle X \rangle$ and $x_0 \in \Gamma(\{x_1,\ldots,x_n\})$ such that $f(x_0) \in \bigcap_{i=1}^n A(x_i)$.

Proof Suppose the conclusion is false. Then there exists $f_0 \in \mathcal{C}(Z,Y)$ such that for each

 $\{x_1,\ldots,x_n\}\in\langle X\rangle,\ f_0(\Gamma(\{x_1,\ldots,x_n\}))\subset Y\setminus\bigcap_{i=1}^nA(x_i).$ Define a mapping $F:X\to 2^Y$ by $F(x):=Y\setminus A(x)$ for each $x\in X.$ Then $\Gamma(\{x_1,\ldots,x_n\})\subset\bigcup_{i=1}^n(f_0^{-1}F)(x_i).$ Define $G:X\to 2^Z$ by $G(x):=(f_0^{-1}F)(x)$ for each $x\in X.$ Then $\Gamma(\{x_1,\ldots,x_n\})\subset\bigcup_{i=1}^nG(x_i).$ Therefore, G is a GLKKM mapping. Moreover, by (1), A is weakly transfer compactly open valued relative to K, which implies that F is weakly transfer compactly closed valued relative to K. By the continuity of f_0 , G is also weakly transfer compactly closed valued relative to K. By (2), there exists $M_{f_0}\in\langle X\rangle$ such that $\bigcap_{x\in M_{f_0}}\operatorname{cl}G(x)\subset K.$ In virtue of Theorem 3.1 of Wen [9], $\bigcap_{x\in X}G(x)=\bigcap_{x\in X}(f_0^{-1}F)(x)\neq\emptyset$, thus, $\bigcap_{x\in X}F(x)=Y\setminus\bigcup_{x\in X}A(x)\neq\emptyset$, a contradiction to (3). \square

Remark 3.1.1 If A is transfer open valued or transfer compactly open valued, then the condition (1) is satisfied, of course. If X = Y = Z is a compact L-convex space, by letting K = X = Y = Z, then the condition (2) holds trivially. Therefore, Theorem 3.1 improves and generalizes Theorem 2.2 of Wen [8], Theorems 2.1 and 2.2 of Wen [10], Lemma 2.1 of Wen [19], Lemma 3.1 of Wen [20], Theorem 2 of Chang and Ma [21] and Theorem 1 of Park [22].

Remark 3.1.2 If the condition (2) in Theorem 3.1 is replaced by that for $f \in \mathcal{C}(Z,Y)$, there exists $M_f \in \langle X \rangle$ such that $\bigcap_{x \in M_f} \operatorname{cl}_Z(f^{-1}(Y \setminus A(x))) \subset K$, then the conclusion of Theorem 3.1 is replaced by that there exist $\{x_1, \ldots, x_n\} \in \langle X \rangle$ and $x_0 \in \Gamma(\{x_1, \ldots, x_n\})$ such that $f(x_0) \in \bigcap_{i=1}^n A(x_i)$, respectively.

Theorem 3.2 Let X be a topological space, Y a nonempty subset of an L-convex space (Z, Γ) , K a nonempty compact subset of Y. Suppose that $s \in \mathcal{C}(Z, X)$ and $A, B : X \to 2^Y \setminus \{\emptyset\}$ such that

- (1) B satisfies one of conditions (a)–(e) in Lemma 2.2;
- (2) There exists $M \in \langle Y \rangle$ such that $\bigcap_{y \in M} \operatorname{cl}_Z(s^{-1}B^*(y)) \subset K$;
- (3) A is relatively L-convex valued in B.

Then, there exists $y_0 \in Y$ such that $y_0 \in A(s(y_0))$.

