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1. Introduction

In 1998, Ben-El-Mechaiekh, et al. [1] introduced and studied the abstract convexity con-

cept and the L-convexity structure on topological spaces. Recently, Ding [2] studied the class

KKM(X,Y ) of mappings and Himmelberg type fixed point theorems. Ding [3] introduced the

GLKKM mapping, and obtained some GLKKM theorems, Ky Fan matching theorems, fixed

point theorems and a minimax inequality in L-convex spaces. Ding [4] proved a continuous se-

lection theorem, coincidence theorems, fixed point theorems, a minimax inequality and existence

theorems of solutions for generalized equilibrium problems in L-convex spaces. Ding [5] presented

some KKM theorems, coincidence theorems and some fixed point theorems in L-convex spaces.

Liu and Tang [6] established an intersection theorem, fixed point theorem, maximal element the-

orem, coincidence theorem, minimax inequalities and saddle point theorem in L-convex spaces.

In 2007, Fang and Hang [7] introduced some generalized L-KKM type theorems and an existence

theorem of equilibrium points for abstract generalized vector equilibrium problems. In 2008,

Wen [8] established a new KKM theorem, matching theorem, coincidence theorem, fixed point

theorem, maximal element theorem and equilibrium existence theorems for abstract economies

and qualitative games in L-convex spaces. In 2009, Wen [9, 10] obtained a new GLKKM theo-

rem, Ky Fan matching theorems, variational inequality, section theorem, coincidence theorem,

maximal element theorem and fixed point theorem in L-convex spaces.
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The aim of this paper is to establish a new Ky Fan matching theorem in L-convex spaces. As

application, a new fixed point theorem is obtained. Finally, we introduce and study the following

system of general quasiequilibrium problem SGQEP(Ti, Ai, ψi)i∈I which includes QEP(T,A, f)

of Noor, et al. [11–13], GQEP(T , A, ψ) of Ding [14, 15], QEP(A, f) of Ding [16] and Lin and

Park [17], SQEP(Ti, Ai, fi)i∈I of Zheng and Ding [18] and many fundamental mathematical

problems, e.g., optimization problems, quasicomplementarity problems, variational inequality

problems and others as special cases. Let I be a finite or infinite index set, {Xi}i∈I and {Yi}i∈I

be two families of nonempty sets. Suppose that for each i ∈ I, Ai : X :=
∏

j∈I Xj → 2Xi is a

mapping, Ti : X → Yi a map, ψi : X × Yi × X → R := R ∪ {±∞} a function, πi : X → Xi

the projection of X onto Xi and A : X → 2X defined by A(x) :=
∏

i∈I Ai(x) for each x ∈ X .

Then the system of general quasiequilibrium problems SGQEP(Ti, Ai, ψi)i∈I is to find x̂ ∈ X

such that
{

x̂i := πi(x̂) ∈ Ai(x̂), ∀i ∈ I,

ψi(x̂, Tix̂, y) ≤ 0, ∀y ∈ A(x̂), ∀i ∈ I.

2. Preliminaries

Let X be a nonempty set. We denote by 〈X〉 and 2X the family of all nonempty finite

subsets of X and the family of all subsets of X , respectively. Let X , Y be two nonempty sets

and F : X → 2Y a mapping. Then the mapping F ∗ : Y → 2X is defined by F ∗(y) := X \F−1(y)

for each y ∈ Y . Let X and Y be two topological spaces. We denote by C(X,Y ) the class of

single-valued continuous maps of X into Y . Let (X,Γ) be an L-convex space [1–10]. A set D ⊂ X

is said to be L-convex if for each A ∈ 〈D〉, Γ(A) ⊂ D.

Following [1–10], let X be a nonempty set and (Y,Γ) be an L-convex space. A mapping

G : X → 2Y is said to be a GLKKM mapping if for each {x1, . . . , xn} ∈ 〈X〉, there exists

{y1, . . . , yn} ∈ 〈Y 〉 such that for any nonempty subset {yi1 , . . . , yik
} ⊂ {y1, . . . , yn}, we have

Γ({yi1 , . . . , yik
}) ⊂

⋃k

j=1
G(xij

).

