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1. Introduction

Let F be a field, M, (F) be the algebra of all n x n matrices over F. By 7,(F) we denote
the algebra of all n x n upper triangular matrices over F. For A € M, (F), define mr(A)
to be the min{rank(A — AI) : A € F}, which is called the minimal rank of A (see [1]). Let
Iy ={A:mr(4) =k}, 0 <k <n. A mapping ¢ : M,(F) — M, (F) is called a minimal rank
preserving mapping if ¢(I'y) C 'y holds for all k =0, 1, 2, ..., n.

The minimal rank has been studied intensively because of its many applications in archi-
tecture, engineering and control theory, etc. For example, the minimal rank method can be used
as a method of structural damage detection in architecture and engineering [2—4], and it also has
important applications in the eigenstructure assignment and the dynamical order assignment for
singular systems [5].

As showed in [1], if F is an algebraically closed field of characteristic 0, then a linear mapping
¢ : My, (F) — M, (F) is minimal rank preserving if and only if there exist an invertible matrix
S € M, (F), a linear mapping h : M, (F) — F and a nonzero element o € F such that ¢(A) =
aSAST 4+ h(A)I for all A € M,,(F), or ¢(A) = aSATS~ L +h(A)I for all A € M,,(F), where AT
is the transpose of A. This result was generalized to additive mappings in [6]. It is interesting to
notice that the question of characterizing minimal rank preserving mappings is connected with

the question of characterizing the mappings preserving the number of nontrivial (or nonconstant)
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invariant polynomials (i.e., invariant factors [7]) of matrices [1,8]. For A € M, (F), denote by
i(A) the number of nontrivial invariant polynomials of A. By an observation of Oliveira et al.
[8], we have that mr(A) 4+ i(A) = n whenever F is an algebraically closed field of characteristic
0 (also see [1]). And the authors in [9] showed that, if F is an arbitrary number field, then
mr(X) +1(X) — k(X) = n, where k(X) denotes the number of nontrivial invariant polynomials
which have no roots in F. For upper triangular matrix case, it is clear that mr(A)+i(A) = n holds
for all n x n upper triangular matrix A over a field of characteristic 0. Thus every minimal rank
preserving mapping on the algebra of upper triangular matrices over any field of characteristic 0
is a mapping preserving the number of nontrivial invariant polynomials.

In this note, we are interested in the question of characterizing additive mappings on the
upper triangular matrix algebra 7, (F) that preserve the minimal rank. We mention here that
the question of characterizing linear or additive mappings on upper triangular matrices preserving
rank or rank-one have been studied by several authors [10-12]. Note that, unlike the case for
M, (F), the situation for 7,,(F) is more difficult and the structure of rank-one preserving additive
mappings on 7, (F) is quite complicated (see, for example, [10,11]). However, as what we will

show, the structure of minimal rank preserving additive mappings is nice.

2. Notation and preliminaries

Let ¢ be a homomorphism of F. Assume that &/ and V are vector spaces over [, an additive
mapping L : U — V is called ¢-quasilinear if L(Au) = ¢(A)Lu for all A € F and u € Y. If
A = [a;;] is a matrix, A, (some times, ¢(A)) will stand for the matrix [p(a;;)]. Clearly, the
mapping A — A, is additive and multiplicative. The flip mapping A — A’ is defined by
Al = JATJ, where J = S Ein+1—i and Ej; is the matrix with (7, j)-entry 1 and others 0. It
is clear that every additive mapping from 7,,(F) into itself of the form A — oT AT~ + h(A)I
or A — aT(Ay)T~! + h(A)I is an additive mapping preserving minimal rank of matrices,
where « is a nonzero scalar, T' € 7, (F) is nonsingular, ¢ is a nonzero homomorphism of F and
h:7,(F) — F is an additive mapping. However, there are additive mappings of other forms that
preserve minimal rank as well. Our purpose is to give a complete classification of all additive
mappings preserving minimal rank on 7, (F).

Throughout this paper, {e;}? ; stands for the standard basis of F", that is, e;=(1, 0, 0, .. .,
0, 0)%, e2=(0, 1,0, ..., 0, 0)T, ..., €,=(0, 0, 0, ..., 0, 1)*. For vectors x=(x1, x2, ..., 1,)T
and f = (f1, fo,--+, fu)T € F", we denote by z ® f the rank-one matrix zf* = [z;f;]. Thus,
E;j = e; ® ej. For any mapping 1 : 7,,(F) — 7,,(F), ¥/ : T,,(F) — 7,,(F) is the mapping defined
by v/ (4) = ¥(4)!, A € T, (F).

The following properties of the minimal rank, which are needed to prove our results, follow
immediately from its definition. Assume that A € 7,(F), n > 2 and A € F, where F is an
arbitrary field.

(a) mr(A+ AI) = mr(A);

(b) mr(TAT~1) = mr(A) for any invertible matrix T' € 7,,(F);
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¢) mr(AA) = mr(A) if A £ 0;

(

(d) mr(A) =mr(A);

(e) 0<mr(4) <n-—1and mr(A) < rank(A);

(f) mr(A) =0 if and only if A = oI for some a € F;

(g) If rank(A) =1, then mr(A4) = 1;

(h) mr(A,) = mr(A) for any nonzero homomorphism ¢ of F.