Proof By (1), B^{-1} is weakly transfer compactly open valued relative to K. By (2), there exists $M \in \langle Y \rangle$ such that $\bigcap_{y \in M} \operatorname{cl}_Z(s^{-1}(Y \setminus B^{-1}(y))) \subset K$. Since B is nonempty valued, then $X = \bigcup_{y \in Y} B^{-1}(y)$. In virtue of Theorem 3.1 and Remark 3.1.2, there exist $\{y_1, \dots, y_n\} \in \langle Y \rangle$ and $y_0 \in \Gamma(\{y_1, \dots, y_n\})$ such that $s(y_0) \in \bigcap_{i=1}^n B^{-1}(y_i)$, which results in that $\{y_1, \dots, y_n\} \subset B(s(y_0))$. By (3), we have $\Gamma(\{y_1, \dots, y_n\}) \subset A(s(y_0))$, and hence, $y_0 \in \Gamma(\{y_1, \dots, y_n\}) \subset A(s(y_0))$. \square

Remark 3.2 Let X=Y=Z, $s=I_X$ and A=B be L-convex valued. Then Theorem 3.1 reduces to Theorem 3.5 of Wen [9]. Therefore, Theorem 3.1 unifies, improves and generalizes Theorem 3.5 of Wen [9], Theorem 3 of Park [22], Theorem 3.1 of Kirk, et al. [23], Lemma 2.2 of Zhang [24], Lemma 1 of Wu [25], Theorem 2.3-A of Chowdhury, et al. [26], Theorem 2.4 of Verma [27], Theorems 2, 3, 4, 8 of Park [28], Corollaries 2 and 3 of Chen and Shen [29], Theorem 2 of Horvath [30, p350], Theorem 3.6 of Yuan [31], Corollary 2.3 of Tarafdar [32], Theorem 2.1, Corollaries 2.1–2.3 of Tarafdar [33] and Theorem 4.1 of Watson [34], and so on.

902 K. T. WEN

Theorem 3.3 Let I be a finite or infinite index set, $\{(X_i, \Gamma_i)\}_{i \in I}$ be a family of L-convex spaces, $\{Y_i\}_{i \in I}$ a family of nonempty sets. Suppose that for each $i \in I$, $A_i : X := \prod_{j \in I} X_j \to 2^{X_i} \setminus \{\emptyset\}$ is a mapping, $T_i : X \to Y_i$ a map, $\psi_i : X \times Y_i \times X \to \overline{\mathbf{R}}$ a function, $\pi_i : X \to X_i$ the projection of X onto X_i , K a nonempty compact subset of X and $A : X \to 2^X$ defined by $A(x) := \prod_{i \in I} A_i(x)$ for each $x \in X$ satisfying

- (1) For each $i \in I$ and for each $x \in X$, $y \mapsto \psi_i(x, T_i x, y)$ is 0-L-quasiconcave;
- (2) For each $i \in I$, $f_i(x,y) := \psi_i(x,T_ix,y)$ is w.0-t.c.l.s.c. relative to K in x;
- (3) A is L-convex valued;
- (4) A satisfies one of conditions (a)–(e) in Lemma 2.2;
- (5) $D := \{x \in X : x \in A(x)\}$ is compactly closed;
- (6) There exists $M \in \langle X \rangle$ such that $\bigcap_{x \in M} \operatorname{cl}_X A^*(x) \subset K$ and $\bigcap_{x \in M} \operatorname{cl}_X(\{x \in D : \max_{i \in I} \psi_i(x, T_i x, y) \leq 0\}) \subset K$;
 - (7) For each $i \in I$ and for each $x \in X$, $\psi_i(x, T_i x, x) \leq 0$.

Then there exists $\hat{x} \in X$ such that

$$\begin{cases} \hat{x_i} := \pi_i(\hat{x}) \in A_i(\hat{x}), & \forall i \in I, \\ \psi_i(\hat{x}, T_i \hat{x}, y) \le 0, & \forall y \in A(\hat{x}), & \forall i \in I. \end{cases}$$

Proof For each $i \in I$, define a mapping $P_i: X \to 2^X$ by $P_i(x) := \{y \in X : \psi_i(x, T_i x, y) > 0\}$ for each $x \in X$. Then, by (1), P_i is L-convex valued, and for each $y \in X$, $P_i^{-1}(y) = \{x \in X : \psi_i(x, T_i x, y) > 0\}$, so that P_i^{-1} is weakly transfer compactly open valued relative to K by (2) and Lemma 2.1.

