Minimal Rank Preserving Additive Mappings on Upper Triangular Matrices

Yu GUO ${ }^{1,2,3, *}$, Jin Chuan $\mathbf{H O U}^{2,3}$
1. Department of Mathematics, Shanxi Datong University, Shanxi 037009, P. R. China;
2. Department of Mathematics, Shanxi University, Shanxi 030006, P. R. China;
3. Department of Mathematics, Taiyuan University of Technology, Shanxi 030024, P. R. China

Abstract

The additive mappings that preserve the minimal rank on the algebra of all $n \times n$ upper triangular matrices over a field of characteristic 0 are characterized.

Keywords rank; minimal rank; upper triangular matrices; additive mappings.
Document code A
MR(2010) Subject Classification 15A03; 15A04
Chinese Library Classification O151

1. Introduction

Let \mathbb{F} be a field, $\mathcal{M}_{n}(\mathbb{F})$ be the algebra of all $n \times n$ matrices over \mathbb{F}. By $\mathcal{T}_{n}(\mathbb{F})$ we denote the algebra of all $n \times n$ upper triangular matrices over \mathbb{F}. For $A \in \mathcal{M}_{n}(\mathbb{F})$, define $\operatorname{mr}(A)$ to be the $\min \{\operatorname{rank}(A-\lambda I): \lambda \in \mathbb{F}\}$, which is called the minimal rank of A (see [1]). Let $\Gamma_{k}=\{A: \operatorname{mr}(A)=k\}, 0 \leq k \leq n$. A mapping $\phi: \mathcal{M}_{n}(\mathbb{F}) \rightarrow \mathcal{M}_{n}(\mathbb{F})$ is called a minimal rank preserving mapping if $\phi\left(\Gamma_{k}\right) \subset \Gamma_{k}$ holds for all $k=0,1,2, \ldots, n$.

The minimal rank has been studied intensively because of its many applications in architecture, engineering and control theory, etc. For example, the minimal rank method can be used as a method of structural damage detection in architecture and engineering [2-4], and it also has important applications in the eigenstructure assignment and the dynamical order assignment for singular systems [5].

As showed in [1], if \mathbb{F} is an algebraically closed field of characteristic 0 , then a linear mapping $\phi: \mathcal{M}_{n}(\mathbb{F}) \rightarrow \mathcal{M}_{n}(\mathbb{F})$ is minimal rank preserving if and only if there exist an invertible matrix $S \in \mathcal{M}_{n}(\mathbb{F})$, a linear mapping $h: \mathcal{M}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ and a nonzero element $\alpha \in \mathbb{F}$ such that $\phi(A)=$ $\alpha S A S^{-1}+h(A) I$ for all $A \in \mathcal{M}_{n}(\mathbb{F})$, or $\phi(A)=\alpha S A^{\mathrm{T}} S^{-1}+h(A) I$ for all $A \in \mathcal{M}_{n}(\mathbb{F})$, where A^{T} is the transpose of A. This result was generalized to additive mappings in [6]. It is interesting to notice that the question of characterizing minimal rank preserving mappings is connected with the question of characterizing the mappings preserving the number of nontrivial (or nonconstant)

[^0]invariant polynomials (i.e., invariant factors [7]) of matrices $[1,8]$. For $A \in \mathcal{M}_{n}(\mathbb{F})$, denote by $\mathrm{i}(A)$ the number of nontrivial invariant polynomials of A. By an observation of Oliveira et al. [8], we have that $\operatorname{mr}(A)+\mathrm{i}(A)=n$ whenever \mathbb{F} is an algebraically closed field of characteristic 0 (also see [1]). And the authors in [9] showed that, if \mathbb{F} is an arbitrary number field, then $\operatorname{mr}(X)+\mathrm{i}(X)-\mathrm{k}(X)=n$, where $\mathrm{k}(X)$ denotes the number of nontrivial invariant polynomials which have no roots in \mathbb{F}. For upper triangular matrix case, it is clear that $\operatorname{mr}(A)+\mathrm{i}(A)=n$ holds for all $n \times n$ upper triangular matrix A over a field of characteristic 0 . Thus every minimal rank preserving mapping on the algebra of upper triangular matrices over any field of characteristic 0 is a mapping preserving the number of nontrivial invariant polynomials.

In this note, we are interested in the question of characterizing additive mappings on the upper triangular matrix algebra $\mathcal{T}_{n}(\mathbb{F})$ that preserve the minimal rank. We mention here that the question of characterizing linear or additive mappings on upper triangular matrices preserving rank or rank-one have been studied by several authors [10-12]. Note that, unlike the case for $\mathcal{M}_{n}(\mathbb{F})$, the situation for $\mathcal{T}_{n}(\mathbb{F})$ is more difficult and the structure of rank-one preserving additive mappings on $\mathcal{T}_{n}(\mathbb{F})$ is quite complicated (see, for example, $[10,11]$). However, as what we will show, the structure of minimal rank preserving additive mappings is nice.

2. Notation and preliminaries

Let φ be a homomorphism of \mathbb{F}. Assume that \mathcal{U} and \mathcal{V} are vector spaces over \mathbb{F}, an additive mapping $L: \mathcal{U} \rightarrow \mathcal{V}$ is called φ-quasilinear if $L(\lambda u)=\varphi(\lambda) L u$ for all $\lambda \in \mathbb{F}$ and $u \in \mathcal{U}$. If $A=\left[a_{i j}\right]$ is a matrix, A_{φ} (some times, $\varphi(A)$) will stand for the matrix $\left[\varphi\left(a_{i j}\right)\right]$. Clearly, the mapping $A \mapsto A_{\varphi}$ is additive and multiplicative. The flip mapping $A \mapsto A^{f}$ is defined by $A^{f}=J A^{\mathrm{T}} J$, where $J=\sum_{i=1}^{n} E_{i, n+1-i}$ and $E_{i j}$ is the matrix with (i, j)-entry 1 and others 0 . It is clear that every additive mapping from $\mathcal{T}_{n}(\mathbb{F})$ into itself of the form $A \mapsto \alpha T A_{\varphi} T^{-1}+h(A) I$ or $A \mapsto \alpha T\left(A_{\varphi}\right)^{f} T^{-1}+h(A) I$ is an additive mapping preserving minimal rank of matrices, where α is a nonzero scalar, $T \in \mathcal{T}_{n}(\mathbb{F})$ is nonsingular, φ is a nonzero homomorphism of \mathbb{F} and $h: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is an additive mapping. However, there are additive mappings of other forms that preserve minimal rank as well. Our purpose is to give a complete classification of all additive mappings preserving minimal rank on $\mathcal{T}_{n}(\mathbb{F})$.

Throughout this paper, $\left\{e_{i}\right\}_{i=1}^{n}$ stands for the standard basis of \mathbb{F}^{n}, that is, $e_{1}=(1,0,0, \ldots$, $0,0)^{\mathrm{T}}, e_{2}=(0,1,0, \ldots, 0,0)^{\mathrm{T}}, \ldots, e_{n}=(0,0,0, \ldots, 0,1)^{\mathrm{T}}$. For vectors $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ and $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{\mathrm{T}} \in \mathbb{F}^{n}$, we denote by $x \otimes f$ the rank-one matrix $x f^{\mathrm{T}}=\left[x_{i} f_{j}\right]$. Thus, $E_{i j}=e_{i} \otimes e_{j}$. For any mapping $\psi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F}), \psi^{f}: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ is the mapping defined by $\psi^{f}(A)=\psi(A)^{f}, A \in \mathcal{T}_{n}(\mathbb{F})$.

The following properties of the minimal rank, which are needed to prove our results, follow immediately from its definition. Assume that $A \in \mathcal{T}_{n}(\mathbb{F}), n \geq 2$ and $\lambda \in \mathbb{F}$, where \mathbb{F} is an arbitrary field.
(a) $\operatorname{mr}(A+\lambda I)=\operatorname{mr}(A)$;
(b) $\operatorname{mr}\left(T A T^{-1}\right)=\operatorname{mr}(A)$ for any invertible matrix $T \in \mathcal{T}_{n}(\mathbb{F})$;
(c) $\operatorname{mr}(\lambda A)=\operatorname{mr}(A)$ if $\lambda \neq 0$;
(d) $\operatorname{mr}\left(A^{f}\right)=\operatorname{mr}(A)$;
(e) $0 \leq \operatorname{mr}(A) \leq n-1$ and $\operatorname{mr}(A) \leq \operatorname{rank}(A)$;
(f) $\operatorname{mr}(A)=0$ if and only if $A=\alpha I$ for some $\alpha \in \mathbb{F}$;
(g) If $\operatorname{rank}(A)=1$, then $\operatorname{mr}(A)=1$;
(h) $\operatorname{mr}\left(A_{\varphi}\right)=\operatorname{mr}(A)$ for any nonzero homomorphism φ of \mathbb{F}.

3. The main result and its proof

The following is our main result.
Theorem 1 Let \mathbb{F} be a field of characteristic $0, n \geq 3$, and $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ be an additive injective mapping. Then ϕ preserves minimal rank if and only if there exists an invertible matrix $T \in \mathcal{I}_{n}(\mathbb{F})$, a nonzero scalar $\alpha \in \mathbb{F}$, a nonzero homomorphism φ of \mathbb{F}, an additive function $f: \mathbb{F} \rightarrow \mathbb{F}$ and an additive mapping $h: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ such that either

$$
\phi(A)=\alpha T A_{\varphi} T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n}+h(A) I \quad \text { for all } \quad A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})
$$

or

$$
\phi(A)=\alpha T A_{\varphi}^{f} T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n}+h(A) I \quad \text { for all } \quad A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})
$$

In order to prove Theorem 1, some lemmas are needed.
Lemma 2 If $A \in \mathcal{T}_{3}(\mathbb{F})$, then $\operatorname{rank}(A)=2$ and $\operatorname{mr}(A)=1$ imply that A is similar to $\operatorname{Diag}(a, a, 0)$ for some nonzero $a \in \mathbb{F}$.