Definition 2.1 ([9]) Let X be a nonempty set, Y a topological space and K a nonempty

compact subset of Y . A mapping G : X → 2Y is said to be weakly transfer compactly open

(resp., closed) valued relative to K if the family {G(x)
⋂

K}x∈X is transfer open (resp.,closed).

Definition 2.2 ([9]) Let X be a nonempty set, Y a topological space, K a nonempty compact

subset of Y and γ ∈ R a real number. A function f : X × Y → R := R
⋃

{±∞} is said

to be weakly γ-transfer compactly lower semicontinuous (in short, w.γ-t.c.l.s.c) (resp., weakly

γ-transfer compactly upper semicontinuous (in short, w.γ-t.c.u.s.c)) relative to K in y if for all

x ∈ X and y ∈ K, f(x, y) > γ (resp., f(x, y) < γ) implies that there exist a relatively open

neighborhood N(y) of y in K and x′ ∈ X such that f(x′, z) > γ (resp., f(x′, z) < γ) for all

z ∈ N(y).

Lemma 2.1 ([9]) LetX be a nonempty set, Y a topological space,K a nonempty compact subset

of Y and γ ∈ R a real number. A function f : X × Y → R is w.γ-t.c.l.s.c (resp., w.γ-t.c.u.s.c)
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relative toK in y if and only if the mapping F : X → 2Y defined by F (x) := {y ∈ Y : f(x, y) > γ}

(resp., F (x) := {y ∈ Y : f(x, y) < γ}) for each x ∈ X is weakly transfer compactly open valued

relative to K.

Lemma 2.2 ([9]) Let X be a topological space, Y a nonempty set, K a nonempty compact

subset of X and G : X → 2Y be a mapping such that G(x) 6= ∅ for each x ∈ K. Then the

following conditions are equivalent:

(a) G has the weakly compactly local intersection property relative to K;

(b) For each y ∈ Y , there exists an open subset Oy of X such that Oy ∩K ⊂ G−1(y) and

K =
⋃

y∈Y (Oy ∩K);

(c) There exists a mapping F : X → 2Y such that for each y ∈ Y , F−1(y) is open in X ,

F−1(y) ∩K ⊂ G−1(y), and K =
⋃

y∈Y (F−1(y) ∩K);

(d) For each x ∈ K, there exists y ∈ Y such that x ∈ cintXG
−1(y) ∩K and

K =
⋃

y∈Y

(cintXG
−1(y) ∩K) =

⋃

y∈Y

(G−1(y) ∩K);

(e) G−1 is weakly transfer compactly open valued relative to K on X .

Now, we introduce the following definitions.

Definition 2.3 Let X be a nonempty set, (Y,Γ) an L-convex space and A,B : X → 2Y

two mappings. A is said to be relatively L-convex valued in B if for each x ∈ X and for each

{y1, . . . , yn} ⊂ B(x), Γ({y1, . . . , yn}) ⊂ A(x).

Remark 2.1 Obviously, A is relatively L-convex valued in A if A is L-convex valued, but A

need not be L-convex valued if A is relatively L-convex valued in B.

Definition 2.4 Let (X,Γ) be an L-convex space and γ ∈ R a real number. A function

f : X → R is said to be γ-L-quasiconcave(resp., quasiconvex) if the set {x ∈ X : f(x) > γ}

(resp., {x ∈ X : f(x) < γ}) is L-convex.

Remark 2.2 Definition 2.4 generalizes the definition of L-quasiconcave (resp., quasiconvex) in

Ding and Park [4].

3. Main results

Theorem 3.1 Let X a nonempty subset of an L-convex space (Z,Γ), Y be a topological space,

K a nonempty compact subset of Z and A : X → 2Y a mapping such that

(1) A is weakly transfer compactly open valued relative to K;

(2) For each f ∈ C(Z, Y ), there exists Mf ∈ 〈X〉 such that
⋂

x∈Mf
clZ(f−1(Y \A(x))) ⊂ K;

(3) A(X) :=
⋃

x∈X A(x) = Y .