3. The main result and its proof
The following is our main result.

Theorem 1 Let F be a field of characteristic 0, n > 3, and ¢ : T,(F) — 7, (F) be an additive
injective mapping. Then ¢ preserves minimal rank if and only if there exists an invertible matrix
T € T,(F), a nonzero scalar o € F, a nonzero homomorphism ¢ of F, an additive function
f:F — T and an additive mapping h : T,,(F) — F such that either

P(A) = aT AT + f(a11 — ann)Frp + (A for all A = [a;;] € T,,(F)

or

P(A) = aTALT ™' + f(ary — ann) Ern + h(A)] for all A = [a;j] € To(F).
In order to prove Theorem 1, some lemmas are needed.

Lemma 2 IfA € T3(F), thenrank(A) = 2 and mr(A) = 1 imply that A is similar to Diag(a, a,0)

for some nonzero a € F.

Proof If A € T3(FF) satisfies rank(A) = 2 and mr(A) = 1, then there exist 2, f € F? and a € F
such that A = 2 ® f 4+ al. Since rank(A) = 2, a # 0 and A is not invertible, we see that z ® f
is not nilpotent. It follows that o(z ® f) = {(z, f), 0} and a = — (=, f) # 0, here (z, f) = 2T f
and o(z ® f) denotes the set of all eigenvalues of x ® f. Thus z ® f is similar to Diag(—a,0,0)

which implies that A is similar to Diag(a, a,0) for some nonzero a € F. O

Lemma 3 Let ¢ be an additive mapping on 7, (F), n > 3, such that mr(¢(F)) = 1 whenever
rank(F) = 1. Then rank(A + B) = rank(A — B) = rank(¢(A4)) = rank(¢(B)) = 1 implies
rank(¢(A+ B)) =1

Proof If rank(A + B) = 1, then, by the hypotheses, mr(¢(A + B)) = 1. There are two cases to

be considered.

Case 1 n > 4. Note that mr(¢(A + B)) = 1, thus ¢(A + B) = E + A for some E with
rank(F) = 1. As ¢ is additive, we get ¢p(A)+¢d(B) —E = M. If A # 0, then 4 < n =rank(\) =
rank(¢(A) + ¢(B) — E) < rank(¢(A)) + rank(¢(B)) + rank(E) = 3, a contradiction. It follows
that A = 0, and so rank(¢(A + B)) = rank(E) = 1.

Case 2 n = 3. mr(¢(A+B)) = 1 implies that 1 < rank(¢p(A+ B)) < rank(¢(A))+rank(¢p(B)) =
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2. If rank(¢(A + B)) = 2, then by Lemma 2, ¢(A) + ¢(B) is similar to Diag(a, a,0) for some
nonzero a € F. Together with the assumption rank(¢(A)) = rank(¢(B)) = 1, we deduce that
o(¢(A) — ¢(B)) = {a, —a, 0}, which leads to mr(¢(A) — ¢(B)) = 2. However, by the hypotheses,
mr(¢(A) — ¢(B)) = 1 since rank(A — B) = 1, a contradiction. O

Lemma 4 Let ¢ be an additive mapping on T,,(F), n > 3, with the properties:
(i) rank(F) =1 implies mr(¢(E)) =1, and
(ii) rank(¢(AE;;)) =1 for any nonzero A € F and any i, j with 1 <i < j <n.
Then, for any A € T,(F), that A is of rank one implies that ¢(A) is of rank one.

Proof For z € F*, denote S(z) = {i: 2; # 0, 2 = (21, 22,...,2,)T }. For any rank-one matrix
E =2y, let K(F) = #S(z) +#S(y), where #S(x) denotes the number of elements in S(z). We
will prove Lemma 4 by induction on KC(E). It is clear that 2 < IO(E) < n+1since E € T, (F). If
K(E) = 2, then there exist some nonzero p € F and 4, j with 1 <47 < j <n such that £ = pE;;.
By the property (i) we obtain that rank(¢(F)) = 1. Now assume that rank(¢(FE)) = 1 holds for
all rank-one upper triangular matrices E with K(E) < k, 2 < k < n. For any rank-one matrix
E=z®ye T,(F) with C(E) =k + 1, we have to show that rank(¢(E)) = 1. Obviously, either
#S(x) > 2 or #S(y) > 2.

Case 1 #S(y) > 2. In this case, decompose y as y =y’ +y” with #5(y’) < #S(y), #S(y") <
#S(y), S(y') € S(y), and S(y”) € S(y). Thus, 2@y, v @ y" € T,(F). and K(z ®y') < k,
K(z®4y") < k. So, by the induction assumption, we have rank(¢(z ®y’)) = 1 = rank(¢p(z®@7y")).
Also note that rank(z ® ¢y’ + 2 ®y"”) = 1 =rank(z ® y' — 2 ®y”). Applying Lemma 3, we obtain
that rank(¢(F)) = rank(¢(z @ ') + ¢(z @ y')) = 1.

Case 2 #S5(z) > 2. The proof is similar to that of Case 1. O

The next lemma comes from [11], which gives a characterization of rank-one preserving

additive mappings on upper triangular matrices.