Proof If $A \in \mathcal{T}_{3}(\mathbb{F})$ satisfies $\operatorname{rank}(A)=2$ and $\operatorname{mr}(A)=1$, then there exist $x, f \in \mathbb{F}^{3}$ and $a \in \mathbb{F}$ such that $A=x \otimes f+a I$. Since $\operatorname{rank}(A)=2, a \neq 0$ and A is not invertible, we see that $x \otimes f$ is not nilpotent. It follows that $\sigma(x \otimes f)=\{\langle x, f\rangle, 0\}$ and $a=-\langle x, f\rangle \neq 0$, here $\langle x, f\rangle=x^{\mathrm{T}} f$ and $\sigma(x \otimes f)$ denotes the set of all eigenvalues of $x \otimes f$. Thus $x \otimes f$ is similar to $\operatorname{Diag}(-a, 0,0)$ which implies that A is similar to $\operatorname{Diag}(a, a, 0)$ for some nonzero $a \in \mathbb{F}$.

Lemma 3 Let ϕ be an additive mapping on $\mathcal{T}_{n}(\mathbb{F})$, $n \geq 3$, such that $\operatorname{mr}(\phi(E))=1$ whenever $\operatorname{rank}(E)=1$. Then $\operatorname{rank}(A+B)=\operatorname{rank}(A-B)=\operatorname{rank}(\phi(A))=\operatorname{rank}(\phi(B))=1$ implies $\operatorname{rank}(\phi(A+B))=1$.

Proof If $\operatorname{rank}(A+B)=1$, then, by the hypotheses, $\operatorname{mr}(\phi(A+B))=1$. There are two cases to be considered.

Case $1 \quad n \geq 4$. Note that $\operatorname{mr}(\phi(A+B))=1$, thus $\phi(A+B)=E+\lambda I$ for some E with $\operatorname{rank}(E)=1$. As ϕ is additive, we get $\phi(A)+\phi(B)-E=\lambda I$. If $\lambda \neq 0$, then $4 \leq n=\operatorname{rank}(\lambda I)=$ $\operatorname{rank}(\phi(A)+\phi(B)-E) \leq \operatorname{rank}(\phi(A))+\operatorname{rank}(\phi(B))+\operatorname{rank}(E)=3$, a contradiction. It follows that $\lambda=0$, and $\operatorname{so} \operatorname{rank}(\phi(A+B))=\operatorname{rank}(E)=1$.

Case $2 n=3 . \operatorname{mr}(\phi(A+B))=1$ implies that $1 \leq \operatorname{rank}(\phi(A+B)) \leq \operatorname{rank}(\phi(A))+\operatorname{rank}(\phi(B))=$
2. If $\operatorname{rank}(\phi(A+B))=2$, then by Lemma $2, \phi(A)+\phi(B)$ is similar to $\operatorname{Diag}(a, a, 0)$ for some nonzero $a \in \mathbb{F}$. Together with the assumption $\operatorname{rank}(\phi(A))=\operatorname{rank}(\phi(B))=1$, we deduce that $\sigma(\phi(A)-\phi(B))=\{a,-a, 0\}$, which leads to $\operatorname{mr}(\phi(A)-\phi(B))=2$. However, by the hypotheses, $\operatorname{mr}(\phi(A)-\phi(B))=1$ since $\operatorname{rank}(A-B)=1$, a contradiction.

Lemma 4 Let ϕ be an additive mapping on $\mathcal{T}_{n}(\mathbb{F})$, $n \geq 3$, with the properties:
(i) $\operatorname{rank}(E)=1$ implies $\operatorname{mr}(\phi(E))=1$, and
(ii) $\operatorname{rank}\left(\phi\left(\lambda E_{i j}\right)\right)=1$ for any nonzero $\lambda \in \mathbb{F}$ and any i, j with $1 \leq i \leq j \leq n$.

Then, for any $A \in \mathcal{T}_{n}(\mathbb{F})$, that A is of rank one implies that $\phi(A)$ is of rank one.
Proof For $z \in \mathbb{F}^{n}$, denote $\mathcal{S}(z)=\left\{i: z_{i} \neq 0, z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)^{\mathrm{T}}\right\}$. For any rank-one matrix $E=x \otimes y$, let $\mathcal{K}(E)=\# \mathcal{S}(x)+\# \mathcal{S}(y)$, where $\# \mathcal{S}(x)$ denotes the number of elements in $\mathcal{S}(x)$. We will prove Lemma 4 by induction on $\mathcal{K}(E)$. It is clear that $2 \leq \mathcal{K}(E) \leq n+1$ since $E \in \mathcal{T}_{n}(\mathbb{F})$. If $\mathcal{K}(E)=2$, then there exist some nonzero $\mu \in \mathbb{F}$ and i, j with $1 \leq i \leq j \leq n$ such that $E=\mu E_{i j}$. By the property (ii) we obtain that $\operatorname{rank}(\phi(E))=1$. Now assume that $\operatorname{rank}(\phi(E))=1$ holds for all rank-one upper triangular matrices E with $\mathcal{K}(E) \leq k, 2 \leq k \leq n$. For any rank-one matrix $E=x \otimes y \in \mathcal{T}_{n}(\mathbb{F})$ with $\mathcal{K}(E)=k+1$, we have to show that $\operatorname{rank}(\phi(E))=1$. Obviously, either $\# \mathcal{S}(x) \geq 2$ or $\# \mathcal{S}(y) \geq 2$.

Case $1 \# \mathcal{S}(y) \geq 2$. In this case, decompose y as $y=y^{\prime}+y^{\prime \prime}$ with $\# \mathcal{S}\left(y^{\prime}\right)<\# \mathcal{S}(y), \# \mathcal{S}\left(y^{\prime \prime}\right)<$ $\# \mathcal{S}(y), \mathcal{S}\left(y^{\prime}\right) \subseteq \mathcal{S}(y)$, and $\mathcal{S}\left(y^{\prime \prime}\right) \subseteq \mathcal{S}(y)$. Thus, $x \otimes y^{\prime}, x \otimes y^{\prime \prime} \in \mathcal{T}_{n}(\mathbb{F})$. and $\mathcal{K}\left(x \otimes y^{\prime}\right) \leq k$, $\mathcal{K}\left(x \otimes y^{\prime \prime}\right) \leq k$. So, by the induction assumption, we have $\operatorname{rank}\left(\phi\left(x \otimes y^{\prime}\right)\right)=1=\operatorname{rank}\left(\phi\left(x \otimes y^{\prime \prime}\right)\right)$. Also note that $\operatorname{rank}\left(x \otimes y^{\prime}+x \otimes y^{\prime \prime}\right)=1=\operatorname{rank}\left(x \otimes y^{\prime}-x \otimes y^{\prime \prime}\right)$. Applying Lemma 3 , we obtain that $\operatorname{rank}(\phi(E))=\operatorname{rank}\left(\phi\left(x \otimes y^{\prime}\right)+\phi\left(x \otimes y^{\prime \prime}\right)\right)=1$.

Case $2 \# \mathcal{S}(x) \geq 2$. The proof is similar to that of Case 1.
The next lemma comes from [11], which gives a characterization of rank-one preserving additive mappings on upper triangular matrices.

Before stating Lemma 5, let us recall some more notations from [11]. As usual, by \mathcal{T}_{n}^{1} we denote the set of all rank-one matrices in $\mathcal{T}_{n}(\mathbb{F})$. For any integers $1 \leq s, t \leq n$, we denote by $\mathcal{T}_{s, t}$ the subspace of $\mathcal{T}_{n}(\mathbb{F})$ consisting of all matrices $\left[a_{i j}\right]$ in which $a_{i j}=0$ for all $1 \leq i \leq n$ and $1 \leq j \leq s-1$, and $a_{i j}=0$ for all $t<i \leq n$ and $1 \leq j \leq n$. Particularly, $\mathcal{T}_{1, n}=\mathcal{T}_{n}(\mathbb{F})$, $\mathcal{T}_{1,1}=\left\{\left[a_{i j}\right]: a_{i j}=0\right.$ whenever $\left.i \neq 1\right\}$ and $\mathcal{T}_{n, n}=\left\{\left[a_{i j}\right]: a_{i j}=0\right.$ whenever $\left.j \neq n\right\}$. For the sake of convenience, we denote $\mathcal{T}_{1,0}=\mathcal{T}_{n+1, n}=\{0\}$. Let \mathcal{S} be a nonempty subspace of $\mathcal{M}_{n 1}$, k be a positive integer such that $k \leq \min \{n, \operatorname{dim} \mathcal{S}\}$. A matrix P is said to be k-regular with respect to (φ, \mathcal{S}) if $P\left(x_{1}\right)_{\varphi}, \ldots, P\left(x_{k}\right)_{\varphi}$ are linearly independent whenever x_{1}, \ldots, x_{k} are linearly independent vectors in \mathcal{S}. In particular, P is one-regular with respect to (φ, \mathcal{S}), if $P x_{\varphi} \neq 0$ for all nonzero vectors $x \in \mathcal{S}$, and thus, $P A_{\varphi}$ is of rank one whenever A is of rank one, $A \in \mathcal{T}_{n}(\mathbb{F})$. We use $\left\langle u_{1}, u_{2}, \ldots, u_{r}\right\rangle$ to denote the subspace spanned by the vectors $u_{1}, u_{2}, \ldots, u_{r}$. With an upper triangular matrix algebra $\mathcal{I}_{n}(\mathbb{F})$, we associate two chains of subspaces