Then, for each f ∈ C(Z, Y ), there exist {x1, . . . , xn} ∈ 〈X〉 and x0 ∈ Γ({x1, . . . , xn}) such

that f(x0) ∈
⋂n

i=1
A(xi).

Proof Suppose the conclusion is false. Then there exists f0 ∈ C(Z, Y ) such that for each
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{x1, . . . , xn} ∈ 〈X〉, f0(Γ({x1, . . . , xn})) ⊂ Y \
⋂n

i=1
A(xi). Define a mapping F : X → 2Y by

F (x) := Y \A(x) for each x ∈ X . Then Γ({x1, . . . , xn}) ⊂
⋃n

i=1
(f−1

0
F )(xi). Define G : X → 2Z

by G(x) := (f−1

0
F )(x) for each x ∈ X . Then Γ({x1, . . . , xn}) ⊂

⋃n

i=1
G(xi). Therefore, G is

a GLKKM mapping. Moreover, by (1), A is weakly transfer compactly open valued relative

to K, which implies that F is weakly transfer compactly closed valued relative to K. By the

continuity of f0, G is also weakly transfer compactly closed valued relative to K. By (2),

there exists Mf0
∈ 〈X〉 such that

⋂

x∈Mf0

clG(x) ⊂ K. In virtue of Theorem 3.1 of Wen [9],
⋂

x∈X G(x) =
⋂

x∈X(f−1

0
F )(x) 6= ∅, thus,

⋂

x∈X F (x) = Y \
⋃

x∈X A(x) 6= ∅, a contradiction to

(3). 2

Remark 3.1.1 If A is transfer open valued or transfer compactly open valued, then the

condition (1) is satisfied, of course. If X = Y = Z is a compact L-convex space, by letting

K = X = Y = Z, then the condition (2) holds trivially. Therefore, Theorem 3.1 improves and

generalizes Theorem 2.2 of Wen [8], Theorems 2.1 and 2.2 of Wen [10], Lemma 2.1 of Wen [19],

Lemma 3.1 of Wen [20], Theorem 2 of Chang and Ma [21] and Theorem 1 of Park [22].

Remark 3.1.2 If the condition (2) in Theorem 3.1 is replaced by that for f ∈ C(Z, Y ), there

exists Mf ∈ 〈X〉 such that
⋂

x∈Mf
clZ(f−1(Y \ A(x))) ⊂ K, then the conclusion of Theorem

3.1 is replaced by that there exist {x1, . . . , xn} ∈ 〈X〉 and x0 ∈ Γ({x1, . . . , xn}) such that

f(x0) ∈
⋂n

i=1
A(xi), respectively.

Theorem 3.2 Let X be a topological space, Y a nonempty subset of an L-convex space (Z,Γ),

K a nonempty compact subset of Y . Suppose that s ∈ C(Z,X) and A,B : X → 2Y \ {∅} such

that

(1) B satisfies one of conditions (a)–(e) in Lemma 2.2;

(2) There exists M ∈ 〈Y 〉 such that
⋂

y∈M clZ(s−1B∗(y)) ⊂ K;

(3) A is relatively L-convex valued in B.

Then, there exists y0 ∈ Y such that y0 ∈ A(s(y0)).