We claim that there exists $\hat{x} \in D$ such that $A(\hat{x}) \cap (\bigcup_{i \in I} P_i(\hat{x})) = \emptyset$. Otherwise, define a mapping $G: X \to 2^X$ by

$$G(x) := \begin{cases} A(x), & x \in X \setminus D, \\ A(x) \bigcap (\bigcup_{i \in I} P_i(x)), & x \in D. \end{cases}$$

Note that A is also nonempty valued. Then G is nonempty valued. Moreover, since P_i is L-convex valued for each $i \in I$, $\bigcup_{i \in I} P_i(x)$ is L-convex for each $x \in X$. Therefore, G is L-convex valued by (3). By the definition of G, for each $y \in X$, we have

$$\begin{split} G^{-1}(y) := & \{x \in X : y \in G(x)\} \\ = & \{x \in X \setminus D : y \in A(x)\} \bigcup \{x \in D : y \in A(x) \bigcap (\bigcup_{i \in I} P_i(x))\} \\ = & ((X \setminus D) \cap A^{-1}(y)) \bigcup (D \bigcap A^{-1}(y) \bigcap (\bigcup_{i \in I} P_i^{-1}(y))) \\ = & A^{-1}(y) \bigcap ((X \setminus D) \bigcup (\bigcup_{i \in I} P_i^{-1}(y))) \end{split}$$

and

$$\begin{split} G^*(y) := & X \setminus G^{-1}(y) = X \setminus (A^{-1}(y) \bigcap ((X \setminus D) \bigcup (\bigcup_{i \in I} P_i^{-1}(y)))) \\ = & A^*(y) \bigcup (D \bigcap (\bigcap_{i \in I} P_i^*(y))). \end{split}$$

By (4), A^{-1} is weakly transfer compactly open valued relative to K. By (5), $X \setminus D$ is compactly open. Note that P_i^{-1} is also weakly transfer compactly open valued relative to K for each $i \in I$. Then, G^{-1} is weakly transfer compactly open valued relative to K. Since $D \cap (\bigcap_{i \in I} P_i^*(y)) = \{x \in D : \psi_i(x, T_i x, y) \leq 0, \forall i \in I\} = \{x \in D : \max_{i \in I} \psi_i(x, T_i x, y) \leq 0\}$ for each $y \in X$, by (6), there exists $M \in \langle X \rangle$ such that $\bigcap_{x \in M} \operatorname{cl}_X(G^*(x)) \subset K$. In virtue of Theorem 3.2, there exists $x_0 \in X$ such that $x_0 \in G(x_0)$.

On the other hand, if $x_0 \in D$, $x_0 \in G(x_0) = A(x_0) \cap (\bigcup_{i \in I} P_i(x_0)) \subset \bigcup_{i \in I} P_i(x_0)$, then there exists $i_0 \in I$ such that $x_0 \in P_{i_0}(x_0)$, hence, $\psi_{i_0}(x_0, T_{i_0}x_0, x_0) > 0$, which contradicts the condition (7). If $x_0 \in X \setminus D$, $x_0 \in G(x_0) = A(x_0)$, then $x_0 \in D$, which is also a contradiction. Therefore, there exists $\hat{x} \in D$ such that $A(\hat{x}) \cap (\bigcup_{i \in I} P_i(\hat{x})) = \emptyset$. Namely, there exists $\hat{x} \in X$ such that

$$\begin{cases} \hat{x_i} := \pi_i(\hat{x}) \in A_i(\hat{x}), & \forall i \in I; \\ \psi_i(\hat{x}, T_i \hat{x}, y) \le 0, & \forall y \in A(\hat{x}), & \forall i \in I. \ \Box \end{cases}$$

As a special case of Theorem 3.3, we have the equilibrium existence theorem for the system of quasiequilibrium problems $SQEP(T_i, A_i, f_i)$.

