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Abstract In this paper, center conditions and bifurcation of limit cycles at the nilpotent
critical point in a class of quintic polynomial differential system are investigated. With the help
of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced.
As a result, the necessary and sufficient conditions to have a center are obtained. The fact that
there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is
also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point
for quintic Lyapunov systems.
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1. Introduction

Consider an autonomous planar ordinary differential equation having a three-order nilpotent

critical point with the form

dz
i 372y + arnzy® + aozy® + 23y + axea®y? + azry® + aouy + anz'y,
(1)

d
d—?; =923 + y2 + b21x2y + b12:17y2 + a22y3 + b50x5.

The main goal of this paper is to use the integral factor method theory to distinguish center-
focus and generate limit cycles from the origin of the above system.

Let DX (p) denote the differential matrix of X at the critical point p. When the matrix
DX (p) has its two eigenvalues equal to zero, but the matrix is not identically null, p is said to be
a nilpotent critical point. In a suitable coordinate system the Lyapunov system with the origin

as a nilpotent critical point can be written as

dx > i
Fr A Z aijz'y’ = X(z,y),
itj=2
q oo (2)
Y i,
T Z bijz'y’ =Y (z,y).
itj=2
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Suppose that the function y = y(x) satisfies X (z,y) = 0,y(0) = 0. Lyapunov proved in [3] that
the origin of system (2) is a monodromic critical point (i.e., a center or a focus) if and only if
Y(z,y(z)) = az®™ ! + o(2z?" 1), a <0,
3% +4(n+1)a <0,
where n is a positive integer. The monodromy problem in this case was solved in [4] and the
center problem in [12]. Nevertheless, in practice, given an analytic system with a nilpotent
monodromic critical point it is not an easy task to know if it is a center or a focus. As far as
we know, there are essentially three differential ways of obtaining the Lyapunov constant: by
using normal form theory [9], by computing the Poincaré return map [6] or by using Lyapunov
functions [13]. The three tools explained above have been also used to study the center-focus
problem of nilpotent critical points, see, for instance, [1,8,12], respectively. Takens proved in
[15] that system (2) can be formally transformed into a generalized Liénard system. Recently
Strézyna and Zotadek proved in [14] that indeed this normal form can be achieved through an
analytic change of variables. The authors of [2] proved that using a reparametrization of the
time can simplify the system (2) even more.
There are very few results known for concrete families of differential systems with monodromic
nilpotent critical points. Gasull and Torregrosa [10] have generalized the scheme of computation
of the Lyapunov constants for systems of the form

E=y+ > Filzy),

k>n+1

j=—2"1+ Y Gulay).

k>2n

(4)

where F}, and Gy, are (1, n)-quasi-homogeneous functions of degree k. Using their technique, one
can obtain the center conditions for some concrete examples, for instance, the family studied in
[7] and [10].

For a given family of polynomial differential equations, the number of Lyapunov constants
needed to solve the center-focus problem is also related with the so-called cyclicity of the point
(i.e., the number of limit cycles generated by small perturbations of the coefficients of the given
differential equation inside the family considered). The three tools of obtaining the Lyapunov
constants mentioned above have been used to generate limit cycles from nilpotent critical points,
see for instance [1,2,5], respectively. Let N(n) be the maximum possible number of limit cy-
cles bifurcating from nilpotent critical points for analytic vector fields of degree n. [5] got
N@3) > 2,N(5) > 5,N(7) > 9; [2] got N(3) > 3,N(5) > 5; For a family of Kukles system
with 6 parameters, [1] got N(3) > 3. Hence in this paper, employing the integral factor method
introduced in [11], we will prove N(5) > 8. To the best of our knowledge, our results on the
lower bounds of cyclicity of three-order nilpotent critical points for quintic systems are new.

We will organize this paper as follows. In Section 2, we state some preliminary knowledge

given in [11] which is useful throughout the paper. In Section 3, using the linear recursive formulae
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in [11] to do direct computation, we obtain with relative ease the first 8 quasi-Lyapunov constants
and the necessary and sufficient conditions of center. This paper is ended with Section 4 in which
the 8-order weak focus conditions and the fact that there exist 8 limit cycles in the neighborhood

of the three-order nilpotent critical point are proved.

2. Preliminary knowledge

The ideas of this section come from [11], where the center-focus problem of three-order
nilpotent critical points in the planar dynamical systems was studied. We first recall the related
notions and results. For more details, we refer to [11].

The origin of system (2) is a three-order monodromic critical point if and only if the system

can be written as the following real autonomous planar system

dx 2 - i g
T A .+223“ij$ y' = X(z,y),
K3 J=
) N (5)
Y o d
== —223 + 2uxy + Z bija'y’ =Y (z,y).

i+2j5=4
It is differential from the center-focus problem for the elementary critical points. We give the

following key results, which define the quasi-Lyapunov constants and provide a way of computing
them.