Proof By (1), B−1 is weakly transfer compactly open valued relative to K. By (2), there

exists M ∈ 〈Y 〉 such that
⋂

y∈M clZ(s−1(Y \ B−1(y))) ⊂ K. Since B is nonempty valued, then

X =
⋃

y∈Y B
−1(y). In virtue of Theorem 3.1 and Remark 3.1.2, there exist {y1, · · · , yn} ∈ 〈Y 〉

and y0 ∈ Γ({y1, . . . , yn}) such that s(y0) ∈
⋂n

i=1
B−1(yi), which results in that {y1, . . . , yn} ⊂

B(s(y0)). By (3), we have Γ({y1, . . . , yn}) ⊂ A(s(y0)), and hence, y0 ∈ Γ({y1, . . . , yn}) ⊂

A(s(y0)). 2

Remark 3.2 Let X = Y = Z, s = IX and A = B be L-convex valued. Then Theorem 3.1

reduces to Theorem 3.5 of Wen [9]. Therefore, Theorem 3.1 unifies, improves and generalizes

Theorem 3.5 of Wen [9], Theorem 3 of Park [22], Theorem 3.1 of Kirk, et al. [23], Lemma 2.2

of Zhang [24], Lemma 1 of Wu [25], Theorem 2.3-A of Chowdhury, et al. [26], Theorem 2.4 of

Verma [27], Theorems 2, 3, 4, 8 of Park [28], Corollaries 2 and 3 of Chen and Shen [29], Theorem

2 of Horvath [30, p350], Theorem 3.6 of Yuan [31], Corollary 2.3 of Tarafdar [32], Theorem 2.1,

Corollaries 2.1–2.3 of Tarafdar [33] and Theorem 4.1 of Watson [34], and so on.
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Theorem 3.3 Let I be a finite or infinite index set, {(Xi,Γi)}i∈I be a family of L-convex spaces,

{Yi}i∈I a family of nonempty sets. Suppose that for each i ∈ I, Ai : X :=
∏

j∈I Xj → 2Xi \ {∅}

is a mapping, Ti : X → Yi a map, ψi : X×Yi×X → R a function, πi : X → Xi the projection of

X onto Xi, K a nonempty compact subset of X and A : X → 2X defined by A(x) :=
∏

i∈I Ai(x)

for each x ∈ X satisfying

(1) For each i ∈ I and for each x ∈ X , y 7→ ψi(x, Tix, y) is 0-L-quasiconcave;

(2) For each i ∈ I, fi(x, y) := ψi(x, Tix, y) is w.0-t.c.l.s.c. relative to K in x;

(3) A is L-convex valued;

(4) A satisfies one of conditions (a)–(e) in Lemma 2.2;

(5) D := {x ∈ X : x ∈ A(x)} is compactly closed;

(6) There exists M ∈ 〈X〉 such that
⋂

x∈M clXA
∗(x) ⊂ K and

⋂

x∈M clX({x ∈ D :

maxi∈Iψi(x, Tix, y) ≤ 0}) ⊂ K;

(7) For each i ∈ I and for each x ∈ X , ψi(x, Tix, x) ≤ 0.

Then there exists x̂ ∈ X such that
{

x̂i := πi(x̂) ∈ Ai(x̂), ∀i ∈ I,

ψi(x̂, Tix̂, y) ≤ 0, ∀y ∈ A(x̂), ∀i ∈ I.

Proof For each i ∈ I, define a mapping Pi : X → 2X by Pi(x) := {y ∈ X : ψi(x, Tix, y) > 0}

for each x ∈ X . Then, by (1), Pi is L-convex valued, and for each y ∈ X , P−1

i (y) = {x ∈ X :

ψi(x, Tix, y) > 0}, so that P−1

i is weakly transfer compactly open valued relative to K by (2)

and Lemma 2.1.

We claim that there exists x̂ ∈ D such that A(x̂)
⋂

(
⋃

i∈I Pi(x̂)) = ∅. Otherwise, define a

mapping G : X → 2X by

G(x) :=







A(x), x ∈ X \D,

A(x)
⋂

(
⋃

i∈I

Pi(x)), x ∈ D.