Before stating Lemma 5, let us recall some more notations from [11]. As usual, by 7,! we
denote the set of all rank-one matrices in 7, (F). For any integers 1 < s, t < n, we denote by
T, the subspace of T, (F) consisting of all matrices [a;;] in which a;; = 0 for all 1 < i <mn
and 1 <j<s—1,and a;; =0 forallt <i<mnandl < j<n. Particularly, 71 ,, = T,,(F),
T1,1 = {[aij] : ai; = 0 whenever ¢ # 1} and 7, , = {[ai;] : ai; = 0 whenever j # n}. For the
sake of convenience, we denote 71 o = 7p4+1., = {0}. Let S be a nonempty subspace of M,
k be a positive integer such that k¥ < min{n,dimS}. A matrix P is said to be k-regular with
respect to (¢, S) if P(z1)y,..., P(xr), are linearly independent whenever 1, ...,z are linearly
independent vectors in S. In particular, P is one-regular with respect to (¢, S), if Pz, # 0 for
all nonzero vectors € S, and thus, PA, is of rank one whenever A is of rank one, A € 7,(F).
We use (u1,us,...,u,) to denote the subspace spanned by the vectors uj,us,...,u,. With an

upper triangular matrix algebra 7, (F), we associate two chains of subspaces

{0Oy=UpCclh C---CU, =F",
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and
{0} =Vp1 CV, C--- TV C VI =F",

where U; = (e; : 1 < j<i), V= (ej:1<j<n)foralll <i<n, {e}", is the standard basis

of F”. The flip map of a vector v = (v1, va, ..., v,)T is defined by v¥ = (v, ..., va, 11)7.

Lemma 5 ([11, Corollary 3.12]) Let v : T,(F) — T,,(F), n > 2, be an additive mapping. Then
1) preserves rank-one matrices if and only if 1) or v/ takes one of the following forms:

(i) There exist nonzero vectors u € Us, v € V; for some integers 1 < s <t < n such that for
each integer 1 < ¢ < n, either

(a) Y(A) =u® F;(A) for all A€ T;;, or

(b) ¥(A) =G;(A)®@wv for all A€ T,
where F; : T;; — Vs, G; : T; ; — Uy are additive with Fj|71, Gi|71 injective; or

(ii) There exist integers 1 < s <t and 1 < ¢ < j < n, and a nonzero field homomorphism
¢ :F — T such that

(c) Y(A)=u® F(A) for all A€ Ty s_1,

(d) ¥(A) =TA,S for all A€ T, ,, and

(e) ¥(A) = G(A)®@wv for all A € Tyy1,, where T, S¥ € M, (F) are of rank > 2 one-
regular matrices with respect to (p, U;) and (p, V) respectively satistying TEyS € T, (F) for
all 1 <k <1l<n,uel;veV; are nonzero vectors, and F : Ty s—1 — V;, G : Tyy1., — U; are
additive mappings with F|z1, G| Injective such that Tz, = a(x)u and F(z @ y) = a(z)STy,
for all x @ y € Ty 5-1, and STy, = A(y)v and G(z ® y) = Ny)Tz, for all x @ y € Tyy1¢, with
a:Us—1 — F, \: Vi1 — F injective p-quasilinear.

Now we are in a position to give our proof of the main result, Theorem 1.

Proof of Theorem 1 We only need to check the “only if” part. Assume that ¢ : 7,,(F) — 7, (F)

is an additive injective mapping preserving the minimal rank.

Claim 1 There exists an additive mapping v : 7,,(F) — 7, (F) which preserves minimal rank of

matrices as well rank-one matrices and an additive functional h : 7,,(F) — F such that
d(A) = Y(A) + h(A)I for all A e T,(F).

If F is a matrix of rank one, then by property (g) we have mr(E) = 1, and so mr(¢(E)) = 1.
Therefore ¢(E) = F + §I for some rank-one matrix F' € 7,(F) and § € F. In particular
¢(Eij) = Fij + 0;;1 and for any nonzero A € F we have ¢(AE;;) = Fij(A) + §;;(A\)I for some
rank-one matrices Fjj, F;;(A) € 7,(F) and scalars §;;,6;;(\) € F, 1 < i < j < n. Similarly,
(L +NEi) = Fij(1+ A) + 65 (1 + NI = Fyj + Fij(A) + (055 + 6i;(N) L. Write Fy; = i; @ fij
and Fi;(A) = yi;(A) ® gi5(A). Thus Fij(1+ A) = Fyy + Fij(A) = i; @ fij +3i;(A) ® gi5(}) is a
rank-one matrix whenever A # —1. It follows that either z;; and y;;(\) are linearly dependent,
or f;; and g;;(A) are linearly dependent.

For any fixed pair of (i, j), without loss of generality, we assume that, there exists A # 0 such

that z;; and y;;(\) are linearly dependent. The case that f;; and g;;(\) are linearly dependent
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can be dealt with similarly. Thus we can assume that y;;(A\) = x;;. There are two cases that we

have to consider.

Case 1 f;; and g;;() are linearly independent.