Definition 2.1 If there exists a natural number s and a formal series M (z,y) = z* +y* +o(r?),
such that

0, X 0, Y 1

70 (G770 + 3 (37e77) = 3 2o @m—ds = Dhnla® 4ol (6)

m=1

holds, then, A, is called the m-th quasi-Lyapunov constant of the origin of system (5).

Theorem 2.1 For any positive integer s and a given number sequence

{cos}, B =3, (7)

one can construct successively the terms with the coefficients c.p satisfying o # 0 of the formal

series - -
M(xvy) = y2 + Z Caﬁxayﬁ = Z Mk(xa y)v (8)
a+pB=3 k=2
such that
oX oY oM oM = .

where for all k, My(x,y) is a k-homogeneous polynomial of x,y and su = 0.
It is easy to see that (9) is linear with respect to the function M, so that we can easily find

the following recursive formulae for the calculation of cog and wy, (s, p).

Theorem 2.2 Fora > 1, a+ ( > 3 in (8) and (9), cap can be uniquely determined by the
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recursive formula

1

afl — 7T\ Aaf Ba— . 10
Cap (S+1)a( 1,641 + Ba—1,6+1) (10)

For m > 1, wy,(s, 1) can be uniquely determined by the recursive formula

wm(S,/L) = Am,O =+ Bm-,Oa (11)
where
a+pB-—1
Aap= > k= (s+1)(a—k+1)arjca ri15-,
k+j=2
e (12)
Bop = Z J—(s+1)(B—j+1))brjca—i,g—jt1-
ktj=2

Notice that in (12), we set
coo = c10 = co1 = 0,
c20 = c11 = 0,co2 = 1, (13)

cap =0, ifa<0orf<0.

We see from Theorem 2.2 that if the origin of system (5) is s-class or oo-class, then, by

choosing {cqs}, such that
wokt1(s, 1) =0, k=1,2,..., (14)

we can obtain a solution group of {cas} of (14). Thus, we have

Wam-+4(5, 1)
App = ——————. 15
2m —4s —1 (15)
Consider the system
dz = ki
E =dxr + Y+ k;Q ij(’y);zj yJ,
o (16)
dy k,j
3 =20 Z bij (V)x"y,
k+j=2
_ : 1o : _ (0 _(0) (0
wherey = {71,72, - - -, Ym—1} is (m—1)-dimensional parameter vector. Let vo0 = {77 ", V5 *»- -+ Vo1

be a point at the parameter space. Suppose that for ||y —o| < 1, the functions of the right hand
of system (16) are power series of x, y with a non-zero convergence radius and have continuous

partial derivatives with respect to . In addition,

az0(Y) = 1, b20(7) = 0,b11(7) = 2p, b30(y) = —2. (17)

For an integer k, let vor(—2m, ) be the k-order focal value of the origin of system (16)5—o.

Theorem 2.3 If for v = =y, the origin of system (16)s—o is an m-order weak focus, and the

Jacobin
5(V27 Vgyoony Vzm—z)

8(71;725 .. '77’mfl) Y=70

40, (18)
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then, there exist two positive numbers 6* and ~*, such that for 0 < 0] < 6*,0 < ||v — vl <%,
in a neighborhood of the origin, system (16) has at most m limit cycles which enclose the origin
(an elementary node) O(0,0). In addition, under the above conditions, there exist 7, 5, such
that when v = 7, & = 0, there exist exact m limit cycles of (16) in a small neighborhood of the
origin.

Clearly, the recursive formula by Theorem 2.2 is linear with respect to all cog. Therefore, it is

convenient to realize the computations of quasi-Lyapunov constants by using computer algebraic
system like MATHEMATICA.

3. Quasi-Lyapunov constants and center conditions

According to Theorem 2.1, for system (1), we can find a positive integer s and a formal series
M(z,y) = z* + y% + o(r?), such that (9) holds. Applying the recursive formulae presented in
Theorem 2.2 to carry out calculations in MATHEMATICA, we have

w3 =wy =ws =0,

1
We — _§b12(_1 + 45),

w7 = 3(8 - 1)003, (19)
2

wg = —g(alg + 3@22)(—3 + 48),
16

wg = — ;22 (=1+s).

From (15) and (19), we obtain the first two quasi-Lyapunov constants of system (1):

1
AL = L 512,
1—4s 3
(20)
Ay = -8 :g(a + 3azz)
2= 3T, 5l 22).
We see from w7 = wg = 0 that
Co3z = O, s=1. (21)

Furthermore, taking s = 1, we obtain the following conclusion.