Note that A is also nonempty valued. Then G is nonempty valued. Moreover, since Pi is L-

convex valued for each i ∈ I,
⋃

i∈I Pi(x) is L-convex for each x ∈ X . Therefore, G is L-convex

valued by (3). By the definition of G, for each y ∈ X , we have

G−1(y) :={x ∈ X : y ∈ G(x)}

={x ∈ X \D : y ∈ A(x)}
⋃

{x ∈ D : y ∈ A(x)
⋂

(
⋃

i∈I

Pi(x))}

=((X \D) ∩A−1(y))
⋃

(D
⋂

A−1(y)
⋂

(
⋃

i∈I

P−1

i (y)))

=A−1(y)
⋂

((X \D)
⋃

(
⋃

i∈I

P−1

i (y)))

and

G∗(y) :=X \G−1(y) = X \ (A−1(y)
⋂

((X \D)
⋃

(
⋃

i∈I

P−1

i (y))))

=A∗(y)
⋃

(D
⋂

(
⋂

i∈I

P ∗

i (y))).
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By (4), A−1 is weakly transfer compactly open valued relative to K. By (5), X \D is compactly

open. Note that P−1

i is also weakly transfer compactly open valued relative to K for each i ∈ I.

Then, G−1 is weakly transfer compactly open valued relative to K. Since D
⋂

(
⋂

i∈I P
∗

i (y)) =

{x ∈ D : ψi(x, Tix, y) ≤ 0, ∀i ∈ I} = {x ∈ D : maxi∈I ψi(x, Tix, y) ≤ 0} for each y ∈ X , by (6),

there exists M ∈ 〈X〉 such that
⋂

x∈M clX(G∗(x)) ⊂ K. In virtue of Theorem 3.2, there exists

x0 ∈ X such that x0 ∈ G(x0).

On the other hand, if x0 ∈ D, x0 ∈ G(x0) = A(x0)
⋂

(
⋃

i∈I Pi(x0)) ⊂
⋃

i∈I Pi(x0), then

there exists i0 ∈ I such that x0 ∈ Pi0(x0), hence, ψi0(x0, Ti0x0, x0) > 0, which contradicts the

condition (7). If x0 ∈ X \D, x0 ∈ G(x0) = A(x0), then x0 ∈ D, which is also a contradiction.

Therefore, there exists x̂ ∈ D such that A(x̂)
⋂

(
⋃

i∈I Pi(x̂)) = ∅. Namely, there exists x̂ ∈ X

such that
{

x̂i := πi(x̂) ∈ Ai(x̂), ∀i ∈ I;

ψi(x̂, Tix̂, y) ≤ 0, ∀y ∈ A(x̂), ∀i ∈ I. 2

As a special case of Theorem 3.3, we have the equilibrium existence theorem for the system

of quasiequilibrium problems SQEP(Ti, Ai, fi).

Theorem 3.4 Let I be a finite or infinite index set, {(Xi,Γi)}i∈I be a family of L-convex spaces,

{Yi}i∈I a family of nonempty sets. Suppose that for each i ∈ I, Ai : X :=
∏

j∈I Xj → 2Xi \ {∅}

is a mapping, Ti : X → Yi a map, and fi : X × Yi → R a function, πi : X → Xi the projection

of X onto Xi and A : X → 2X defined by A(x) :=
∏

i∈I Ai(x) for each x ∈ X satisfying

(1) For each i ∈ I and for each x ∈ X , y 7→ fi(x, Tix) − fi(y, Tix) is 0-L-quasiconcave;

(2) For each i ∈ I, φi(x, y) := fi(x, Tix) − fi(y, Tix) is 0-t.c.l.s.c. in x;

(3) A is L-convex valued;

(4) A satisfies one of conditions (a)–(e) in Lemma 2.2;

(5) D := {x ∈ X : x ∈ A(x)} is compactly closed;

(6) There exists M ∈ 〈X〉 such that
⋂

x∈M clX(A∗(x)) ⊂ K and
⋂

x∈M clX({x ∈ D :

maxi∈I(fi(x, Tix) − fi(y, Tix)) ≤ 0}) ⊂ K;

Then there exists x̂ ∈ X such that
{

x̂i := πi(x̂) ∈ Ai(x̂), ∀i ∈ I,

fi(x, Tix) ≤ fi(y, Tix), ∀y ∈ A(x̂), ∀i ∈ I.
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