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Abstract The classical Young’s inequality and its refinements are applied to positive operators
on a Hilbert space at first. Based on the classical Poisson integral formula of relevant operators,
some new inequalities on unitarily invariant norm of A% XBi — AiYB¥ are obtained with
effective calculation, where A, B, X, Y € B(H) with A, B > 0 and 1 < p, ¢ < oo with the
conjugate exponent ¢ = p/(p — 1).
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1. Introduction

The classical Young inequality for two nonnegative scalars says that if a,b > 0 and 0 < v < 1,
then a’b'~? < va+ (1 —v)b with equality if and only if a = b. If v = %, we obtain the arithmetic-
geometric mean inequality vab < 1(a+b). Recently, Kittaneh and Manasrah refined the Young’s
inequality in [1] and proved that if a,b > 0 and 0 < v < 1, then

a’b' ™ + ro(va — Vb) <wva+ (1 —v)b,

where 19 = min{v, 1 — v}.
Young’s inequality in operator algebras has been considered in [2] and references therein.
Bhatia and Parthasarathy in [3] and Kosaki in [4] proved that if A, B, X € M,,(C) with that A

and B are positive semi-definite and if 0 < v < 1, then
|AX B> < [[0AX + (1 — v) X B2, (1)

It should be mentioned here that for v # %, the inequality (1) may not hold for other unitary
invariant norms. On the other hand, Bhatia and Davis proved in [5] that if A, B, X € M, (C)
with A, B being positive semi-definite and if 0 < v < 1, then

1oL A'XB'"Y + AV X BV AX + XB
Az X B2 | < | 5 <=l
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is true for any unitary invariant norm ||| - |||. Moreover, a readable account on A»XBt £
A XBv (1 <p<ooand ¢g=p/(p—1)) and related inequalities can be found in [6].

The purpose of this article is firstly to improve Young’s inequality for positive operator on
a Hilbert space H. Secondly, by means of the classical Poisson integral formula, we obtain new
estimations for unitary invariant norm of Av» X Bt — AsY Br where A, B, X, Y € B(H) with
A, B>0and 1< p, q<oo with the conjugate exponent ¢ = p/(p — 1).

2. Young’s inequalities for positive operators

In this section we begin with the famous Holder-McCarthy Inequality.

Lemma 2.1 (Holder-McCarthy Inequality) Let A € B(H) with A > 0. Then the following
properties hold:
(i) (A", x)
(ii)) (A"z,x)

(Az, z)"||2||>=") for r > 1 and any = € H.

>
< (A, z)7 ||z 2" for 0 < r < 1 and any x € H.

Theorem 2.1 Let A,B € B(H) with A, B > 0 and 0 < v < 1. Then the following statements
hold.
(i) If A is invertible, then A2 (A" 2 BA=2)1"vAz <vA+ (1 —v)B.

1

(i) If B is invertible, then Bz (B~2AB~2)"Bz < vA+ (1 —v)B.
Proof We only prove (i), the proof of (ii) is similar. For any vector x € H, we have that
(wA? + (1 —v)B*)a,z) = v(A%z, ) + (1 — v)(B%z, z)
> (A%, 2)"(B%z,2)(1 ™" (Young’s inequalilty)
(AT'B2A™Y) Az, Az)' || Az||*¥ (since A is invertible)
> (A™'B2A Y Az, Ax) = (A(A7'B? A7) Az, z).

Hence, A(A"*B2A~1)"A < vA? + (1 — v)B2. Replacing A and B by A2 and B2 in above
inequality respectively leads to the desired inequality. O

Corollary 2.1 ([7]) Let A,B € B(H) with A,B > 0 and 0 < v < 1. If AB = BA, then
A*BY7Y <vA+ (1 —v)B.

Corollary 2.2 Let A,B € B(H) with A, B > 0 and 0 < v < 1. Then the following statements
hold.
(i) If A is invertible, then |Az(A-2BA~z2)
(ii) If B is invertible, then | Bz (B~ 2 AB™2

1—w ||

)zl

Theorem 2.2 Let A, B € B(H) with A,B > 0 and R(A2Bz2) = (A2Bz + (A2B2)*)/2 > 0.
Then the following statements hold.
(i) If A is invertible and 1+ < v < 1, then

|vA + (1 —v)B|2.