Proposition 3.1 For system (1), one can determine successively the terms of the formal series
M(z,y) = 2* + y? + o(r*), such that

0X oY oM oM

_ - M _ 2 _X _Y — )\m 2 _ 5 2m+4 26 22
(52 * 8y) (G X+ dy ) mz::l [(2m = 5)z™"% + o(r™))], (22)
where A\, is the m-th quasi-Lyapunov constant at the origin of system (1), m =1,2,...,11.

After careful computation with the help of MATHEMATICS 7.0, it is easy to get
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Theorem 3.1 For system (1), the first 8 quasi-Lyapunov constants at the origin are given by

b
)\1 = %a
)\ - 2(&12 + 3&22)
2=
5
Ao — 4@22(—2 + 5b12)
3 = 35 )
N _4(589050a04 — 945751a29)
‘T 4417875 ’ (23)
N 2a99(—8417334479 + 7549657500a03 — 19635000a13)
o 8504409375 ’
N = a22(—41308398226396071 + 18506492430387500a13 + 234715831812000000a3,)
6= 36132896721796875 ’
N — az2f
7 3062807309490808669407862287011718750°
a22g
Ag = —
8 121708305460891009500594927630128173828125’
where

f = —5605048602748915682149760088425085523 —
52023110426815420989504510467673000000(132—1—
192764494558328970793835088000000000000@%2,

g = —1761921776598088588378600304332709762205407—
17662509527175291430084078607155150716375000a§2+
57737009534998131912245803531092000000000000a§2.

In the above expressions of A\, we have already let \y = o =---=X;_1 =0, k=2,...,8.

From Theorem 3.1, we obtain the following assertion.

Proposition 3.2 The first 8 quasi-Lyapunov constants at the origin of system (1) are zero if

and only if the following conditions are satisfied:
a12 = azy = bay = ags = 0.
The Proposition 3.2 implies the following
Proposition 3.3 The origin of system (1) is a center when conditions of Proposition 3.2 hold.

Proof When conditions of Proposition 3.2 hold, system (1) can be brought to

dx
Frink 322y + aosy® + 2%y + arzzy® + anz’y,
(24)
d
d_z = —22° +y® + bioxy® + bso®

whose vector field is symmetric with respect to the z-axis. So the origin of (24) is a center. O

We see from Propositions 3.2 and 3.3 that

Theorem 3.2 The origin of system (1) is a center if and only if the first 8 quasi-Lyapunov
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constants are zero, that is, the conditions in Proposition 3.2 are satisfied.

4. Multiple bifurcation of limit cycles

This section is devoted to proving that when the three-order nilpotent critical point O(0,0)
is a 8-order weak focus, the perturbed system of (1) can generate 8 limit cycles enclosing an
elementary node at the origin of perturbation system (1).

Using the fact Ay = Ao = A3 =Xy = A5 = A = A7 = 0, Ag # 0, we obtain

Theorem 4.1 The origin of system (1) is a 8-order weak focus if and only if

bo1 = 0,a12 = —3as2,
b12 _ 2 Gos = _9457510,22
5’ 589050
aog:_-—8417334479-—19635000a13 (25)
7549657500 ’
alg::4_«—413083982263960714—234715831812000000a§2
18506492430387500 ’

where agy are the real roots of f = 0.
Proof By letting Ay = Ao = A3 = Ay = A5 = Ag = 0, we obtain

ba1 =0, aj2 = —3ag2,
bry = 27 dos = _945751@22,
5 589050
—8417334479 — 19635000a13

@03 = = 7549657500 :

—41308398226396071 + 234715831812000000a3,
18506492430387500 '

Solving the equation f = 0, we could get four real solutions

a13 = —

A; ~ —0.593627, Ay ~ 0.593627,
Ay~ —0.28725177555672643i, Ay =~ 0.28725177555672643i

and when ase = AjorAs, we have
Resultant[f, g] # 0.

So Ag # 0, and the origin of system (1) is a 8-order weak focus.

Now we study the perturbed system of (1) as follows:

dx
E =dx + Y+ ,ux2 — 3x3y + Q12$y2 + a03y3 + x3y + a22x2y2 + algxy3 + a04y4,
(26)
d
d—gz = 0y — 2% + pxy + y° + borxry + agx® + bz

Theorem 4.2 If the origin of system (1) is a 8-order weak focus, for 0 < § < 1, making a small
perturbation to the coefficients of system (1), then, for system (26), in a small neighborhood of
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the origin, there exist exactly 8 small amplitude limit cycles enclosing the origin O(0,0), which

is an elementary node.