$$
\{0\}=\mathcal{U}_{0} \subset \mathcal{U}_{1} \subset \cdots \subset \mathcal{U}_{n}=\mathbb{F}^{n}
$$

and

$$
\{0\}=\mathcal{V}_{n+1} \subset \mathcal{V}_{n} \subset \cdots \subset \mathcal{V}_{2} \subset \mathcal{V}_{1}=\mathbb{F}^{n}
$$

where $\mathcal{U}_{i}=\left\langle e_{j}: 1 \leq j \leq i\right\rangle, \mathcal{V}_{i}=\left\langle e_{j}: i \leq j \leq n\right\rangle$ for all $1 \leq i \leq n,\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis of \mathbb{F}^{n}. The flip map of a vector $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)^{\mathrm{T}}$ is defined by $\nu^{f}=\left(\nu_{n}, \ldots, \nu_{2}, \nu_{1}\right)^{\mathrm{T}}$.

Lemma 5 ([11, Corollary 3.12]) Let $\psi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{I}_{n}(\mathbb{F}), n \geq 2$, be an additive mapping. Then ψ preserves rank-one matrices if and only if ψ or ψ^{f} takes one of the following forms:
(i) There exist nonzero vectors $u \in \mathcal{U}_{s}, v \in \mathcal{V}_{t}$ for some integers $1 \leq s \leq t \leq n$ such that for each integer $1 \leq i \leq n$, either
(a) $\psi(A)=u \otimes F_{i}(A)$ for all $A \in \mathcal{T}_{i, i}$, or
(b) $\psi(A)=G_{i}(A) \otimes v$ for all $A \in \mathcal{T}_{i, i}$,
where $F_{i}: \mathcal{T}_{i, i} \rightarrow \mathcal{V}_{s}, G_{i}: \mathcal{T}_{i, i} \rightarrow \mathcal{U}_{t}$ are additive with $\left.F_{i}\right|_{\mathcal{T}_{n}^{1}},\left.G_{i}\right|_{\mathcal{T}_{n}^{1}}$ injective; or
(ii) There exist integers $1 \leq s \leq t$ and $1 \leq i \leq j \leq n$, and a nonzero field homomorphism $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ such that
(c) $\psi(A)=u \otimes F(A)$ for all $A \in \mathcal{T}_{1, s-1}$,
(d) $\psi(A)=T A_{\varphi} S$ for all $A \in \mathcal{T}_{s, t}$, and
(e) $\psi(A)=G(A) \otimes v$ for all $A \in \mathcal{T}_{t+1, n}$, where $T, S^{f} \in \mathcal{M}_{n}(\mathbb{F})$ are of rank ≥ 2 oneregular matrices with respect to $\left(\varphi, \mathcal{U}_{t}\right)$ and $\left(\varphi, \mathcal{V}_{s}^{f}\right)$ respectively satisfying $T E_{k l} S \in \mathcal{T}_{n}(\mathbb{F})$ for all $1 \leq k \leq l \leq n, u \in \mathcal{U}_{i}, v \in \mathcal{V}_{j}$ are nonzero vectors, and $F: \mathcal{T}_{1, s-1} \rightarrow \mathcal{V}_{i}, G: \mathcal{T}_{t+1, n} \rightarrow \mathcal{U}_{j}$ are additive mappings with $\left.F\right|_{\mathcal{T}_{n}^{1}},\left.G\right|_{\mathcal{T}_{n}^{1}}$ injective such that $T x_{\varphi}=\alpha(x) u$ and $F(x \otimes y)=\alpha(x) S^{\mathrm{T}} y_{\varphi}$ for all $x \otimes y \in \mathcal{T}_{s, s-1}$, and $S^{\mathrm{T}} y_{\varphi}=\lambda(y) v$ and $G(x \otimes y)=\lambda(y) T x_{\varphi}$ for all $x \otimes y \in \mathcal{T}_{t+1, t}$, with $\alpha: \mathcal{U}_{s-1} \rightarrow \mathbb{F}, \lambda: \mathcal{V}_{t+1} \rightarrow \mathbb{F}$ injective φ-quasilinear.

Now we are in a position to give our proof of the main result, Theorem 1.
Proof of Theorem 1 We only need to check the "only if" part. Assume that $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ is an additive injective mapping preserving the minimal rank.

Claim 1 There exists an additive mapping $\psi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ which preserves minimal rank of matrices as well rank-one matrices and an additive functional $h: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ such that

$$
\phi(A)=\psi(A)+h(A) I \text { for all } A \in \mathcal{T}_{n}(\mathbb{F})
$$

If E is a matrix of rank one, then by property (g) we have $\operatorname{mr}(E)=1$, and so $\operatorname{mr}(\phi(E))=1$. Therefore $\phi(E)=F+\delta I$ for some rank-one matrix $F \in \mathcal{T}_{n}(\mathbb{F})$ and $\delta \in \mathbb{F}$. In particular $\phi\left(E_{i j}\right)=F_{i j}+\delta_{i j} I$ and for any nonzero $\lambda \in \mathbb{F}$ we have $\phi\left(\lambda E_{i j}\right)=F_{i j}(\lambda)+\delta_{i j}(\lambda) I$ for some rank-one matrices $F_{i j}, F_{i j}(\lambda) \in \mathcal{T}_{n}(\mathbb{F})$ and scalars $\delta_{i j}, \delta_{i j}(\lambda) \in \mathbb{F}, 1 \leq i \leq j \leq n$. Similarly, $\phi\left((1+\lambda) E_{i j}\right)=F_{i j}(1+\lambda)+\delta_{i j}(1+\lambda) I=F_{i j}+F_{i j}(\lambda)+\left(\delta_{i j}+\delta_{i j}(\lambda)\right) I$. Write $F_{i j}=x_{i j} \otimes f_{i j}$ and $F_{i j}(\lambda)=y_{i j}(\lambda) \otimes g_{i j}(\lambda)$. Thus $F_{i j}(1+\lambda)=F_{i j}+F_{i j}(\lambda)=x_{i j} \otimes f_{i j}+y_{i j}(\lambda) \otimes g_{i j}(\lambda)$ is a rank-one matrix whenever $\lambda \neq-1$. It follows that either $x_{i j}$ and $y_{i j}(\lambda)$ are linearly dependent, or $f_{i j}$ and $g_{i j}(\lambda)$ are linearly dependent.

For any fixed pair of (i, j), without loss of generality, we assume that, there exists $\lambda \neq 0$ such that $x_{i j}$ and $y_{i j}(\lambda)$ are linearly dependent. The case that $f_{i j}$ and $g_{i j}(\lambda)$ are linearly dependent
can be dealt with similarly. Thus we can assume that $y_{i j}(\lambda)=x_{i j}$. There are two cases that we have to consider.

Case $1 f_{i j}$ and $g_{i j}(\lambda)$ are linearly independent.
For any $\lambda_{1} \in \mathbb{F}, \phi\left(\left(1+\lambda+\lambda_{1}\right) E_{i j}\right)=F_{i j}\left(1+\lambda+\lambda_{1}\right)+\delta_{i j}\left(1+\lambda+\lambda_{1}\right) I$. On the other hand, writing $\delta_{i j}+\delta_{i j}(\lambda)+\delta_{i j}\left(\lambda_{1}\right)=\delta$, we have $\phi\left(\left(1+\lambda+\lambda_{1}\right) E_{i j}\right)=\phi\left(E_{i j}\right)+\phi\left(\lambda E_{i j}\right)+\phi\left(\lambda_{1} E_{i j}\right)=$ $x_{i j} \otimes f_{i j}+x_{i j} \otimes g_{i j}(\lambda)+y_{i j}\left(\lambda_{1}\right) \otimes g_{i j}\left(\lambda_{1}\right)+\delta I=x_{i j} \otimes\left(f_{i j}+g_{i j}(\lambda)\right)+y_{i j}\left(\lambda_{1}\right) \otimes g_{i j}\left(\lambda_{1}\right)+\delta I$. If $\lambda_{1} \neq-1$ and $1+\lambda+\lambda_{1} \neq 0$, considering $\phi\left(\left(1+\lambda_{1}\right) E_{i j}\right)=x_{i j} \otimes f_{i j}+y_{i j}\left(\lambda_{1}\right) \otimes g_{i j}\left(\lambda_{1}\right)+\delta_{i j}\left(1+\lambda_{1}\right) I$, if $x_{i j}$ and $y_{i j}\left(\lambda_{1}\right)$ are linearly independent, then $g_{i j}\left(\lambda_{1}\right)$ and $f_{i j}$ are linearly dependent, which implies that $\operatorname{rank}\left(F_{i j}\left(1+\lambda+\lambda_{1}\right)\right)=2$, a contradiction. If $\lambda_{1}=-1$ or $1+\lambda+\lambda_{1}=0$, it is clear that $x_{i j}$ and $y_{i j}\left(\lambda_{1}\right)$ are linearly dependent. Thus, for any $\lambda_{1} \in \mathbb{F}, x_{i j}$ and $y_{i j}\left(\lambda_{1}\right)$ are also linearly dependent.

