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Abstract In this paper, center conditions and bifurcation of limit cycles at the nilpotent

critical point in a class of quintic polynomial differential system are investigated. With the help

of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced.

As a result, the necessary and sufficient conditions to have a center are obtained. The fact that

there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is

also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point

for quintic Lyapunov systems.
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1. Introduction

Consider an autonomous planar ordinary differential equation having a three-order nilpotent

critical point with the form

dx

dt
= y − 3x2y + a12xy2 + a03y

3 + x3y + a22x
2y2 + a13xy3 + a04y

4 + a41x
4y,

dy

dt
= −2x3 + y2 + b21x

2y + b12xy2 + a22y
3 + b50x

5.

(1)

The main goal of this paper is to use the integral factor method theory to distinguish center-

focus and generate limit cycles from the origin of the above system.

Let DX(p) denote the differential matrix of X at the critical point p. When the matrix

DX(p) has its two eigenvalues equal to zero, but the matrix is not identically null, p is said to be

a nilpotent critical point. In a suitable coordinate system the Lyapunov system with the origin

as a nilpotent critical point can be written as

dx

dt
= y +

∞
∑

i+j=2

aijx
iyj = X(x, y),

dy

dt
=

∞
∑

i+j=2

bijx
iyj = Y (x, y).

(2)
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Suppose that the function y = y(x) satisfies X(x, y) = 0, y(0) = 0. Lyapunov proved in [3] that

the origin of system (2) is a monodromic critical point (i.e., a center or a focus) if and only if

Y (x, y(x)) = αx2n+1 + o(x2n+1), α < 0,

[∂X

∂x
+

∂Y

∂x

]

y=y(x)
= βxn + o(xn),

β2 + 4(n + 1)α < 0,

(3)

where n is a positive integer. The monodromy problem in this case was solved in [4] and the

center problem in [12]. Nevertheless, in practice, given an analytic system with a nilpotent

monodromic critical point it is not an easy task to know if it is a center or a focus. As far as

we know, there are essentially three differential ways of obtaining the Lyapunov constant: by

using normal form theory [9], by computing the Poincaré return map [6] or by using Lyapunov

functions [13]. The three tools explained above have been also used to study the center-focus

problem of nilpotent critical points, see, for instance, [1, 8, 12], respectively. Takens proved in

[15] that system (2) can be formally transformed into a generalized Liénard system. Recently

Stróżyna and Żo la̧dek proved in [14] that indeed this normal form can be achieved through an

analytic change of variables. The authors of [2] proved that using a reparametrization of the

time can simplify the system (2) even more.

There are very few results known for concrete families of differential systems with monodromic

nilpotent critical points. Gasull and Torregrosa [10] have generalized the scheme of computation

of the Lyapunov constants for systems of the form

ẋ = y +
∑

k≥n+1

Fk(x, y),

ẏ = −x2n−1 +
∑

k≥2n

Gk(x, y),
(4)

where Fk and Gk are (1, n)-quasi-homogeneous functions of degree k. Using their technique, one

can obtain the center conditions for some concrete examples, for instance, the family studied in

[7] and [10].

For a given family of polynomial differential equations, the number of Lyapunov constants

needed to solve the center-focus problem is also related with the so-called cyclicity of the point

(i.e., the number of limit cycles generated by small perturbations of the coefficients of the given

differential equation inside the family considered). The three tools of obtaining the Lyapunov

constants mentioned above have been used to generate limit cycles from nilpotent critical points,

see for instance [1, 2, 5], respectively. Let N(n) be the maximum possible number of limit cy-

cles bifurcating from nilpotent critical points for analytic vector fields of degree n. [5] got

N(3) ≥ 2, N(5) ≥ 5, N(7) ≥ 9; [2] got N(3) ≥ 3, N(5) ≥ 5; For a family of Kukles system

with 6 parameters, [1] got N(3) ≥ 3. Hence in this paper, employing the integral factor method

introduced in [11], we will prove N(5) ≥ 8. To the best of our knowledge, our results on the

lower bounds of cyclicity of three-order nilpotent critical points for quintic systems are new.