Proof When conditions of (25) hold, we see that ase = A; are the simple zeros of f = 0. Hence,
when ago &~ —0.593627,

O(A1, A2, A3, Ad, As, Ag, A7)
d(ba1, a12, b12, a4, a3, a13, a2)

= 0.149119;

when ago = 0.593627,
8()\1; AQ; A37 )\47 )\55 Aﬁv )\7)
0(ba1, a12, b12, aos, ap3, ais, az)

So Theorem 4.2 holds according to Theorem 2.3. O

= —0.149119.

Appendix A
Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov constants at the
origin of system (1):
¢[0,0] =0, ¢[1,0] = 0,¢[0,1] = 0,¢[2,0] = 0, ¢[1,1] = 0,¢[0,2] = 1;

c[0, 5] :=d[5]/; (G > 2)

clk, j]:=0/; (k < 0|l < 0)
1

clk,j] = — m(mmd—e& +k, 2+ j] + 3927jc[—6 + k,2 + j] + 7854s¢[—6 + k, 2 + j]+
3027jsc[—6+ k, 2 + j] — 34dc[—4 + k, j] + 43ke[—4 + k, j] — 172sc[~4 + k, j]—
15708¢[—4 + k, 2 + j] — 7854jc[—4 + k, 2 + j] — 15708sc[—4 + k, 2 + j] —
93562¢(—3 + k, j] + 3927ke|~3 + k, 5] — 11781sc[~3 + k, 5] + 3927ksc[~3 + k, j]+
3927ba1je[—3 + k, 1+ §] + 3927barsc[—3 + k, 1 + §] + 3927barjsc|—3 + k, 1 + j]—
15708ag92¢c[—2 + k, —1 + j] + 392Tagskc[—2 + k, —1 + j] — 7854agasc[—2 + k,—1 + j|+
3027anoksc|—2 + k, —1 + j] + 47124¢[~2 + k, j] — T854b1ac[—2 + k, j]—
11781kc[—2 + k, j] + 23562sc[—2 + k, j] + 3927Tb12jsc[—2 + k, j] — 11781ksc[—2 + k, j]—
785daysc[—1 + k, —2 + j] + 3927ayske[—1 + k, —2 + j] — 3927arzsc|—1 + k, —2 + 5]+
3927a13ksc[—1 + k, =2 + j] — 7854a1ac[—1 + k, —1 + j] — 15708ag2c[—1 + k, —1 + j]+
3927ag0jc[—1 + k,—1+ j] 4+ 3927a12kc[—1 + k, —1 + j] — 3927a12s¢[—1 + k, —1 + j]—
3927agesc[—1 + k,—1 4+ j| 4+ 3927assjsc[—1 + k, —1 + j| 4+ 3927a12ksc[—1 + k, —1 + j]—
7854c[—1 + k, §] + 3927jc[—1 + k, §] + 3927jsc[—1 + k, j] + 392Tagakelk, —3 + j]+
3927agsksclk, —3 + j] + 392Tagskclk, —2 + j| + 3927apsksclk, —2 + j]+
43ksc|—4 4+ k, j| — 7854 sc[—4 + k,2 + j] + 392Tbiajc[—2 + K, j]),

Wi :ﬁ(—3927c[—5 +m, 1] — 3927sc[—5 + m, 1] + 301c[—3 + m, —1] — 43me[—3 + m, —1]+

129sc[—3 4+ m, —1] — 43msc[—3 + m, —1] 4+ 7854c[—3 + m, 1] 4+ 7854sc[—3 + m, 1]—
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3927me[—2 + m, —1] + 7854sc[—2 + m, —1] — 3927msc[—2 4+ m, —1] 4+ 3927ba1c[—2 + m, 0]+

11781agec[—1 + m, —2] — 3927asomc[—1 + m, —2] + 3927az9s¢c[—1 + m, —2]—
3927azomsc[—1 +m, —2] — 35343c[—1 4+ m, —1] + 11781b12c[—1 + m, —1]—
3927a13mc[m, —3] — 3927a13msc[m, —3] + 3927a12¢[m, —2] + 19635a22¢[m, —2]—
3927a19mc[m, —2] 4+ 7854agasc[m, —2] — 3927a1amsc[m, —2] + 11781¢[m, —1]+
3927sc[m, —1] — 3927agac[l + m, —4] — 3927agame[l + m, —4] — 392Tagysc[l + m, —4]—
3927agamsc[l + m, —4] — 3927apzc[l + m, —3] — 3927apsmc[l + m, —3]—

3027agzmsc[l + m, —3] — 3927¢[1 + m, —1] — 3927me[l + m, —1] — 3927s¢[L + m, —1]+
19635¢[—2 + m, —1] + 11781mc[—1 + m, —1] — 3927msc[l + m, —1]—

3927ap3sc[l +m, —3]),
Wom+4

™ Om —4s— 1
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