Case $2 f_{i j}$ and $g_{i j}(\lambda)$ are linearly dependent.
In this case, it is clear that, for any $\lambda \in \mathbb{F}, F_{i j}(\lambda)=\alpha(\lambda) x_{i j} \otimes f_{i j} \in\left\langle F_{i j}\right\rangle$, where $\alpha(\lambda) \in \mathbb{F}$.
So in both cases, we can assume that $F_{i j}(\lambda)=x_{i j} \otimes g_{i j}(\lambda)$ holds for all $\lambda \in \mathbb{F}$, and therefore, $\phi\left(\lambda E_{i j}\right)=x_{i j} \otimes g_{i j}(\lambda)+\delta_{i j}(\lambda) I$ for all λ. Thus we obtain that, for any $\lambda_{1}, \lambda_{2} \in \mathbb{F}, \phi\left(\left(\lambda_{1}+\right.\right.$ $\left.\left.\lambda_{2}\right) E_{i j}\right)=\phi\left(\lambda_{1} E_{i j}\right)+\phi\left(\lambda_{2} E_{i j}\right)$, that is $x_{i j} \otimes g_{i j}\left(\lambda_{1}+\lambda_{2}\right)+\delta_{i j}\left(\lambda_{1}+\lambda_{2}\right) I=x_{i j} \otimes g_{i j}\left(\lambda_{1}\right)+x_{i j} \otimes$ $g_{i j}\left(\lambda_{2}\right)+\delta_{i j}\left(\lambda_{1}\right) I+\delta_{i j}\left(\lambda_{2}\right) I=x_{i j} \otimes\left(g_{i j}\left(\lambda_{1}\right)+g_{i j}\left(\lambda_{2}\right)\right)+\left(\delta_{i j}\left(\lambda_{1}\right)+\delta_{i j}\left(\lambda_{2}\right)\right) I$. As $n \geq 3$, it follows that $g_{i j}\left(\lambda_{1}+\lambda_{2}\right)=g_{i j}\left(\lambda_{1}\right)+g_{i j}\left(\lambda_{2}\right), \delta_{i j}\left(\lambda_{1}+\lambda_{2}\right)=\delta_{i j}\left(\lambda_{1}\right)+\delta_{i j}\left(\lambda_{2}\right)$. Hence $\delta_{i j}: \mathbb{F} \rightarrow \mathbb{F}$ and $g_{i j}: \mathbb{F} \rightarrow \mathbb{F}^{n}$ are additive.

So far we have shown that, for any pair (i, j) with $1 \leq i \leq j \leq n$, there is an additive function $\delta_{i j}: \mathbb{F} \rightarrow \mathbb{F}$ and an additive map $F_{i j}: \mathbb{F} \rightarrow \mathcal{T}_{n}^{1}$ such that $\phi\left(\lambda E_{i j}\right)=F_{i j}(\lambda)+\delta_{i j}(\lambda) I$ for all $\lambda \in \mathbb{F}$.

Now define $h: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ by $h(A)=\sum_{i \leq j} \delta_{i j}\left(a_{i j}\right)$ for any $A=\left[a_{i j}\right]=\sum_{i \leq j} a_{i j} E_{i j} \in \mathcal{T}_{n}(\mathbb{F})$. If $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})$, then $h(A+B)=h\left(\sum_{i \leq j}\left(a_{i j}+b_{i j}\right) E_{i j}\right)=\sum_{i \leq j} \delta_{i j}\left(a_{i j}\right)+$ $\sum_{i \leq j} \delta_{i j}\left(b_{i j}\right)=h(A)+h(B)$. Thus h is an additive functional on $\mathcal{T}_{n}(\mathbb{F})$.

Define $\psi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ by $\psi(A)=\phi(A)-h(A) I$. Then it is easily seen that ψ is a minimal rank preserving additive mapping, and for any $\lambda \in \mathbb{F}, \psi\left(\lambda E_{i j}\right)=F_{i j}(\lambda)$ is of rank one. Hence, by Lemma 4 , we see that ψ preserves rank-one matrices, too. So Claim 1 is true.

Claim $2 \psi(I)=\beta I$ for some scalar $\beta \neq 0$.
Since ϕ is a minimal rank preserving mapping, there exists some scalar $\gamma \in \mathbb{F}$ such that $\phi(I)=\gamma I$. It is obvious that $\gamma \neq 0$ as ϕ is an additive injection and $\phi(0)=0$. Thus we may assume that $\phi(I)=I$. Denote $\phi\left(E_{i i}\right)=F_{i i}+\lambda_{i i} I, i=1,2, \ldots, n$, where $F_{i i} \in \mathcal{T}_{n}^{1}$. Then $\phi(I)=\phi\left(\sum_{i=1}^{n} E_{i i}\right)=\sum_{i=1}^{n} F_{i i}+\sum_{i=1}^{n} \lambda_{i i} I=I$. It follows that $\psi(I)=\beta I$ for some $\beta \in \mathbb{F}$ with $\beta+\sum_{i=1}^{n} \lambda_{i i}=1$. We have to show that $\beta \neq 0$. Otherwise suppose, to reach a contradiction, that $\beta=0$, that is,

$$
\psi(I)=\sum_{i=1}^{n} F_{i i}=x_{11} \otimes f_{11}+x_{22} \otimes f_{22}+\cdots+x_{n n} \otimes f_{n n}=0
$$

with $n \geq 3$. Without loss of generality we may assume that $\left\{x_{i i}\right\}_{i=1}^{k}$ is the maximal linearly independent subset of $\left\{x_{i i}\right\}_{i=1}^{n}$, where $1 \leq k<n$. Consider $\psi\left(E_{11}+2 E_{22}+\cdots+n E_{n n}\right)$. It is
clear that $\operatorname{mr}\left(\psi\left(E_{11}+2 E_{22}+\cdots+n E_{n n}\right)\right)=n-1$ as $\operatorname{mr}\left(E_{11}+2 E_{22}+\cdots+n E_{n n}\right)=n-1$. On the other hand,

$$
\begin{aligned}
& \psi\left(E_{11}+2 E_{22}+\cdots+n E_{n n}\right)=x_{11} \otimes f_{11}+2 x_{22} \otimes f_{22}+\cdots+n x_{n n} \otimes f_{n n} \\
& \quad=x_{11} \otimes f_{11}+2 x_{22} \otimes f_{22}+\cdots+k x_{k k} \otimes f_{k k}+ \\
& \quad(k+1)\left(\sum_{i=1}^{k} \alpha_{k+1, i} x_{i i}\right) \otimes f_{k+1, k+1}+\cdots+n\left(\sum_{i=1}^{k} \alpha_{n i} x_{i i}\right) \otimes f_{n n} \\
& \quad=\sum_{i=1}^{k} x_{i i} \otimes g_{i i}
\end{aligned}
$$

for some $g_{i i} \in \mathbb{F}^{n}$ and $\alpha_{j i} \in \mathbb{F}, 1 \leq i \leq k, k+1 \leq j \leq n$. Then, it is clear that $\operatorname{mr}\left(\psi\left(E_{11}+\right.\right.$ $\left.\left.2 E_{22}+\cdots+n E_{n n}\right)\right)<n-1$ if $k<n-1$, a contradiction. If $k=n-1$, then $x_{n n}=\sum_{i=1}^{n-1} \alpha_{n i} x_{i i}$. It follows that

$$
\begin{aligned}
0= & x_{11} \otimes f_{11}+x_{22} \otimes f_{22}+\cdots+x_{n-1, n-1} \otimes f_{n-1, n-1}+\left(\sum_{i=1}^{n-1} \alpha_{n i} x_{i i}\right) \otimes f_{n n} \\
= & x_{11} \otimes\left(f_{11}+\alpha_{n 1} f_{n n}\right)+x_{22} \otimes\left(f_{22}+\alpha_{n 2} f_{n n}\right)+ \\
& \cdots+x_{n-1, n-1} \otimes\left(f_{n-1, n-1}+\alpha_{n, n-1} f_{n n}\right)
\end{aligned}
$$

which forces that $f_{i i}+\alpha_{n i} f_{n n}=0,1 \leq i \leq n-1$. Thus, $x_{11} \otimes f_{11}+2 x_{22} \otimes f_{22}+\cdots+n x_{n n} \otimes f_{n n}=$ $y \otimes f_{n n}$ for some $y \in \mathbb{F}^{n}$. But this implies that $\operatorname{mr}\left(\psi\left(E_{11}+2 E_{22}+\cdots+n E_{n n}\right)\right)=1$, a contradiction, too. Hence we must have $\beta \neq 0$.