We will organize this paper as follows. In Section 2, we state some preliminary knowledge

given in [11] which is useful throughout the paper. In Section 3, using the linear recursive formulae
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in [11] to do direct computation, we obtain with relative ease the first 8 quasi-Lyapunov constants

and the necessary and sufficient conditions of center. This paper is ended with Section 4 in which

the 8-order weak focus conditions and the fact that there exist 8 limit cycles in the neighborhood

of the three-order nilpotent critical point are proved.

2. Preliminary knowledge

The ideas of this section come from [11], where the center-focus problem of three-order

nilpotent critical points in the planar dynamical systems was studied. We first recall the related

notions and results. For more details, we refer to [11].

The origin of system (2) is a three-order monodromic critical point if and only if the system

can be written as the following real autonomous planar system

dx

dt
= y + µx2 +

∞
∑

i+2j=3

aijx
iyj = X(x, y),

dy

dt
= −2x3 + 2µxy +

∞
∑

i+2j=4

bijx
iyj = Y (x, y).

(5)

It is differential from the center-focus problem for the elementary critical points. We give the

following key results, which define the quasi-Lyapunov constants and provide a way of computing

them.

Definition 2.1 If there exists a natural number s and a formal series M(x, y) = x4 +y2 +o(r4),

such that

∂

∂x

( X

M s+1

)

+
∂

∂y

( Y

M s+1

)

=
1

M s+2

∞
∑

m=1

(2m − 4s − 1)λm[x2m+4 + o(r2m+4)] (6)

holds, then, λm is called the m-th quasi-Lyapunov constant of the origin of system (5).

Theorem 2.1 For any positive integer s and a given number sequence

{c0β}, β ≥ 3, (7)

one can construct successively the terms with the coefficients cαβ satisfying α 6= 0 of the formal

series

M(x, y) = y2 +

∞
∑

α+β=3

cαβxαyβ =

∞
∑

k=2

Mk(x, y), (8)

such that
(∂X

∂x
+

∂Y

∂y

)

M − (s + 1)
(∂M

∂x
X +

∂M

∂y
Y

)

=

∞
∑

m=3

ωm(s, µ)xm, (9)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sµ = 0.

It is easy to see that (9) is linear with respect to the function M , so that we can easily find

the following recursive formulae for the calculation of cαβ and ωm(s, µ).

Theorem 2.2 For α ≥ 1, α + β ≥ 3 in (8) and (9), cαβ can be uniquely determined by the
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recursive formula

cαβ =
1

(s + 1)α
(Aα−1,β+1 + Bα−1,β+1). (10)

For m ≥ 1, ωm(s, µ) can be uniquely determined by the recursive formula

ωm(s, µ) = Am,0 + Bm,0, (11)

where

Aαβ =

α+β−1
∑

k+j=2

[k − (s + 1)(α − k + 1)]akjcα−k+1,β−j ,

Bαβ =

α+β−1
∑

k+j=2

[j − (s + 1)(β − j + 1)]bkjcα−k,β−j+1.

(12)

Notice that in (12), we set

c00 = c10 = c01 = 0,

c20 = c11 = 0, c02 = 1,

cαβ = 0, if α < 0 or β < 0.

(13)

We see from Theorem 2.2 that if the origin of system (5) is s-class or ∞-class, then, by

choosing {cαβ}, such that

ω2k+1(s, µ) = 0, k = 1, 2, . . . , (14)

we can obtain a solution group of {cαβ} of (14). Thus, we have

λm =
ω2m+4(s, µ)

2m − 4s − 1
. (15)

Consider the system

dx

dt
= δx + y +

∞
∑

k+j=2

akj(γ)xkyj,

dy

dt
= 2δy +

∞
∑

k+j=2

bkj(γ)xkyj ,

(16)

where γ = {γ1, γ2, . . . , γm−1} is (m−1)-dimensional parameter vector. Let γ0 = {γ
(0)
1 , γ

(0)
2 , . . . , γ

(0)
m−1}

be a point at the parameter space. Suppose that for ‖γ−γ0‖ ≪ 1, the functions of the right hand

of system (16) are power series of x, y with a non-zero convergence radius and have continuous

partial derivatives with respect to γ. In addition,

a20(γ) ≡ µ, b20(γ) ≡ 0, b11(γ) ≡ 2µ, b30(γ) ≡ −2. (17)

For an integer k, let ν2k(−2π, γ) be the k-order focal value of the origin of system (16)δ=0.