For any Ay € F, o((1 + A+ M)E;j) = Fij (1 + A+ A1) +6;;(1 + A+ A1)I. On the other hand,
writing 0;; + ;5 () + d;5(A1) = 9, we have ¢((1 + A+ \)Eij) = ¢(Eij) + ¢(AEij) + (M Esj) =
Tij @ fii + 205 @ gi;(A) + i (M) ® gij (M) + 61 = 245 @ (fij + 9i; (V) + yi; (A1) @ g5 (A1) + 1. If
A1 # —1land 1+A+X\; # 0, considering ¢((1+A1)E;j) = 245 & fij +vi (A1) @645 (A1) +0i; (L+ )1,
if z;; and y;;(A1) are linearly independent, then g;;(A1) and f;; are linearly dependent, which
implies that rank(F;;(1 + A 4+ A\1)) = 2, a contradiction. If Ay = =l or 1+ A+ Ay =0, it is
clear that z;; and y;;(A1) are linearly dependent. Thus, for any Ay € F, x;; and y;;(A1) are also
linearly dependent.

Case 2 f;; and g;;(\) are linearly dependent.

In this case, it is clear that, for any A € F, Fi;(A) = a(Nzy; ® fij € (Fij), where a(A) € F.

So in both cases, we can assume that Fj;(A) = z;; ® g;;(A) holds for all A € F, and therefore,
O(AEij) = zij @ gij(A) + 0i;(A)I for all \. Thus we obtain that, for any A\, A2 € F, ¢((M +
X2)Eij) = ¢(MEij) + ¢(A2Eij), that is 25 ® gij (A1 + A2) + 055 (A1 + Ao)] = 245 @ gij (M) + 245 @
Gij(A2) + 055 (A1) T + 055 (A2) ] = xi5 @ (gi5 (A1) + gij(A2)) + (855 (A1) +0i5(A2))I. Asn > 3, it follows
that gi; (A1 + A2) = gi; (M) + gi;(A2), 6i5(M1 + A2) = d;5(M1) + 0i5(A2). Hence §;; : F — F and
gij : F — F™ are additive.

So far we have shown that, for any pair (i, j) with 1 < i < j < n, there is an additive function
8;j : F — I and an additive map Fj; : F — 7.} such that ¢(AE;;) = F;;(\) +6;;(M\)I for all X € F.

Now define & : 7, (F) — F by h(A) = >, dij(ai;) for any A = lay] =2, aijEij € T, (F).
If A = lay], B = [bij] € Tn(F), then h(A + B) = h(ZKJ(% + bij)Ey) = Zigj dij(aij) +
> i< 0ij(bij) = h(A) + h(B). Thus h is an additive functional on 7, (F).

Define ¢ : T,,(F) — T, (F) by ¥(A) = ¢(A) —h(A)I. Then it is easily seen that ¢ is a minimal
rank preserving additive mapping, and for any A € F, ¢/ (AE;;) = Fj;()) is of rank one. Hence,

by Lemma 4, we see that 1) preserves rank-one matrices, too. So Claim 1 is true.

Claim 2 (I) = I for some scalar 5 # 0.

Since ¢ is a minimal rank preserving mapping, there exists some scalar v € F such that
¢(I) = vI. Tt is obvious that v # 0 as ¢ is an additive injection and ¢(0) = 0. Thus we may
assume that ¢(I) = I. Denote ¢(E;;) = Fi; + M\isd, i = 1,2,...,n, where F;; € T,1. Then
o) =X Ei) => i Fii+ Y1y A = I. 1t follows that ¢(I) = 81 for some § € F with
B+ Y"1 XNii =1. We have to show that 8 # 0. Otherwise suppose, to reach a contradiction,
that 8 = 0, that is,

=Y Fi=21®f11+22® fo+ -+ T @ fan =0
=1

with n > 3. Without loss of generality we may assume that {xu} ", is the maximal linearly
independent subset of {z;;}? ;, where 1 < k < n. Consider ¢/(E11 + 2E22 + -+ + nEpy). It is
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clear that mr(i)(E11 +2FE2 + -4+ nE,,)) =n—1asmr(E11 +2F»+ -+ nFEy,) =n—1. On
the other hand,

Y(E11 + 2B+ +nEpy) =211 @ fi1 + 2222 ® foo + -+ + NTyn & fun

=211 ® f11 + 2222 @ foo + -+ + kxpr @ frr+
k

k
4+ 1) orr1iii) @ ferahsr + -+ 00 omidii) ® fan
i=1 i=1

k
= Z Zii & Gii
i=1

for some g;; € F* and a;; € F, 1 < i <k, k+1 < j <n. Then, it is clear that mr()(E11 +
2FE9 + - +nkEy,)) <n—1if k <n—1, a contradiction. If £k = n—1, then z,,, = Z;le Qi T«
It follows that

n—1

O=211®@ fi1+222® foo+  +Tn-1,n-1® fn_1n-1+ (Z 0niTii) @ fan
i=1
=211 ® (fi1 + a1 fon) + T22 @ (fo2 + an2 frn)+

-t Tn—1,n—1 2y (fn—l,n—l + an,n—lfnn)u

which forces that fi; +apifun = 0,1 <i <n—1. Thus, 211 ® f11 + 2222 ® foo++ - +NTpp @ fron =
YR fnn for some y € F™. But this implies that mr(¢)(E114+2FE2+- - -+nFy,)) = 1, a contradiction,

too. Hence we must have 3 # 0.

Claim 3 There exist an invertible matrix T € 7, (F), an additive function f : F — F and a

nonzero homomorphism ¢ : F — F such that
Y(A) = BTAT + flarr — any)Ern for all A € T,(F)

or
P(A) = BTALT ™' + f(a11 — ann) Ern for all A € T, (F).