Claim 3 There exist an invertible matrix $T \in \mathcal{T}_{n}(\mathbb{F})$, an additive function $f: \mathbb{F} \rightarrow \mathbb{F}$ and a nonzero homomorphism $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ such that

$$
\psi(A)=\beta T A_{\varphi} T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n} \text { for all } A \in \mathcal{T}_{n}(\mathbb{F})
$$

or

$$
\psi(A)=\beta T A_{\varphi}^{f} T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n} \quad \text { for all } A \in \mathcal{T}_{n}(\mathbb{F})
$$

By Claim 2 and replacing ψ by $\beta^{-1} \psi$ we may assume that $\psi(I)=I$.
Since ψ is a rank-one preserving additive mapping, by Lemma 5 , we obtain that ψ or ψ^{f} takes one of the forms of (i) and (ii) in Lemma 5. Since ψ also preserves the minimal rank, it is clear that the form (i) in the lemma cannot occur. So, ψ or ψ^{f}, say in the sequel, ψ takes the form (ii) in Lemma 5. Obviously, (ii)-(c) only holds for the case of $s=2$ so that $\mathcal{T}_{1, s-1}=\mathcal{T}_{1,1}$ and (ii)-(e) only holds for the case $t=n-1$ so that $\mathcal{T}_{t+1, n}=\mathcal{T}_{n, n}$. Thus we get $s=2$ and $t=n-1$. Going further, we may assert that $E_{11} T A S E_{11}=E_{n n} T A S E_{n n}=0$ for all $A \in \mathcal{T}_{2, n-1}$. In fact, assume, to reach a contradiction, that $E_{11} T A S E_{11} \neq 0$ for some $A \in \mathcal{T}_{2, n-1}$, then there exists a rank-one matrix $A^{\prime} \in \mathcal{T}_{2, n-1}$ such that $E_{11} T A_{\varphi}^{\prime} S E_{11} \neq 0$ as well. It follows that

$$
\psi\left(A^{\prime}+A_{0}\right)=T A_{\varphi}^{\prime} S+u \otimes F\left(A_{0}\right) \in \mathcal{T}_{n}^{1}
$$

for all $A_{0} \in \mathcal{T}_{1,1}$, which is impossible since ψ preserves the minimal rank. Similarly, we can get that $E_{n n} T A S E_{n n}=0$ holds for all $A \in \mathcal{T}_{2, n-1}$. Since $T A S \in \mathcal{T}_{n}(\mathbb{F})$ for every $A \in \mathcal{T}_{2, n-1}, T$,
$S \in \mathcal{M}_{n}(\mathbb{F})$ can be chosen with $t_{n k}, t_{k n}, s_{1 k}, s_{k 1}$ arbitrary, $k=1,2, \ldots, n$. We firstly choose $t_{n k}=t_{k n}=s_{1 k}=s_{k 1}=0$.

We assert further that, for our case, $i=1$ and $j=n$ in Lemma 5 (ii). Assume, on the contrary, that $i>1$. As $j \geq i>1, u \in \mathcal{U}_{i}, F\left(e_{1} \otimes e_{1}\right) \in \mathcal{V}_{i}, v \in \mathcal{V}_{j}, G\left(e_{n} \otimes e_{n}\right) \in \mathcal{U}_{j}$, $e_{2} \otimes e_{2}+\cdots+e_{n-1} \otimes e_{n-1} \in \mathcal{T}_{2, n-1}$, and ψ is additive, we see that

$$
I=\psi(I)=u \otimes F\left(e_{1} \otimes e_{1}\right)+T\left(e_{2} \otimes e_{2}+\cdots+e_{n-1} \otimes e_{n-1}\right) S+G\left(e_{n} \otimes e_{n}\right) \otimes v
$$

It follows from $i>1$ that $E_{11}\left(u \otimes F\left(e_{1} \otimes e_{1}\right)\right) E_{11}=0$ and hence $E_{11} \psi(I) E_{11}=0$, which contradicts $\psi(I)=I$. So, we must have $i=1$ and $u \in\left\langle e_{1}\right\rangle$. Similarly, $j<n$ leads to a contradiction that $E_{n n}=E_{n n} \psi(I) E_{n n}=0$. Hence $j=n$ and $v \in\left\langle e_{n}\right\rangle$. Thus we may assume that $u=e_{1}$ and $v=e_{n}$. Furthermore, by Lemma $5, F$ and G are φ-quasilinear respectively on $\left\{e_{1} \otimes y: y \in\left\langle e_{2}, \ldots, e_{n}\right\rangle\right\}$ and $\left\{x \otimes e_{n}: x \in\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle\right\}$. It follows that ψ is φ-quasilinear on $\mathcal{T}_{2, n-1}=\left\{A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F}): a_{11}=a_{n n}=0\right\}$.

Thus, for any $A \in \mathcal{T}_{n}(\mathbb{F})$, because $A^{\prime}=A-a_{11} E_{11}-a_{n n} E_{n n} \in \mathcal{T}_{2, n-1}$ and ψ is additive, we have

$$
\begin{equation*}
\psi(A)=\psi\left(a_{11} E_{11}+A^{\prime}+a_{n n} E_{n n}\right)=e_{1} \otimes F\left(a_{11} E_{11}\right)+T A_{\varphi}^{\prime} S+G\left(a_{n n} E_{n n}\right) \otimes e_{n} \tag{3.1}
\end{equation*}
$$

To see the behavior of F and G on $\left\langle e_{1} \otimes e_{1}\right\rangle$ and $\left\langle e_{n} \otimes e_{n}\right\rangle$, respectively, we apply the fact $\psi(\mathbb{F} I) \subseteq \mathbb{F} I$. For any $\alpha \in \mathbb{F}$, By Eq. $(3.1), \psi(\alpha I)=e_{1} \otimes F\left(\alpha e_{1} \otimes e_{1}\right)+\varphi(\alpha) T\left(e_{2} \otimes e_{2}+\cdots+\right.$ $\left.e_{n-1} \otimes e_{n-1}\right) S+G\left(\alpha e_{n} \otimes e_{n}\right) \otimes e_{n}=\tau(\alpha) I$ for some $\tau(\alpha) \in \mathbb{F}$. It follows from Eq.(3.1) and $\psi(I)=I$ that $\tau(\alpha) e_{2} \otimes e_{2}=\left(e_{2} \otimes e_{2}\right) \psi(\alpha I)\left(e_{2} \otimes e_{2}\right)=\varphi(\alpha)\left(e_{2} \otimes e_{2}\right)$. Hence $\tau(\alpha)=\varphi(\alpha)$ and

$$
\begin{aligned}
& \varphi(\alpha) e_{1} \otimes e_{1}=e_{1} \otimes e_{1} \psi(\alpha I) \\
& =e_{1} \otimes F\left(\alpha e_{1} \otimes e_{1}\right)+\varphi(\alpha)\left(e_{1} \otimes e_{1}\right) T\left(\sum_{i=2}^{n-1} e_{i} \otimes e_{i}\right) S\left(\sum_{j=2}^{n} e_{j} \otimes e_{j}\right)+ \\
& \quad \\
& \quad\left\langle G\left(\alpha e_{n} \otimes e_{n}\right), e_{1}\right\rangle e_{1} \otimes e_{n} \\
& = \\
& \quad e_{1} \otimes F\left(\alpha e_{1} \otimes e_{1}\right)+\varphi(\alpha) e_{1} \otimes\left(\sum_{j=2}^{n} \sum_{i=2}^{n-1}\left\langle S e_{j}, e_{i}\right\rangle\left\langle T e_{i}, e_{1}\right\rangle e_{j}\right)+ \\
& \quad \\
& \quad\left\langle G\left(\alpha e_{n} \otimes e_{n}\right), e_{1}\right\rangle e_{1} \otimes e_{n} .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
F\left(\alpha e_{1} \otimes e_{1}\right)=\varphi(\alpha)\left[e_{1}-\sum_{j=2}^{n}\left(\sum_{i=2}^{n-1}\left\langle S e_{j}, e_{i}\right\rangle\left\langle T e_{i}, e_{1}\right\rangle\right) e_{j}\right]-\left\langle G\left(\alpha e_{n} \otimes e_{n}\right), e_{1}\right\rangle e_{n} \tag{3.2}
\end{equation*}
$$

Similarly, by considering $\psi(\alpha I) e_{n} \otimes e_{n}$, one gets

$$
\begin{equation*}
G\left(\alpha e_{n} \otimes e_{n}\right)=\varphi(\alpha)\left[e_{n}-\sum_{j=1}^{n-1}\left(\sum_{i=2}^{n-1}\left\langle S e_{n}, e_{i}\right\rangle\left\langle T e_{i}, e_{j}\right\rangle\right) e_{j}\right]-\left\langle e_{n}, F\left(\alpha e_{1} \otimes e_{1}\right)\right\rangle e_{1} . \tag{3.3}
\end{equation*}
$$

Note that we have chosen T and S so that

$$
T=\left[\begin{array}{ccc}
t_{11} & T_{12} & 0 \\
T_{21} & T_{22} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & S_{22} & S_{23} \\
0 & S_{32} & s_{n n}
\end{array}\right]
$$

Since ψ preserves rank-one matrices, $\psi\left(e_{1} \otimes\left(e_{1}+e_{j}\right)\right)=e_{1} \otimes F\left(e_{1} \otimes e_{1}\right)+T\left(e_{1} \otimes e_{j}\right) S$ and Eq.(3.2) together imply that $t_{j 1}=0$ for each $j=2, \ldots, n-2$. Hence $T_{21}=0$. Similarly, considering $\psi\left(\left(e_{j}+e_{n}\right) \otimes e_{n}\right)$ and applying Eq.(3.3) yields $S_{32}=0$. It follows that $T_{22} A_{22} S_{22} \in \mathcal{T}_{n-2}(\mathbb{F})$ for all $A_{22} \in \mathcal{T}_{n-2}(\mathbb{F})$ and $T_{22} S_{22}=I_{n-2}$. Therefore, both T_{22} and S_{22} are upper triangular matrices and $S_{22}=T_{22}^{-1}$. Consequently, $T, S \in \mathcal{T}_{n}(\mathbb{F})$. Let $U=\left[\begin{array}{ccc}t & 0 & 0 \\ 0 & T_{22} & 0 \\ 0 & 0 & s\end{array}\right]$, where $t=1$ if $t_{11}=0$; $t=t_{11}$ if $t_{11} \neq 0 ; s=1$ if $s_{n n}=0 ; s=s_{n n}^{-1}$ if $s_{n n} \neq 0$. Then $U \in \mathcal{T}_{n}(\mathbb{F})$ is invertible. Replacing ψ by $U^{-1} \psi U$ if necessary, we may assume that

$$
T=\left[\begin{array}{ccc}
1 & T_{12} & 0 \\
0 & I_{n-2} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & I_{n-2} & S_{23} \\
0 & 0 & 1
\end{array}\right]
$$