Theorem 3.4 Let I be a finite or infinite index set, $\{(X_i, \Gamma_i)\}_{i \in I}$ be a family of L-convex spaces, $\{Y_i\}_{i \in I}$ a family of nonempty sets. Suppose that for each $i \in I$, $A_i : X := \prod_{j \in I} X_j \to 2^{X_i} \setminus \{\emptyset\}$ is a mapping, $T_i : X \to Y_i$ a map, and $f_i : X \times Y_i \to \overline{\mathbf{R}}$ a function, $\pi_i : X \to X_i$ the projection of X onto X_i and $A : X \to 2^X$ defined by $A(x) := \prod_{i \in I} A_i(x)$ for each $x \in X$ satisfying

- (1) For each $i \in I$ and for each $x \in X$, $y \mapsto f_i(x, T_i x) f_i(y, T_i x)$ is 0-L-quasiconcave;
- (2) For each $i \in I$, $\phi_i(x, y) := f_i(x, T_i x) f_i(y, T_i x)$ is 0-t.c.l.s.c. in x;
- (3) A is L-convex valued;
- (4) A satisfies one of conditions (a)–(e) in Lemma 2.2;
- (5) $D := \{x \in X : x \in A(x)\}$ is compactly closed;
- (6) There exists $M \in \langle X \rangle$ such that $\bigcap_{x \in M} \operatorname{cl}_X(A^*(x)) \subset K$ and $\bigcap_{x \in M} \operatorname{cl}_X(\{x \in D : \max_{i \in I} (f_i(x, T_i x) f_i(y, T_i x)) \leq 0\}) \subset K$;

Then there exists $\hat{x} \in X$ such that

$$\begin{cases} \hat{x_i} := \pi_i(\hat{x}) \in A_i(\hat{x}), & \forall i \in I, \\ f_i(x, T_i x) \le f_i(y, T_i x), & \forall y \in A(\hat{x}), & \forall i \in I. \end{cases}$$

References

- BEN-EL-MECHAIEKH H, CHEBBI S, FLORNZANO M, et al. Abstract convexity and fixed points [J]. J. Math. Anal. Appl., 1998, 222(1): 138–150.
- [2] DING Xieping. Abstract convexity and generalizations of Himmelberg type fixed-point theorems [J]. Computers Math. Appl., 2001, 41(3-4): 497–504.
- [3] DING Xieping. Generalized L-KKM type theorems in L-convex spaces with applications [J]. Comput. Math. Appl., 2002, 43(10-11): 1249–1256.
- [4] DING Xieping, PARK J Y. Continuous selection theorem, coincidence theorem, and generalized equilibrium in L-convex spaces [J]. Comput. Math. Appl., 2002, 44(1-2): 95–103.
- [5] DING Xieping. KKM type theorems and coincidence theorems on L-convex spaces [J]. Acta Math. Sci. Ser. B Engl. Ed., 2002, 22(3): 419–426.
- [6] LIU Haishu, TANG Deshan. An intersection theorem in L-convex spaces with applications [J]. J. Math. Anal. Appl., 2005, 312(1): 343–356.

904 K. T. WEN

[7] FANG Min, HUANG Nanjing. Generalized L-KKM type theorems in topological spaces with an application [J], Comput. Math. Appl., 2007, 53(12): 1896–1903.