By Claim 2 and replacing ¢ by 8~ we may assume that (1) = I.

Since 1) is a rank-one preserving additive mapping, by Lemma 5, we obtain that 1 or 1/
takes one of the forms of (i) and (ii) in Lemma 5. Since v also preserves the minimal rank, it is
clear that the form (i) in the lemma cannot occur. So, 1 or ¥/, say in the sequel, ¢ takes the
form (ii) in Lemma 5. Obviously, (ii)-(c) only holds for the case of s = 2 so that 77,51 = 711
and (ii)-(e) only holds for the case t = n — 1 so that Ty41,, = T5,. Thus we get s = 2 and
t = n—1. Going further, we may assert that £y T ASE\ = E,,TASE,,, =0forall A€ 75,_;.
In fact, assume, to reach a contradiction, that E1;TASE1; # 0 for some A € 73,1, then there
exists a rank-one matrix A’ € T ,,_1 such that EllTAfpS’Ell # 0 as well. It follows that

P(A' + Ag) =TA,S+u® F(A) €T,

for all Ag € 77,1, which is impossible since 1 preserves the minimal rank. Similarly, we can get
that E,,TASE,, = 0 holds for all A € 75,,_1. Since TAS € T,(F) for every A € T3 _1, T,
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S € M, (F) can be chosen with t,, tkn, S1k, Sk1 arbitrary, k = 1,2,...,n. We firstly choose
tnk = tkn = S1k = Si1 = 0.

We assert further that, for our case, i = 1 and j = n in Lemma 5 (ii). Assume, on the
contrary, that ¢ > 1. Asj >i > 1, u € U;, Fle1®er1) € Vs, v € V;, Gle, ® e) € Uj,
e2®ex+ - +ep_1Qen_1 € Ta 1, and ¥ is additive, we see that

I=y(I)=u®@Fle1®e1)+T(ea®ea~+ - +en_1Qe,-1)S+Gle, @e,) Qv

It follows from ¢ > 1 that Ej1(u ® F(e1 ® e1))E1; = 0 and hence F119(I)Ey; = 0, which
contradicts ¢(I) = I. So, we must have i = 1 and u € (ey). Similarly, j < n leads to a
contradiction that E,, = E,,¥(I)E,, = 0. Hence j = n and v € {e,). Thus we may assume
that uw = e; and v = e,,. Furthermore, by Lemma 5, F' and G are p-quasilinear respectively on
{e1®@y:y€(ea,...,en)t and {x®ey, : x € {(e1,€2,...,e,—1)}. It follows that 1 is ¢-quasilinear
on T o1 = {A = [a;j] € T,(F) : a11 = ann = 0}.

Thus, for any A € 7, (F), because A’ = A — a11E11 — annFnpn € T2 n—1 and 1 is additive, we

have
’Q/J(A) = ¢(a11E11 + A’ =+ a,mE,m) =e1® F(allEll) + TAZPS =+ G(a,mE,m) X en. (31)

To see the behavior of F and G on (e; ® e1) and (e, ® e,), respectively, we apply the fact
Y(FI) C FI. For any a € F, By Eq.(3.1), ¢(al) = e; @ F(ae1 ® e1) + p(a)T(e2 @ e2 + -+ +
en—1® en_1)S + Glae, ® e,) ® e, = 7(a)I for some 7(a) € F. It follows from Eq.(3.1) and
Y(I) =1 that T7(a)ea ® ea = (e2 ® e2)h(al)(ea ® e2) = p(a)(e2 ® e2). Hence 7(a) = p(a) and

pla)e; ®er = e1 ® er(al)
=e ® F(aes ®@er) +¢(a)(er ®e)T Zez®ez (Z€j®€j)+

(Gae, ®ey),e1)e1 ® ey,

n n—1
=e1 @ Flaey ® e1) + p(a)er @ Z > (Sejei(Tei en)e;)+
Jj=2 1=2
(Glae, @ en),e1)e1 ® en.
Thus we have
n n—1
Flaes ®e1) Yer — Z Z Sej,e;)(Tei, er))e;] — (Glae, @ ey),e1)en. (3.2)
j=2 i=2
Similarly, by considering i (al)e, ® e,, one gets
n—1 n—1
Glaen @ en) = p(a)len — D (D (Sen,e:)(Tei,e;))e;] — (e, Flaer @ er)er.  (3.3)
j=1 i=2
Note that we have chosen T and S so that
tin T2 O 0 0 0

T=| Ty Toe O and S= | 0 Sy Sos
0 0 0 0 532 Snn
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Since 1) preserves rank-one matrices, 1)(e1 ® (e1+e¢;)) = e1 @ F(e1®eq)+T(e;®e;)S and Eq.(3.2)
together imply that ¢;; = 0 for each j = 2,...,n — 2. Hence T5; = 0. Similarly, considering
P((e; + en) @ e,) and applying Eq.(3.3) yields Ssz2 = 0. It follows that TheA22S92 € Tp—o(F) for
all Aoy € 7,,—o(F) and T2 S22 = I,,—o. Therefore, both Thy and Soe are upper triangular matrices

t 0 0
and Spy = Tyy'. Consequently, T,S € 7,,(F). Let U = | 0 Ty 0 |, where t = 1if t;; = 0;
0 0 s

t =ty if t11 #0; s =1if s, = 0; s = 5,1 if 5,5, # 0. Then U € 7,,(F) is invertible. Replacing
1 by U™"U if necessary, we may assume that

n

1 T2 O 1 0 0
T = 0 In72 0 and S = 0 Infz 823
0 0 1 0 0 1

Without effecting the value of ¥, we may replace above T and S by

1 Tia —Ti2S9 1 -Tie O
T = 0 I,—o —Sa3 and 51 = 0 I,—o S
0 O 1 0 0 1
As Sy =T !, replacing ¢ by T LTy if necessary, we may assume that