Without effecting the value of ψ, we may replace above T and S by

$$
T_{1}=\left[\begin{array}{ccc}
1 & T_{12} & -T_{12} S_{23} \\
0 & I_{n-2} & -S_{23} \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad S_{1}=\left[\begin{array}{ccc}
1 & -T_{12} & 0 \\
0 & I_{n-2} & S_{23} \\
0 & 0 & 1
\end{array}\right]
$$

As $S_{1}=T_{1}^{-1}$, replacing ψ by $T_{1}^{-1} \psi T_{1}$ if necessary, we may assume that

$$
\psi(A)=e_{1} \otimes F_{1}\left(a_{11} E_{11}\right)+\left(A-a_{11} E_{11}-a_{n n} E_{n n}\right)_{\varphi}+G_{1}\left(a_{n n} E_{n n}\right) \otimes e_{n}
$$

holds for every $A=\left[a_{i j}\right] \in \mathcal{I}_{n}(\mathbb{F})$. Again, $\psi(\alpha I)=\varphi(\alpha) I$ and thus F_{1} and G_{1} have the same representation as in Eqs.(3.2) and (3.3), respectively. It follows that there exist scalars $f_{2}, \ldots, f_{n-1} ; g_{2}, \ldots, g_{n-1} \in \mathbb{F}$ and additive functions f_{n}, g_{1} from \mathbb{F} into \mathbb{F} such that

$$
F_{1}\left(\alpha E_{11}\right)=\varphi(\alpha)\left(e_{1}+f_{2} e_{2}+\cdots+f_{n-1} e_{n-1}\right)+f_{n}(\alpha) e_{n}
$$

and

$$
G_{1}\left(\alpha E_{n n}\right)=g_{1}(\alpha) e_{1}+\varphi(\alpha)\left(g_{1} e_{2}+\cdots+g_{n-1} e_{n-1}+e_{n}\right)
$$

Therefore, for every $A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})$, we have

$$
\begin{aligned}
\psi(A)= & e_{1} \otimes\left(\varphi\left(a_{11}\right)\left(e_{1}+f_{2} e_{2}+\cdots+f_{n-1} e_{n-1}\right)+f_{n}\left(a_{11}\right) e_{n}\right)+ \\
& \left(A_{\varphi}-\varphi\left(a_{11}\right) e_{1} \otimes e_{1}-\varphi\left(a_{n n}\right) e_{n} \otimes e_{n}\right) \\
& +\left(g_{1}\left(a_{n n}\right) e_{1}+\varphi\left(a_{n n}\right)\left(g_{1} e_{2}+\cdots+g_{n-1} e_{n-1}+e_{n}\right)\right) \otimes e_{n} \\
= & e_{1} \otimes\left(\varphi\left(a_{11}\right)\left(f_{2} e_{2}+\cdots+f_{n-1} e_{n-1}\right)+f_{n}\left(a_{11}\right) e_{n}\right)+A_{\varphi}+ \\
& \left(g_{1}\left(a_{n n}\right) e_{1}+\varphi\left(a_{n n}\right)\left(g_{1} e_{2}+\cdots+g_{n-1} e_{n-1}\right)\right) \otimes e_{n} .
\end{aligned}
$$

Applying the fact $\psi(\alpha I)=\varphi(\alpha) I$, we get

$$
f_{2}=\cdots=f_{n-1}=g_{2}=\cdots=g_{n-1}=0 \text { and } f_{n}(\alpha)+g_{1}(\alpha)=0
$$

for all $\alpha \in \mathbb{F}$. Let $f=f_{n}=-g_{1}$. It follows that

$$
\psi(A)=A_{\varphi}+f\left(a_{11}-a_{n n}\right) e_{1} \otimes e_{n}
$$

this completes the proof of Claim 3 and thus the proof of Theorem 1.
A closer look at the proof of Theorem 1 reveals the following corollary.
Corollary 6 Let \mathbb{F} be a field, $n \geq 3, \phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ be an additive injection. If ϕ satisfies $A \in \Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{n-1} \Rightarrow \operatorname{mr}(\phi(A))=\operatorname{mr}(A)$, then ϕ has the same form as that in Theorem 1.

It is well known that every nonzero homomorphism on \mathbb{R} is the identity. Thus the following corollary is immediate.

Corollary 7 Let $n \geq 3, \phi: \mathcal{T}_{n}(\mathbb{R}) \rightarrow \mathcal{T}_{n}(\mathbb{R})$ be an additive injection satisfying $\operatorname{mr}(\phi(A))=$ $\operatorname{mr}(A)$ for any $A \in \Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{n-1}$. Then there exist a nonsingular matrix $T \in \mathcal{T}_{n}(\mathbb{R})$, a nonzero real number α, an additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an additive function $h: \mathcal{T}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ such that either

$$
\phi(A)=\alpha T A T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n}+h(A) I \quad \text { for all } \quad A \in \mathcal{T}_{n}(\mathbb{R})
$$

or

$$
\phi(A)=\alpha T A^{f} T^{-1}+f\left(a_{11}-a_{n n}\right) E_{1 n}+h(A) I \quad \text { for all } \quad A \in \mathcal{T}_{n}(\mathbb{R})
$$

4. Related results and unsolved problem

It is easy to check that the summand $f\left(a_{11}-a_{n n}\right) E_{1 n}$ does not occur and the functional h is linear provided that ϕ is linear in Theorem 1. In fact, we have little more.

Theorem 8 Let \mathbb{F} be a field of characteristic $0, \tau$ be a nonzero homomorphism of $\mathbb{F}, n \geq 3$, and $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ be an injective τ-quasilinear mapping. Then ϕ preserves minimal rank if and only if there exists an invertible matrix $T \in \mathcal{T}_{n}(\mathbb{F})$, a nonzero scalar $\alpha \in \mathbb{F}$, a τ-quasilinear mapping $h: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ such that either

$$
\phi(A)=\alpha T A_{\tau} T^{-1}+h(A) I \quad \text { for all } \quad A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})
$$

or

$$
\phi(A)=\alpha T A_{\tau}^{f} T^{-1}+h(A) I \quad \text { for all } \quad A=\left[a_{i j}\right] \in \mathcal{T}_{n}(\mathbb{F})
$$

Proof If ϕ is injective τ-quasilinear and preserves minimal rank, then ϕ takes the form stated in Theorem 1 with $\varphi=\tau$ and f, h being τ-quasilinear. Thus there is a scalar $c \in \mathbb{F}$ such that $f(\lambda)=c \tau(\lambda)$. It follows that either

$$
\phi(A)=\alpha T A_{\tau} T^{-1}+c\left(\tau\left(a_{11}\right)-\tau\left(a_{n n}\right)\right) E_{1 n}+h(A) I
$$

or

$$
\phi(A)=\alpha T A_{\tau}^{f} T^{-1}+c\left(\tau\left(a_{11}\right)-\tau\left(a_{n n}\right)\right) E_{1 n}+h(A) I .
$$

$\operatorname{But}\left(c\left(\tau\left(a_{11}\right)-\tau\left(a_{n n}\right)\right) E_{1 n}\right)^{f}=c\left(\tau\left(a_{11}\right)-\tau\left(a_{n n}\right)\right) E_{1 n}$ and

$$
A_{\tau}+c\left(\tau\left(a_{11}\right)-\tau\left(a_{n n}\right)\right) E_{1 n}=S A_{\tau} S^{-1}
$$

for all $A \in \mathcal{T}_{n}(\mathbb{F})$ with $S=I-c E_{1 n}$. Hence ϕ has the form as desired.

We also have a direct proof of Theorem 8 without using Theorem 1. In fact, by a similar argument as that in the proof of Theorem 1, we get, for some τ-quasilinear functional $h, \psi(A)=$ $\phi(A)-h(A) I$ preserves rank-one matrices as well as the minimal rank of matrices. Then applying the following Lemma 9 completes the proof immediately.

The lemma below may also be regarded as a generalization of $\left[10\right.$, Theorem 3.1]. Let $\mathcal{M}_{m n}(\mathbb{F})$ be the vector space of all $m \times n$ matrices over \mathbb{F}.

Lemma 9 Let \mathcal{L} be a subspace of $\mathcal{M}_{m n}(\mathbb{F})$ with \mathbb{F} being an arbitrary field and $\tau: \mathbb{F} \rightarrow \mathbb{F}$ being a nonzero homomorphism. Assume that \mathcal{L} satisfies the following conditions:
(i) \mathcal{L} contains $x_{0} \otimes \mathbb{F}^{n}$ for some $x_{0} \in \mathbb{F}^{m}$;
(ii) \mathcal{L} contains $\mathbb{F}^{m} \otimes y_{0}$ for some $y_{0} \in \mathbb{F}^{n}$;
(iii) \mathcal{L} is spanned by its rank-one matrices.