- [8] WEN Kaiting. A new KKM theorem in L-convex spaces and some applications [J]. Computers Math. Appl., 2008, 56(11): 2781–2785.
- [9] WEN Kaiting. A new GLKKM theorem in L-convex spaces with the application to fixed points [J]. J. Math. Res. Exposition, 2009, 29(6): 1064–1068.
- [10] WEN Kaiting. New Ky Fan matching theorems for transfer compactly open covers and the application to maximal elements [J]. Adv. Math. (China), 2009, 38(3): 295–301.
- [11] NOOR M A, OETTLI W. On general nonlinear complementarity problems and quasiequilibria [J]. Le Mathmatiche, 1994, 49(2): 313–331.
- [12] CUBIOTTI P. Existence of solutions for lower semicontinuous quasi-equilibrium problems [J]. Comput. Math. Appl., 1995, 30(12): 11–22.
- [13] DING Xieping. Existence of solutions for equilibrium problems [J]. J. Sichuan Normal Univ., 1998, 21(6): 603–608.
- [14] DING Xieping. Quasi-equilibrium problems in noncompact generalized convex spaces [J]. Appl. Math. Mech. Engl. Ed., 2000, 21(6): 637–644.
- [15] DING Xieping. Quasi-equilibrium problems with applications to infinite optimization and constrained games in general topological spaces [J]. Appl. Math. Lett, 2000, 12(3): 21–26.
- [16] DING Xieping. Quasi-equilibrium problems and constrained miltiobjective games in generalized convex spaces.
 [J]. Appl. Math. Mech. (English Ed.), 2001, 22(2): 160–172.
- [17] LIN Laijiu, PARK S. On some generalized quasi-equilibrium problems [J]. J. Math. Anal. Appl., 1998, 224(2): 167–181.
- [18] ZHENG Lian, DING Xieping. Fixed point theorem with application to system of quasi-equilibrium problems
 [J]. J. Sichuan Normal Univ., 2005, 28(4): 397–401.
- [19] WEN Kaiting. The Browder fixed point theorem in noncompact hyperconvex metric spaces and its applications to coincidence questions [J]. Adv. Math. China, 2005, 34(2): 208–212.
- [20] WEN Kaiting. A Ky Fan matching theorem for transfer compactly open covers and the application to the fixed point [J]. Acta Math. Sci. Ser. A Chin. Ed., 2006, **26**(7): 1159–1165.
- [21] CHANG S S, MA Yihai. Generalized KKM theorem on HH-space with applications [J]. J. Math. Anal. Appl., 1992, 163(2): 406–421.
- [22] PARK S. Fixed point theorems in hyperconvex metric spaces [J]. Nonlinear Anal., 1999, 37(4): 467–472.
- [23] KIRK W A, SIMS B, YUAN Xianzhi. The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications [J]. Nonlinear Anal., 2000, 39(5): 611–627.
- [24] ZHANG Huili. Some nonlinear problem in hyperconvex metric spaces [J]. J. Appl. Anal., 2003, 9(2): 225–235.
- [25] WU Xian. Existence theorems for maximal elements in H-spaces with applications on the minimax inequalities and equilibrium of games [J]. J. Appl. Anal., 2000, 6(2): 283–293.
- [26] CHOWDHURY MSR, TARAFDARE, TANKK. Minimax inequalities on G-convex spaces with applications to generalized game [J]. Nonlinear Anal., 2001, 43(2): 253-275.
- [27] VERMA R U. Some results on R-KKM mappings and R-KKM selections and their applications [J]. J. Math. Anal. Appl., 1999, 232(2): 428–433.
- [28] PARK S. Fixed point theorems in locally G-convex spaces [J]. Nonlinear Anal., 2002, 48(6): 869-879.
- [29] CHEN Fengjuan, SHEN Zifei. Continuous selection theorem and coincidence theorem on hyperconvex spaces [J]. Adv. Math. (China), 2005, 34(5): 614–618.
- [30] HORVATH C D. Contractibility and general convexity [J]. J. Math. Anal. Appl., 1991, 156(2): 341–357.
- [31] YUAN Xianzhi. The characterization of generalized metric KKM mappings with open values in hyperconvex metric spaces and some applications [J]. J. Math. Anal. Appl., 1999, 235(1): 315–325.
- [32] TARAFDAR E. Fixed point theorems in H-spaces and equilibrium points of abstract economies [J]. J. Austral. Math. Soc. Ser. A, 1992, 53(2): 252–260.
- [33] TARAFDAR E. Fixed point theorems in locally H-convex uniform spaces [J]. Nonlinear Anal., 1997, 29(9): 971–978.
- [34] WATSON P J. Coincidences and fixed points in locally G-convex spaces [J]. Bull. Austral. Math. Soc., 1999, 59(2): 297–304.