Y(A) =e1 @ Fi(a11E1) + (A — a1 B — annFEnn)p + Gi(annEnn) @ en

holds for every A = [a;;] € T,(F). Again, ¢(al) = ¢(a)l and thus F; and G; have the
same representation as in Eqgs.(3.2) and (3.3), respectively. It follows that there exist scalars
fooo s fn=1;92,...,9n—1 € F and additive functions f,, g1 from F into F such that

F1 (OéEll) = gD(O&)(€1 + f262 +-- fnflenfl) + fn(a)e"

and
Gi(aEn,) = gi(a)er + p(a)(giea + -+ + gn—16n—1 + €n).

Therefore, for every A = [a;;] € T, (F), we have
Y(A) =e1 ® (plar)(er + faea + -+ faren—1) + fularr)en)+
(A, — plain)er ® e1 — @(ann)en @ en)
+ (gl (ann)el + @(ann)(gleQ +--+ gn-16n-1+ en)) ® en
=e1 @ (p(a11)(faez + -+ fnoien—1) + fulair)en) + A+

(gl(ann)el + @(ann)(91€2 + -+ gn—len—l)) ® €n.

Applying the fact ¥(al) = p(a)l, we get
fo==fa1=ga="=gu1=0 and fu(a)+gi(a) =0

for all « € F. Let f = f,, = —¢g1. It follows that

7/}(A) = Asa + f(all - ann)el @ eén,
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this completes the proof of Claim 3 and thus the proof of Theorem 1. O

A closer look at the proof of Theorem 1 reveals the following corollary.

Corollary 6 Let F be a field, n > 3, ¢ : 7,,(F) — 7,,(F) be an additive injection. If ¢ satisfies
AeTouTly UT, 1 = mr(¢(A)) = mr(A), then ¢ has the same form as that in Theorem 1.
It is well known that every nonzero homomorphism on R is the identity. Thus the following

corollary is immediate.

Corollary 7 Let n > 3, ¢ : T,(R) — 7,(R) be an additive injection satisfying mr(¢(A)) =
mr(A) for any A € ToUTy UT,,_1. Then there exist a nonsingular matrix T € T, (R), a nonzero
real number «, an additive function f : R — R and an additive function h : T,(R) — R such
that either

P(A) = aTAT ' + f(a11 — ann)Ern + (AT for all A € T,(R)

or
p(A) = aTATT™ + flar — ann)Ern + h(A)  forall A€ T,(R).

4. Related results and unsolved problem

It is easy to check that the summand f(a11 — apny)E1, does not occur and the functional h

is linear provided that ¢ is linear in Theorem 1. In fact, we have little more.

Theorem 8 Let F be a field of characteristic 0, T be a nonzero homomorphism of F, n > 3,
and ¢ : T,,(F) — T,(F) be an injective T-quasilinear mapping. Then ¢ preserves minimal rank if
and only if there exists an invertible matrix T € T, (FF), a nonzero scalar o € F, a T-quasilinear

mapping h : T,(F) — T such that either
P(A) = aT AT+ h(A) for all A= [a;;] € T,(F)
or

P(A) = aTAIT™  + h(A) for all A= [a;;] € T,(F).

Proof If ¢ is injective 7-quasilinear and preserves minimal rank, then ¢ takes the form stated
in Theorem 1 with ¢ = 7 and f, h being 7-quasilinear. Thus there is a scalar ¢ € F such that
f(A) = cer(N). It follows that either

H(A) = aT AT +c(t(arr) — T(ann)) Brn + h(A)

or

d(A) = ozTAZTfl +e(t(a11) — 7(ann))E1n + h(A)I.
But (c(r(a11) — 7(ann))F1n)’ = c(7(a11) — 7(ann))E1n and
Ar + c(m(a11) — 7(ann)) E1n = SA.S™1

for all A € 7,,(F) with S =1 — cEy,,. Hence ¢ has the form as desired. O
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We also have a direct proof of Theorem 8 without using Theorem 1. In fact, by a similar
argument as that in the proof of Theorem 1, we get, for some 7-quasilinear functional h, ¥/(A) =
@(A)—h(A)I preserves rank-one matrices as well as the minimal rank of matrices. Then applying
the following Lemma 9 completes the proof immediately.

The lemma below may also be regarded as a generalization of [10, Theorem 3.1]. Let My, (F)

be the vector space of all m x n matrices over F.