Theorem 2.3 If for γ = γ0, the origin of system (16)δ=0 is an m-order weak focus, and the

Jacobin
∂(ν2, ν4, . . . , ν2m−2)

∂(γ1, γ2, . . . , γm−1)

∣

∣

∣

γ=γ0

6= 0, (18)
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then, there exist two positive numbers δ∗ and γ∗, such that for 0 < |δ| < δ∗, 0 < ‖γ − γ0‖ < γ∗,

in a neighborhood of the origin, system (16) has at most m limit cycles which enclose the origin

(an elementary node) O(0, 0). In addition, under the above conditions, there exist γ̃, δ̃, such

that when γ = γ̃, δ = δ̃, there exist exact m limit cycles of (16) in a small neighborhood of the

origin.

Clearly, the recursive formula by Theorem 2.2 is linear with respect to all cαβ . Therefore, it is

convenient to realize the computations of quasi-Lyapunov constants by using computer algebraic

system like MATHEMATICA.

3. Quasi-Lyapunov constants and center conditions

According to Theorem 2.1, for system (1), we can find a positive integer s and a formal series

M(x, y) = x4 + y2 + o(r4), such that (9) holds. Applying the recursive formulae presented in

Theorem 2.2 to carry out calculations in MATHEMATICA, we have

ω3 = ω4 = ω5 = 0,

ω6 = −
1

3
b12(−1 + 4s),

ω7 = 3(s − 1)c03,

ω8 = −
2

5
(a12 + 3a22)(−3 + 4s),

ω9 = −
16a22

3
(−1 + s).

(19)

From (15) and (19), we obtain the first two quasi-Lyapunov constants of system (1):

λ1 =
ω6

1 − 4s
=

1

3
b12,

λ2 =
ω8

3 − 4s
=

2

5
(a12 + 3a22).

(20)

We see from ω7 = ω9 = 0 that

c03 = 0, s = 1. (21)

Furthermore, taking s = 1, we obtain the following conclusion.

Proposition 3.1 For system (1), one can determine successively the terms of the formal series

M(x, y) = x4 + y2 + o(r4), such that

(∂X

∂x
+

∂Y

∂y

)

M − 2
(∂M

∂x
X +

∂M

∂y
Y

)

=

11
∑

m=1

λm[(2m − 5)x2m+4 + o(r26)], (22)

where λm is the m-th quasi-Lyapunov constant at the origin of system (1), m = 1, 2, . . . , 11.

After careful computation with the help of MATHEMATICS 7.0, it is easy to get
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Theorem 3.1 For system (1), the first 8 quasi-Lyapunov constants at the origin are given by

λ1 =
b21

3
,

λ2 =
2(a12 + 3a22)

5
,

λ3 =
4a22(−2 + 5b12)

35
,

λ4 = −
4(589050a04 − 945751a22)

4417875
,

λ5 = −
2a22(−8417334479 + 7549657500a03 − 19635000a13)

8504409375
,

λ6 =
a22(−41308398226396071 + 18506492430387500a13 + 234715831812000000a2

22)

36132896721796875
,

λ7 = −
a22f

3062807309490808669407862287011718750
,

λ8 = −
a22g

121708305460891009500594927630128173828125
,

(23)

where
f = −5605048602748915682149760088425085523−

52023110426815420989504510467673000000a2
22+

192764494558328970793835088000000000000a4
22,

g = −1761921776598088588378600304332709762205407−

17662509527175291430084078607155150716375000a2
22+

57737009534998131912245803531092000000000000a4
22.