<
< lvA+ (1 —v)BJz.

[N Sl

1 1 1

A2 (A73(R(A2B2))A™2)20- A3 4 (1 —v)(A% — B2)? <vA+ (1—v)B. (2)
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(ii) If B is invertible and 0 < v < %, then

B3 (B~ *(R(A*B?))B~%)*B? + v(A? — B?)? <vA+ (1 —v)B. (3)

Proof When v = %,

the following, we only prove (i), the proof of (ii) is similar. For any vector x € H, we have that

inequalities (2) and (3) become equalities and there is nothing to prove. In

(wA?2 + (1 —v)B? — (1 —v)(A— B)})x, )
=v(A%z,2) + (1 —v)(B%z,2) — (1 —v)((A%z, z) + (B*z,z) — 2(R(AB)z,z))
2v — 1)(A%z,2) +2(1 — v){R(AB)z,x)

(
> (A%2,2) 2" D(R(AB)z, z)>=")  (Young’s inequalilty)
= (((A'R(AB)A™ 1) Az, Az)?( )| Az||?@*=Y) (A is invertible)
> (AT'R(AB)A™Y)2(=Y) Az, Ax) = (A(A"'R(AB)A™1)2079) Az, ).

Hence, A(A"*R(AB)A=")2=") A + (1 — v)(A — B)? < vA? + (1 — v)B? when A is invertible
and % < v < 1. Replacing A and B by A2 and B? in above inequality respectively, we get the
desired inequality. O

Corollary 2.3 Let A, B € B(H) with A, B > 0 and AB = BA. Then
AYB" 4 rg(A? — B3)2 <vA+ (1 —v)B, (4)
where ro = min{v, 1 — v}.

Proof If v = %, the inequality (4) becomes an equality.
Firstly, we assume that A, B are invertible positive operators and v < % Then, by Theorem
2.2 we have that
AYB'"" 4 y(A7 — B7)> <vA+ (1—v)B.

To prove the case of the general positive operators, we assume that A. = A+el and B = B+e¢l
where € is an arbitrary positive real number. Then A, and B, are invertible positive operators.

And so by the above special case, we get
1 1
A'BI" 4+ rg(A2 — B2)? <vAc + (1 —v)B..

The desired inequality now follows by letting € — 0.

fl1-v< %, then the desired inequality is obtained by similar discussion.

Hence, AYBY~Y 4+ ro(Az — B2)? < vA+ (1 — v)B where 7y = min{v,1 —v}. O

As a direct consequence of Corollary 2.3, when A, B € B(H) with A, B > 0 and AB = BA,
we get

1

A'B'"" 4 A'"VB" < A"B'"" + A""BY 4+ 2r¢(A? —B3)>< A+ B

[N

and
1

|A"B*" + A*"BY|| < |A"B"" + A""VB" + 2ry(A2 — B2)?|| < ||A + B,

where g = min{v, 1 — v}. However, what about the norm estimation of A¥ Bi + A%B%, where
A, B € B(H) with A, B >0 and 1 < p, ¢ < oo with the conjugate exponent ¢ = p/(p — 1)? We
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consider this question in the following section.

3. Related norm inequality for operators

For 0 < 0 < 1, we set dug(t) = ag(t)dt and dvg(t) = bg(t)dt with
a(t) = sin(m6) sin(m6)
O 9(cos h(xt) — cos(n0)) 2(cos h(wt) + cos(wd))

For a bounded continuous function f(z) on the strip @ = {z € C : 0 < Imz < 1} which is

and be(t) =

analytic in the interior, we have the well-known (Poisson) integral formula

—+oo

+oo
£(i6) = / F)dua(t) + / £+ B)dve(t)

(see [8] for example), and the total masses of the measures dug(t), dvg(t) are 1—0, 6, respectively
(see [4, Lemma 8] in Appendix B). It should be mentioned that du: = dv: and dpx = dvi,
where 1 < p < oo is with the conjugate exponent ¢ = p/(p — 1). It is plain to see

sin(f) x 2cos(7) sin(2T)

0 =00 = o rh) —co(Z))  cosh(Ent) - cos(ZE)

In [4], Kosaki proved that if 0 < % < 1, then

2m

Foo too sin( =+
[y v [ G

e —oo COsh(2mt) — cos(<F) D

Theorem 3.1 Let A, B, X,Y € B(H) with A,B > 0 and let 1 < p, ¢ < oo with the conjugate

exponent ¢ = p/(p — 1). For an arbitrary unitary invariant norm ||| - |||, we have
2 1
||A» XB1 — AsY B3 ||| < |§ —1|/||AX =Y B||| + a|||XB—AY+AX—YB|||.