Let $\psi: \mathcal{L} \rightarrow \mathcal{M}_{k l}(\mathbb{F})$ be a τ-quasilinear mapping preserving rank-one matrices. Then either
(a) $m \leq k, n \leq l$, and there exist a $k \times m$ matrix T of rank m and an $n \times l$ matrix S of rank n such that

$$
\psi(A)=T A_{\tau} S \quad \text { for every } \quad A \in \mathcal{L}
$$

or
(b) $m \leq l$, $n \leq k$, and there exist a $k \times n$ matrix T of rank n and an $m \times l$ matrix S of rank m such that

$$
\psi(A)=T A_{\tau}^{\mathrm{T}} S \quad \text { for every } \quad A \in \mathcal{L}
$$

or
(c) $\psi(\mathcal{L})$ is contained in a subspace consisting of some rank-one matrices.

Proof The range of ψ on $x_{0} \otimes \mathbb{F}^{n}$ is a $\tau(\mathbb{F})$-vector space of rank-one matrices. So $\psi\left(x_{0} \otimes \mathbb{F}^{n}\right)=$ $u_{0} \otimes W$ or $V \otimes v_{0}$ for some $\tau(\mathbb{F})$-subspace W of \mathbb{F}^{l} and some vector $u_{0} \in \mathbb{F}^{k}$ or for some $\tau(\mathbb{F})$ subspace V of \mathbb{F}^{k} and some vector $v_{0} \in \mathbb{F}^{l}$. Replacing ψ by the mapping $\psi_{1}(A)=\psi(A)^{\mathrm{T}}$ if necessary, we may assume without loss of generality that $\psi\left(x_{0} \otimes \mathbb{F}^{n}\right)=u_{0} \otimes W$. Because the kernel of ψ contains no matrices of rank one, we see that $\operatorname{dim} W=n$. Consequently, $l \geq n$ and $\psi\left(x_{0} \otimes y\right)=u_{0} \otimes g(y)$ for some injective τ-quasilinear transformation $g: \mathbb{F}^{n} \rightarrow \mathbb{F}^{l}$, i.e., $\psi\left(x_{0} \otimes y\right)=u_{0} \otimes S^{\mathrm{T}} y_{\tau}$ for an $n \times l$ matrix S of rank n.

Similarly, $\psi\left(\mathbb{F}^{m} \otimes y_{0}\right)$ is a $\tau(\mathbb{F})$-vector space of rank-one matrices and hence takes one of the two forms $\psi\left(\mathbb{F}^{m} \otimes y_{0}\right) \subseteq u_{1} \otimes \mathbb{F}^{l}$ and $\psi\left(\mathbb{F}^{m} \otimes y_{0}\right) \subseteq \mathbb{F}^{k} \otimes v_{1}$. We consider these two cases, respectively.

Case $1 \psi\left(\mathbb{F}^{m} \otimes y_{0}\right) \subseteq u_{1} \otimes \mathbb{F}^{l}$. In this case, there exists an injective τ-quasilinear transformation $h: \mathbb{F}^{m} \rightarrow \mathbb{F}^{l}$ such that $\psi\left(x \otimes y_{0}\right)=u_{1} \otimes h(x)$. As $\psi\left(x_{0} \otimes y_{0}\right)=u_{0} \otimes w=u_{1} \otimes v$ for some nonzero vectors w and v, then u_{0} and u_{1} are linearly dependent. Hence we may assume that $u_{1}=u_{0}$. Assume that there exist nonzero vectors x, y, u, v such that $\psi(x \otimes y)=u \otimes v$ and u is linearly independent of u_{0}. Let $A_{1}=x \otimes y, A_{2}=\left(x+x_{0}\right) \otimes y, A_{3}=x \otimes\left(y+y_{0}\right)$ and $A_{4}=\left(x+x_{0}\right) \otimes\left(y+y_{0}\right)$, and let $B_{j}=\psi\left(A_{j}\right), 1 \leq j \leq 4$. Then, as ψ is additive, $B_{1}=u \otimes v, B_{2}=u \otimes v+u_{0} \otimes g(y)$, $B_{3}=u \otimes v+u_{0} \otimes h(x)$ and $B_{4}=u \otimes v+u_{0} \otimes\left(h(x)+g(y)+g\left(y_{0}\right)\right)$. Since u and u_{0} are linearly
independent and B_{j} is of rank one, $1 \leq j \leq 4$, we conclude that $v=\alpha g(y)=\beta h(x)=\gamma g\left(y_{0}\right)$ for some nonzero scalars α, β, γ. Particularly, we get $\alpha S^{\mathrm{T}} y_{\tau}=\gamma S^{\mathrm{T}}\left(y_{0}\right)_{\tau}$. As S^{T} is injective as a transformation, it follows that $\alpha y_{\tau}=\gamma\left(y_{0}\right)_{\tau}$ and hence y is linearly dependent on y_{0} as τ is injective. However, this implies that $u \otimes v=\psi(x \otimes y)=\psi\left(\delta x \otimes y_{0}\right)=\tau(\delta) u_{0} \otimes h(x)$, contradicting the assumption that u and u_{0} are linearly independent. Hence we must have $\psi(x \otimes y) \in u_{0} \otimes \mathbb{F}^{l}$ holds for every rank-one matrix $x \otimes y \in \mathcal{L}$. Since \mathcal{L} is spanned by its rank-one elements, we see that $\psi(\mathcal{L}) \subseteq u_{0} \otimes \mathbb{F}^{l}$ and ψ has the form (c).

Case $2 \psi\left(\mathbb{F}^{m} \otimes y_{0}\right) \subseteq \mathbb{F}^{k} \otimes v_{1}$. As before, we have that $\psi\left(x \otimes y_{0}\right)=T x_{\tau} \otimes v_{0}$, for a $k \times m$ matrix T of rank m, i.e., an injective linear transformation T from \mathbb{F}^{m} into \mathbb{F}^{k}. Note that $u_{0} \otimes S^{\mathrm{T}}\left(y_{0}\right)_{\tau}=\psi\left(x_{0} \otimes y_{0}\right)=T\left(x_{0}\right)_{\tau} \otimes v_{0}$. After absorbing a constant in u_{0} and v_{0} if necessary, we may assume that $T\left(x_{0}\right)_{\tau}=u_{0}$ and $S^{\mathrm{T}}\left(y_{0}\right)_{\tau}=v_{0}$. Now consider an arbitrary rank-one matrix $x \otimes y \in \mathcal{L}$ and let $\psi(x \otimes y)=u \otimes v$. Let A_{j} and $B_{j}=\psi\left(A_{j}\right)$ be rank-one matrices as in Case $1, j=1,2,3,4$. Then $B_{1}=u \otimes v, B_{2}=u \otimes v+u_{0} \otimes S^{\mathrm{T}} y_{\tau}, B_{3}=u \otimes v+T x_{\tau} \otimes v_{0}$ and $B_{4}=u \otimes v+u_{0} \otimes S^{\mathrm{T}} y_{\tau}+T x_{\tau} \otimes v_{0}+u_{0} \otimes v_{0}$. If $u_{0}, T x_{\tau}$ are linearly independent and $v_{0}, S^{\mathrm{T}} y_{\tau}$ are linearly independent, then it is easily checked that $\psi(x \otimes y)=T x_{\tau} \otimes S^{\mathrm{T}} y_{\tau}$ (also, [10, Lemma 3.1]). If $T x_{\tau}=c u_{0}=c T\left(x_{0}\right)_{\tau}$ for a scalar c, then $x=\alpha x_{0}$ for some scalar α with $\tau(\alpha)=c$. In this case we also have $\psi(x \otimes y)=\psi\left(\alpha x_{0} \otimes y\right)=c u_{0} \otimes S^{\mathrm{T}} y_{\tau}=T x_{\tau} \otimes S^{\mathrm{T}} y_{\tau}$. A similar argument proves the same conclusion when $S^{\mathrm{T}} y_{\tau}$ and v_{0} are linearly dependent. Therefore, $\psi(x \otimes y)=T(x \otimes y)_{\tau} S$ for every $x \otimes y \in \mathcal{L}$. By the assumption (iii) we conclude that $\psi(A)=T A_{\tau} S$ for every $A \in \mathcal{L}$.

The situation for $n=2$ is quite different. We give an example which shows that a minimal rank preserving additive mapping $\phi: \mathcal{T}_{2}(\mathbb{F}) \rightarrow \mathcal{T}_{2}(\mathbb{F})$ may have the form not as that stated in Theorem 1.