In the above expressions of λk, we have already let λ1 = λ2 = · · · = λk−1 = 0, k = 2, . . . , 8.

From Theorem 3.1, we obtain the following assertion.

Proposition 3.2 The first 8 quasi-Lyapunov constants at the origin of system (1) are zero if

and only if the following conditions are satisfied:

a12 = a22 = b21 = a04 = 0.

The Proposition 3.2 implies the following

Proposition 3.3 The origin of system (1) is a center when conditions of Proposition 3.2 hold.

Proof When conditions of Proposition 3.2 hold, system (1) can be brought to

dx

dt
= y − 3x2y + a03y

3 + x3y + a13xy3 + a41x
4y,

dy

dt
= −2x3 + y2 + b12xy2 + b50x

5

(24)

whose vector field is symmetric with respect to the x-axis. So the origin of (24) is a center. 2

We see from Propositions 3.2 and 3.3 that

Theorem 3.2 The origin of system (1) is a center if and only if the first 8 quasi-Lyapunov
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constants are zero, that is, the conditions in Proposition 3.2 are satisfied.

4. Multiple bifurcation of limit cycles

This section is devoted to proving that when the three-order nilpotent critical point O(0, 0)

is a 8-order weak focus, the perturbed system of (1) can generate 8 limit cycles enclosing an

elementary node at the origin of perturbation system (1).

Using the fact λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = 0, λ8 6= 0, we obtain

Theorem 4.1 The origin of system (1) is a 8-order weak focus if and only if

b21 = 0, a12 = −3a22,

b12 =
2

5
, a04 = −

945751a22

589050
,

a03 = −
−8417334479− 19635000a13

7549657500
,

a13 = −
−41308398226396071+ 234715831812000000a2

22

18506492430387500
,

(25)

where a22 are the real roots of f = 0.

Proof By letting λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = 0, we obtain

b21 = 0, a12 = −3a22,

b12 =
2

5
, a04 = −

945751a22

589050
,

a03 = −
−8417334479− 19635000a13

7549657500
,

a13 = −
−41308398226396071 + 234715831812000000a2

22

18506492430387500
.

Solving the equation f = 0, we could get four real solutions

A1 ≈ −0.593627, A2 ≈ 0.593627,

A3 ≈ −0.28725177555672643i, A4 ≈ 0.28725177555672643i

and when a22 = A1orA2, we have

Resultant[f, g] 6= 0.

So λ8 6= 0, and the origin of system (1) is a 8-order weak focus.

Now we study the perturbed system of (1) as follows:

dx

dt
= δx + y + µx2 − 3x3y + a12xy2 + a03y

3 + x3y + a22x
2y2 + a13xy3 + a04y

4,

dy

dt
= δy − 2x3 + µxy + y2 + b21xry + a22x

3 + b40x
4.

(26)

Theorem 4.2 If the origin of system (1) is a 8-order weak focus, for 0 < δ ≪ 1, making a small

perturbation to the coefficients of system (1), then, for system (26), in a small neighborhood of
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the origin, there exist exactly 8 small amplitude limit cycles enclosing the origin O(0, 0), which

is an elementary node.

Proof When conditions of (25) hold, we see that a22 = Ai are the simple zeros of f = 0. Hence,

when a22 ≈ −0.593627,

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂(b21, a12, b12, a04, a03, a13, a22)
= 0.149119;

when a22 ≈ 0.593627,

∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7)

∂(b21, a12, b12, a04, a03, a13, a22)
= −0.149119.