Proof There are three conditions to be discussed.
If0 < % < 1, we consider functions f1(t) = A™*XB~% (t € R) and g1(t) = AM*Y B~ (t €
R). The two functions extend to bounded continuous (in the strong operator topology) functions

on the strip 2 which is analytic in the interior. Thus,

1 1 1 1 ) . 1
ArXBis — A«Y B =f1(5) —g1(i(1 - 5))

“+o0o “+o00
= / A" AX B~ " dpua (t) + / A" X BB "dva (t)—
( / A"AY B " dua (t) + / A"Y BB~ "dvi(t))
= / AM(AX —YB)B "dua (t) + / A (XB — AY)B™"dva ()

— /M AY(AX —YB)B " d(p1 —v1)(t)+

Q=

—+oo
/ A" (XB— AY + AX — YB)B “dv1 (1).

q
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For vectors &, n € H, the function z — ((f(2) — g(i — 2))&,n) € C is certainly a bounded
continuous function on the strip Q which is analytic in the interior. Therefore, we have integral

expressions such as

((A»XBv — AaYB7)&, )

7 +oco it it SID(%;T)
_[ (AM(AX —YB)B™)e ) o s e dt+
. sin(Z
| (A - AY 4 AX VBB e h(ﬂt)( p—)cosm)dt'
Let
N P i sm(%;r)
Y. _[ (A*(AX = YB)B™ g} oo e dt
/j (A"(XB — AY + AX — YB)B_it)fan>2(Cos h(i?)(z_)cos(z))dt'

Obviously, {Y,,} converges to Av» XBv — AaYB7 in the weak operator topology as n — oo. Since
||| [|] is lower semi-continuous relative to the weak operator topology, we have that ||| Ar XBi —
ATYB7 ||| < iminf, . ]|||¥ ||| Moreover,

< sin()
liminf, o |||Y5]|| < g dt|||AX - YB
A h(m)_c mecoll I+
/Oo (%) __dt|[|[XB — AY + AX — YB||
e Feos (D) — con(5))

2 1
g(; - ||| AX = YB||| + a|||XB — AY + AX — Y BJ||.
Hence, [||[AF XB7 — ATY B3 ||| < (2 - 1)[||[AX — Y B||| + L[||XB - AY + AX — Y BJ||.

If % > 1, we consider functions fo(t) = A7 X Bt (t € R) and go(t) = A=Y BT (t € R).
The two functions extend to bounded continuous functions in the strong operator topology on
the strip € which is analytic in the interior. Thus,

1 1 1 1 ) . 1
ArXBs — AsYBr = fz(g) — g2(i(1 — 5))

foo ‘ +o0 , .
— [ AT*AXB"tdus (1) + / ATIX B (1) -

p
— 00 — 00

+o0 +oo
( / ATPAY B dpa (t) + / A Y BB dva (t))

“+00 “+o0
= / AT(XB — AY)B"dpua (t) + / AT"(AX — Y B)B"dvi (t)

—+oo —+oo
:/ AT"(AX —YB)B “fd(ul — 1) +/ ATHXB - AY + AX — YB)B”dul()

+oo
:/ AT (YB - AX)B "d(u1 +/ ATHXB - AY + AX — YB)B”dul()

P

’EI»—‘
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Taking similar discussion when 0 < % < 1, we get that
2 1
[|A» XB1 — AsYB7||| < (1 — 2)|||AX — YB||| + ~|||XB — AY + AX — Y B|||.
p q

When £ = 1, it follows that ¢ = 2 and

1

1 1 1 1 Z.
AzXB? — A?Y Bz = f1(§) —91(5)
+OO . . +w . .
_ / AT(AX — Y B)B~"duy () + / AU(XB — AY)B dv, (1)

“+oo
= / A"(AX —YB+ XB — AY)B™"dvy (t).