Lemma 9 Let £ be a subspace of M,,(F) with F being an arbitrary field and 7 : F — F being
a nonzero homomorphism. Assume that L satisfies the following conditions:

(i) L contains xo ® F™ for some xy € F™;

(ii) L contains F™ ® yo for some yo € F";

(iii) L is spanned by its rank-one matrices.
Let ¢ : L — My (F) be a T-quasilinear mapping preserving rank-one matrices. Then either

(a) m <k, n <, and there exist a k x m matrix T of rank m and an n x [l matrix S of rank
n such that

Y(A)=TA.S forevery A€L;

or
(b) m <1, n <k, and there exist a k x n matrix T of rank n and an m x | matrix S of rank

m such that
Y(A) = TAYS  for every A€ L;

or

(c) (L) is contained in a subspace consisting of some rank-one matrices.

Proof The range of ¢ on 29 @ F™ is a 7(F)-vector space of rank-one matrices. So ¢(zo @ F") =
up ® W or V @ vy for some 7(F)-subspace W of F! and some vector ug € F¥ or for some 7(F)-
subspace V of F¥ and some vector vy € F'. Replacing ¢» by the mapping 1 (A4) = ¥(A)T if
necessary, we may assume without loss of generality that ¥ (xg @ F™) = ug ® W. Because the
kernel of ¢ contains no matrices of rank one, we see that dimW = n. Consequently, [ > n
and ¥(zo ® y) = up ® g(y) for some injective 7-quasilinear transformation g : F* — F!, i.e.,
P(wo ®y) = ug ® STy, for an n x [ matrix S of rank n.

Similarly, ¥(F™ ® yo) is a 7(F)-vector space of rank-one matrices and hence takes one of
the two forms ¥(F™ ® yo) C w1 ® F! and ¢(F™ ® yo) € F¥ ® v;. We consider these two cases,

respectively.

Case 1 Y(F™®yo) C u; ®F'. In this case, there exists an injective 7-quasilinear transformation
h: F™ — F! such that ¥(z @ yo) = u1 @ h(z). As (19 @1yo) = up @ w = u; v for some nonzero
vectors w and v, then ug and w; are linearly dependent. Hence we may assume that u; = up.
Assume that there exist nonzero vectors x, y, u, v such that ¥(x ® y) = u ® v and w is linearly
independent of ug. Let A} = 2®y, Az = (x+20)®y, A3 = 2@ (y+yo) and Ay = (z+x0)R(y+yo),
and let B; = 9(A4;), 1 < j < 4. Then, as ¢ is additive, By = u® v, Bs = u® v + uo @ g(y),
Bs=u®uv+uy®h(z) and By =u®v+up® (h(z) + g(y) + 9(yo)). Since u and ug are linearly



962 Y. GUO and J. C. HOU

independent and Bj is of rank one, 1 < j < 4, we conclude that v = ag(y) = Bh(z) = v9(yo)
for some nonzero scalars «, 3, . Particularly, we get aSTy, = vST(yo),. As ST is injective as
a transformation, it follows that ay, = v(yo), and hence y is linearly dependent on yg as 7 is
injective. However, this implies that u®v = ¥(z®y) = Y (dz®yo) = 7(d)uo @ h(z), contradicting
the assumption that u and ug are linearly independent. Hence we must have 1(z ® y) € ug ® F!
holds for every rank-one matrix x ® y € L. Since L is spanned by its rank-one elements, we see
that ¥(L£) C up ® F! and 1 has the form (c).

Case 2 (F™ ®yo) C F¥ ® v1. As before, we have that (x ® yo) = Tr, ® vg, for a k x m
matrix T' of rank m, i.e., an injective linear transformation 7' from F™ into F¥. Note that
o @ ST (yo)r = ¥(z0 ® yo) = T'(w0)r @ vg. After absorbing a constant in ug and vy if necessary,
we may assume that T'(zo), = up and ST (yo), = vo. Now consider an arbitrary rank-one matrix
z®y € L andlet Y(z®y) =u®v. Let Aj and B; = (A4;) be rank-one matrices as in Case
1,j =1,2,3,4. Then Bj = u®uv, Bo = u®v+1u @ STy, B3 = u® v+ Tx, ® v and
By =u®@u+uo® STy, + T, ®vo+uo@vg. If ug, T, are linearly independent and vy, STy, are
linearly independent, then it is easily checked that 1)(z®y) = Tx,®STy, (also, [10, Lemma 3.1]).
If Tz, = cug = ¢T'(xg), for a scalar ¢, then & = axg for some scalar o with 7(«) = ¢. In this case
we also have 1(z ®1y) = Y(aro®@y) = cug® STy, = Tx, @ STy,. A similar argument proves the
same conclusion when STy, and vy are linearly dependent. Therefore, ¢¥(z ® y) = T'(z ® y),S
for every x ® y € L. By the assumption (iii) we conclude that ¢(A) = T A, S for every A € L.
O

The situation for n = 2 is quite different. We give an example which shows that a minimal
rank preserving additive mapping ¢ : 7To(F) — 72(F) may have the form not as that stated in

Theorem 1.