So Theorem 4.2 holds according to Theorem 2.3. 2

Appendix A

Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov constants at the

origin of system (1):

c[0, 0] =0, c[1, 0] = 0, c[0, 1] = 0, c[2, 0] = 0, c[1, 1] = 0, c[0, 2] = 1;

c[0, j] :=d[j]/; (j > 2)

c[k, j] :=0/; (k < 0||j < 0)

c[k, j] = −
1

3927k(1 + s)
(7854c[−6 + k, 2 + j] + 3927jc[−6 + k, 2 + j] + 7854sc[−6 + k, 2 + j]+

3927jsc[−6 + k, 2 + j] − 344c[−4 + k, j] + 43kc[−4 + k, j] − 172sc[−4 + k, j]−

15708c[−4 + k, 2 + j] − 7854jc[−4 + k, 2 + j] − 15708sc[−4 + k, 2 + j]−

23562c[−3 + k, j] + 3927kc[−3 + k, j] − 11781sc[−3 + k, j] + 3927ksc[−3 + k, j]+

3927b21jc[−3 + k, 1 + j] + 3927b21sc[−3 + k, 1 + j] + 3927b21jsc[−3 + k, 1 + j]−

15708a22c[−2 + k,−1 + j] + 3927a22kc[−2 + k,−1 + j] − 7854a22sc[−2 + k,−1 + j]+

3927a22ksc[−2 + k,−1 + j] + 47124c[−2 + k, j] − 7854b12c[−2 + k, j]−

11781kc[−2 + k, j] + 23562sc[−2 + k, j] + 3927b12jsc[−2 + k, j] − 11781ksc[−2 + k, j]−

7854a13c[−1 + k,−2 + j] + 3927a13kc[−1 + k,−2 + j] − 3927a13sc[−1 + k,−2 + j]+

3927a13ksc[−1 + k,−2 + j] − 7854a12c[−1 + k,−1 + j] − 15708a22c[−1 + k,−1 + j]+

3927a22jc[−1 + k,−1 + j] + 3927a12kc[−1 + k,−1 + j] − 3927a12sc[−1 + k,−1 + j]−

3927a22sc[−1 + k,−1 + j] + 3927a22jsc[−1 + k,−1 + j] + 3927a12ksc[−1 + k,−1 + j]−

7854c[−1 + k, j] + 3927jc[−1 + k, j] + 3927jsc[−1 + k, j] + 3927a04kc[k,−3 + j]+

3927a04ksc[k,−3 + j] + 3927a03kc[k,−2 + j] + 3927a03ksc[k,−2 + j]+

43ksc[−4 + k, j] − 7854jsc[−4 + k, 2 + j] + 3927b12jc[−2 + k, j]),

ωm =
1

3927
(−3927c[−5 + m, 1] − 3927sc[−5 + m, 1] + 301c[−3 + m,−1] − 43mc[−3 + m,−1]+

129sc[−3 + m,−1] − 43msc[−3 + m,−1] + 7854c[−3 + m, 1] + 7854sc[−3 + m, 1]−
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3927mc[−2 + m,−1] + 7854sc[−2 + m,−1] − 3927msc[−2 + m,−1] + 3927b21c[−2 + m, 0]+

11781a22c[−1 + m,−2] − 3927a22mc[−1 + m,−2] + 3927a22sc[−1 + m,−2]−

3927a22msc[−1 + m,−2] − 35343c[−1 + m,−1] + 11781b12c[−1 + m,−1]−

3927a13mc[m,−3] − 3927a13msc[m,−3] + 3927a12c[m,−2] + 19635a22c[m,−2]−

3927a12mc[m,−2] + 7854a22sc[m,−2] − 3927a12msc[m,−2] + 11781c[m,−1]+

3927sc[m,−1]− 3927a04c[1 + m,−4] − 3927a04mc[1 + m,−4] − 3927a04sc[1 + m,−4]−

3927a04msc[1 + m,−4] − 3927a03c[1 + m,−3] − 3927a03mc[1 + m,−3]−

3927a03msc[1 + m,−3] − 3927c[1 + m,−1] − 3927mc[1 + m,−1] − 3927sc[1 + m,−1]+

19635c[−2 + m,−1] + 11781mc[−1 + m,−1] − 3927msc[1 + m,−1]−

3927a03sc[1 + m,−3]),

λm =
ω2m+4

2m − 4s− 1
.
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Systems, 1982, 2(2): 241–251. (in French)
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