— 00

By similar discussion of the case 0 < % < 1, we get that
1
|AZXB* — A2YB3||| < SlIIXB — AY + AX — Y B||.

Therefore, |||A7 XB1 — AsY B ||| < |2 = 1[[[[AX - Y B||| + L|||XB - AY + AX - Y B|||. O

The above argument was motivated by [4, 8, 9] where quadratic Sakai Radon-Nikodym deriva-
tives in the operator algebra theory were studied. Note that Theorem 1 in [9] and some related

inequalities in [9] are the direct results of our Theorem 3.1.

Corollary 3.1 Let A, B € B(H) with A,B > 0 and let 1 < p, ¢ < oo with the conjugate
exponent ¢ = p/(p — 1). Then

2 2 2

|A»Bs — A B3| < |= —1|||[A— B|| and |A»Bi + AiB7| < (|= -1+ 2)|A+ B.
p p q

The following lemma is an elementary result by direct computation.

Lemma 3.1 Let a, b be positive real numbers and 1 < p, ¢ < oo with % + % =1.1If f(t) =
at? + bt (t € (0,00)), then fuin = f((24)77) = ap(22)7.

A new estimate of unitarily invariant norm of A» X Bi is given in Corollary 3.2.

Corollary 3.2 Let A, B, X € B (H) with A,B > 0 and let 1 < p, ¢ < co with the conjugate

exponent ¢ = p/(p — 1). For an arbitrary unitary invariant norm ||| - |||, the inequality
1 1 1 1 1
lA? XBa[|| < (12 = pl +p — D)7 |[[AX]| |7 ||| X B]||4
holds.
Proof Let Y =0 in Theorem 3.1. We get that
1 1 2 1
|||APXB‘*|||<|2—9—1||||AX|||+§|||XB+AX|||
2 1 1
< (1= = 1+ 2)||IAX]|| + =1 X B]|l.
(|p | q)lll 1l q||| |l
By changing A, B to tPA, t~9B with t > 0, we have that

1 1 2 1 1
[[|[A» XBal|| < (|]; -1+ a)tp|||AX||| + gt 1| X B|]-
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The minimum of the right side is (|]2—p|+p— 1)% |||AX|||%|||XB|||% as a function of ¢ by Lemma
3.1, and so the corollary is proved. O

In fact, by repeating the similar argument for the functions f(z) = A=*XB~% and g(z) =
AT#Y B™% we get that

; +oo ) +oo )
AFXBY = f(1) = AX Bt du (1) + At AX BB dv (1)
p — 00 P —00 P
and _ oo o
AiYBi = g(1) = / AMY B~ (t) + / A" AYBB " dv, (t).
q — 00 q — 00 q
Hence,
1 1 1 1 too X +oo )
A»XB?» + AiYBa = / A"M(X + AYB)B "dp. (t) + / A" (AXB+Y)B "dva(t)
— 0 P o D

by the fact that dui = dvi and dp: = dvi. Clearly, when % > 1, we have that

1 1 1 1 Foo . .
AFXBY 4 ASY B :/ AM(X + AYB)B d(jr — v )(E)+
+oo )
A"(AXB+Y + X + AY B)B™"dv. (t);
when 0 < % < 1, we get that
A% (—=X)B7 + Ai(-Y)B7q
+oo +oo

:/ A" (—(X 4+ AY B))B "dp. () +/ AY(—(AXB +Y))B "dv. (1)

= / AN X + AYB)B "d(vy — pa)(t) + / A" (—(AXB+Y + X + AYB))B "dvi(t)

= / A (X + AYB)B " d(pur —v1)(t) + / A" (—(AXB+Y 4+ X + AYB))B™"dv. (1).

The above expressions obviously show Theorem 3.2 is true.

Theorem 3.2 Let A, B, X, Y € B(H) with A, B > 0 and let 1 < p, ¢ < oo with the conjugate

exponent ¢ = p/(p — 1). For an arbitrary unitarily invariant norm ||| - |||, the inequality
2 1
IAZXB? + ATY B[ < |2 = 11X + AV B[ + [IIX +Y + AKX +Y)B]|

holds.
Finally we would like to point out that there are some special cases of our results in Theorems
3.1 and 3.2. Moreover, our estimate can be improved a little bit by the standard interpolation

argument for a particular unitarily invariant norm.
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