Example 10 Let F = C and g : C — C be an injective additive mapping and be not of a scalar
multiple of any homomorphism of C (i.e., there exist no constant a € C and no homomorphism
7 of C so that g = ar). Define ¢ : 73(C) — T2(C) by

¢ ail  ai2 | @11 g(ai2)
0 a22 0 22 '
It is clear that ¢ is additive, injective and ¢ preserves the minimal rank. However, ¢ is not of the
form stated in Theorem 1. Actually, if ¢ is of the form as in Theorem 1, we may assume, without

loss of generality, that ¢(A) = aT AT + f(a11 — a22)Er2 + h(A)I for all A = [a;;] € T2(C)
(Here, o, T, ¢, f and h are defined as in Theorem 1). Write

t11 t12
0 oo |

A simple computation shows that g(ajs) = 22Lp(ass) for every ajp € C. Ast =

t22

T =

atiy
(23]

constant, we see that g = tp is a scalar multiple of the homomorphism ¢, a contradiction.

is a

There exist numerous injective additive mappings g : C — C that are not of the form ty, i.e.,

a scalar multiple of a homomorphism of C. To see this, we regard C as an infinite dimensional
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linear space over the rational number field Q. Take a Hamel basis {ay}rea of C. Then for
any z € C, z = > | &ay for some & € Q and a; € {ax}aen. Let @ = {wy : A € A} and
Qp = {w) : A € A} be arbitrary two Hamel bases of the Q-linear space C and g : C — C be a

Q-linear transformation defined by
9> Gw) =) &, 2= &wi€C (& €Q).
i=1 i=1 i=1

Then g is an additive injective mapping on the field C but in general is not a scalar multiple of

oo 1 ) 2
)

a homomorphism. For instance, let w; = e (here, as usual, e = exp(1) = > " =), w2 = €7,

w3 =€ wy =T, ws =T we =T, W= wr, wh = wa, wh = we, Wy = wy, W = ws, W = ws.
Take two Hamel bases 1 and Q2 such that w; € @ and w; € Q2. Let g be any bijective mapping
from Q; onto Qs satisfying g(w;) = w}, i = 1,2,...,6. g determines a bijective additive mapping
from C onto itself. Then g(wiws) = g(w3) = 7 and g(wsws) = g(we) = €3. If g = ar for some
nonzero scalar a and homomorphism 7, it follows that g(wiws) = ar(wiwz) = a7(w1)7(w2) =

Lar(wi)at(wz) = Lg(wi)g(ws) = twiws = %, and similarly, g(wiws) = Lwyws = %3 This leads

3 3 . .
to w3 = < and el = *~, a contradiction.

In fact, for n = 2, we have

Theorem 11 Let F be a field of characteristic 0 and ¢ : To(F) — 72(F) be an additive bijective
mapping. Then ¢ preserves the minimal rank if and only if ¢(FI) = FI.

Proof Assume that ¢p(FI) = FI. If A € T5(F) and mr(A) = 0, then there exists a A € F
such that A = AI. Thus ¢(A) = ¢(A]) = 61 for some ¢ € F, which implies that mr(¢(A)) = 0.
For any A € T3(F) with mr(A4) # 0, we have mr(4) = 1. If mr(¢(A)) = 0, then ¢(A) = §I
for some scalar 0. As ¢(FI) = FI, there exists a A such that ¢(A\) = 61 = ¢(A), which
contradicts the injectivity of ¢. So we must have mr(¢(A)) = 1 and hence ¢ preserves the
minimal rank. Conversely, if ¢ preserves the minimal rank, then ¢ preserves the minimal rank
zero, which implies that ¢(FI) C FI. If the equality does not hold, then there is a § such that
0I & ¢(FI). As ¢ is surjective, 61 = ¢(A) for some A ¢ FI, this leads to a contradiction that
1 =mr(A) = mr(¢(A)) =0. So, ¢(FI)=FI. O

Remark 12 Let F be a field of characteristic 0 and n > 2. It is obvious that there is no
additive mapping ¢ : T (F) — 7, (F) satisfying mr(A4) = rank(¢(A)) for all A € 7,,(F). Indeed,
if there exists an additive mapping ¢ satisfying mr(A) = rank(¢(A)) for all A € T, (F), then
for any rank-one matrix A we have ¢(A) # 0, or else, 0 = rank(¢(A)) = mr(A4), which leads
to a contradiction that A = oI for some scalar a. Thus rank(¢(A)) > 1. On the other hand,
rank(¢(A)) = mr(A) < rank(A) = 1. So ¢ preserves rank-one matrices. By Lemma 6 we know
that 0 = mr(I) = rank(¢(I)) # 0, a contradiction. It is also obvious that there is no additive
mapping ¢ : 7, (F) — T, (F) satisfying rank(A) = mr(¢(A)) for all A € T,,(F). In fact, if such ¢
exists, then we get n = rank(I) = mr(¢(I)) < n — 1, a contradiction.

Before drawing conclusions, we raise a question that is still open. Let F be an algebraically

closed field of characteristic 0. The following problem appeared in [1]: How to characterize the
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linear mappings from M, (IF) into itself preserving the relationship of having same minimal rank
(i.e., mr(4) = mr(B) = mr(¢(A)) = mr(¢(B)))? This problem is equivalent to the problem
of characterizing the linear mappings 1 satisfying that, for each 0 < ¢ < n — 1, there is a
0 < j < n—1 such that ¢(I';) C I';. Concerning upper triangular matrices, the following

problem is also natural and interesting.

Problem 13 Let F be a field of characteristic 0 and n > 2. How to characterize the additive
(or linear) mappings ¢ : 7, (F) — 7, (F) which satisfy that, for any A, B € T,,(F), mr(¢(4)) =
mr(¢(B)) whenever mr(A) = mr(B)?
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