Example 10 Let $\mathbb{F}=\mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ be an injective additive mapping and be not of a scalar multiple of any homomorphism of \mathbb{C} (i.e., there exist no constant $a \in \mathbb{C}$ and no homomorphism τ of \mathbb{C} so that $g=a \tau)$. Define $\phi: \mathcal{T}_{2}(\mathbb{C}) \rightarrow \mathcal{T}_{2}(\mathbb{C})$ by

$$
\phi\left(\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right]\right)=\left[\begin{array}{cc}
a_{11} & g\left(a_{12}\right) \\
0 & a_{22}
\end{array}\right] .
$$

It is clear that ϕ is additive, injective and ϕ preserves the minimal rank. However, ϕ is not of the form stated in Theorem 1. Actually, if ϕ is of the form as in Theorem 1, we may assume, without loss of generality, that $\phi(A)=\alpha T A_{\varphi} T^{-1}+f\left(a_{11}-a_{22}\right) E_{12}+h(A) I$ for all $A=\left[a_{i j}\right] \in \mathcal{T}_{2}(\mathbb{C})$ (Here, α, T, φ, f and h are defined as in Theorem 1). Write

$$
T=\left[\begin{array}{cc}
t_{11} & t_{12} \\
0 & t_{22}
\end{array}\right]
$$

A simple computation shows that $g\left(a_{12}\right)=\frac{\alpha t_{11}}{t_{22}} \varphi\left(a_{12}\right)$ for every $a_{12} \in \mathbb{C}$. As $t=\frac{\alpha t_{11}}{t_{22}}$ is a constant, we see that $g=t \varphi$ is a scalar multiple of the homomorphism φ, a contradiction.

There exist numerous injective additive mappings $g: \mathbb{C} \rightarrow \mathbb{C}$ that are not of the form $t \varphi$, i.e., a scalar multiple of a homomorphism of \mathbb{C}. To see this, we regard \mathbb{C} as an infinite dimensional
linear space over the rational number field \mathbb{Q}. Take a Hamel basis $\left\{\alpha_{\lambda}\right\}_{\lambda \in \Lambda}$ of \mathbb{C}. Then for any $z \in \mathbb{C}, z=\sum_{i=1}^{n} \xi_{i} \alpha_{i}$ for some $\xi_{i} \in \mathbb{Q}$ and $\alpha_{i} \in\left\{\alpha_{\lambda}\right\}_{\lambda \in \Lambda}$. Let $\Omega_{1}=\left\{\omega_{\lambda}: \lambda \in \Lambda\right\}$ and $\Omega_{2}=\left\{\omega_{\lambda}^{\prime}: \lambda \in \Lambda\right\}$ be arbitrary two Hamel bases of the \mathbb{Q}-linear space \mathbb{C} and $g: \mathbb{C} \rightarrow \mathbb{C}$ be a \mathbb{Q}-linear transformation defined by

$$
g\left(\sum_{i=1}^{n} \xi_{i} \omega_{i}\right)=\sum_{i=1}^{n} \xi_{i} \omega_{i}^{\prime}, z=\sum_{i=1}^{n} \xi_{i} \omega_{i} \in \mathbb{C}\left(\xi_{i} \in \mathbb{Q}\right)
$$

Then g is an additive injective mapping on the field \mathbb{C} but in general is not a scalar multiple of a homomorphism. For instance, let $\omega_{1}=e$ (here, as usual, $\left.e=\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}\right), \omega_{2}=e^{2}$, $\omega_{3}=e^{3}, \omega_{4}=\pi, \omega_{5}=\pi^{2}, \omega_{6}=\pi^{3}, \omega_{1}^{\prime}=\omega_{1}, \omega_{2}^{\prime}=\omega_{2}, \omega_{3}^{\prime}=\omega_{6}, \omega_{4}^{\prime}=\omega_{4}, \omega_{5}^{\prime}=\omega_{5}, \omega_{6}^{\prime}=\omega_{3}$. Take two Hamel bases Ω_{1} and Ω_{2} such that $\omega_{i} \in \Omega_{1}$ and $\omega_{i}^{\prime} \in \Omega_{2}$. Let g be any bijective mapping from Ω_{1} onto Ω_{2} satisfying $g\left(\omega_{i}\right)=\omega_{i}^{\prime}, i=1,2, \ldots, 6$. g determines a bijective additive mapping from \mathbb{C} onto itself. Then $g\left(\omega_{1} \omega_{2}\right)=g\left(\omega_{3}\right)=\pi^{3}$ and $g\left(\omega_{4} \omega_{5}\right)=g\left(\omega_{6}\right)=e^{3}$. If $g=a \tau$ for some nonzero scalar a and homomorphism τ, it follows that $g\left(\omega_{1} \omega_{2}\right)=a \tau\left(\omega_{1} \omega_{2}\right)=a \tau\left(\omega_{1}\right) \tau\left(\omega_{2}\right)=$ $\frac{1}{a} a \tau\left(\omega_{1}\right) a \tau\left(\omega_{2}\right)=\frac{1}{a} g\left(\omega_{1}\right) g\left(\omega_{2}\right)=\frac{1}{a} \omega_{1} \omega_{2}=\frac{e^{3}}{a}$, and similarly, $g\left(\omega_{4} \omega_{5}\right)=\frac{1}{a} \omega_{4} \omega_{5}=\frac{\pi^{3}}{a}$. This leads to $\pi^{3}=\frac{e^{3}}{a}$ and $e^{3}=\frac{\pi^{3}}{a}$, a contradiction.

In fact, for $n=2$, we have
Theorem 11 Let \mathbb{F} be a field of characteristic 0 and $\phi: \mathcal{T}_{2}(\mathbb{F}) \rightarrow \mathcal{T}_{2}(\mathbb{F})$ be an additive bijective mapping. Then ϕ preserves the minimal rank if and only if $\phi(\mathbb{F} I)=\mathbb{F} I$.

Proof Assume that $\phi(\mathbb{F} I)=\mathbb{F} I$. If $A \in \mathcal{T}_{2}(\mathbb{F})$ and $\operatorname{mr}(A)=0$, then there exists a $\lambda \in \mathbb{F}$ such that $A=\lambda I$. Thus $\phi(A)=\phi(\lambda I)=\delta I$ for some $\delta \in \mathbb{F}$, which implies that $\operatorname{mr}(\phi(A))=0$. For any $A \in \mathcal{T}_{2}(\mathbb{F})$ with $\operatorname{mr}(A) \neq 0$, we have $\operatorname{mr}(A)=1$. If $\operatorname{mr}(\phi(A))=0$, then $\phi(A)=\delta I$ for some scalar δ. As $\phi(\mathbb{F} I)=\mathbb{F} I$, there exists a λ such that $\phi(\lambda I)=\delta I=\phi(A)$, which contradicts the injectivity of ϕ. So we must have $\operatorname{mr}(\phi(A))=1$ and hence ϕ preserves the minimal rank. Conversely, if ϕ preserves the minimal rank, then ϕ preserves the minimal rank zero, which implies that $\phi(\mathbb{F} I) \subseteq \mathbb{F} I$. If the equality does not hold, then there is a δ such that $\delta I \notin \phi(\mathbb{F} I)$. As ϕ is surjective, $\delta I=\phi(A)$ for some $A \notin \mathbb{F} I$, this leads to a contradiction that $1=\operatorname{mr}(A)=\operatorname{mr}(\phi(A))=0$. So, $\phi(\mathbb{F} I)=\mathbb{F} I$.

Remark 12 Let \mathbb{F} be a field of characteristic 0 and $n \geq 2$. It is obvious that there is no additive mapping $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ satisfying $\operatorname{mr}(A)=\operatorname{rank}(\phi(A))$ for all $A \in \mathcal{T}_{n}(\mathbb{F})$. Indeed, if there exists an additive mapping ϕ satisfying $\operatorname{mr}(A)=\operatorname{rank}(\phi(A))$ for all $A \in \mathcal{T}_{n}(\mathbb{F})$, then for any rank-one matrix A we have $\phi(A) \neq 0$, or else, $0=\operatorname{rank}(\phi(A))=\operatorname{mr}(A)$, which leads to a contradiction that $A=\alpha I$ for some scalar α. Thus $\operatorname{rank}(\phi(A)) \geq 1$. On the other hand, $\operatorname{rank}(\phi(A))=\operatorname{mr}(A) \leq \operatorname{rank}(A)=1$. So ϕ preserves rank-one matrices. By Lemma 6 we know that $0=\operatorname{mr}(I)=\operatorname{rank}(\phi(I)) \neq 0$, a contradiction. It is also obvious that there is no additive mapping $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ satisfying $\operatorname{rank}(A)=\operatorname{mr}(\phi(A))$ for all $A \in \mathcal{T}_{n}(\mathbb{F})$. In fact, if such ϕ exists, then we get $n=\operatorname{rank}(I)=\operatorname{mr}(\phi(I)) \leq n-1$, a contradiction.

Before drawing conclusions, we raise a question that is still open. Let \mathbb{F} be an algebraically closed field of characteristic 0 . The following problem appeared in [1]: How to characterize the
linear mappings from $\mathcal{M}_{n}(\mathbb{F})$ into itself preserving the relationship of having same minimal rank (i.e., $\operatorname{mr}(A)=\operatorname{mr}(B) \Rightarrow \operatorname{mr}(\phi(A))=\operatorname{mr}(\phi(B)))$? This problem is equivalent to the problem of characterizing the linear mappings ψ satisfying that, for each $0 \leq i \leq n-1$, there is a $0 \leq j \leq n-1$ such that $\phi\left(\Gamma_{i}\right) \subset \Gamma_{j}$. Concerning upper triangular matrices, the following problem is also natural and interesting.

Problem 13 Let \mathbb{F} be a field of characteristic 0 and $n \geq 2$. How to characterize the additive (or linear) mappings $\phi: \mathcal{T}_{n}(\mathbb{F}) \rightarrow \mathcal{T}_{n}(\mathbb{F})$ which satisfy that, for any $A, B \in \mathcal{T}_{n}(\mathbb{F}), \operatorname{mr}(\phi(A))=$ $\operatorname{mr}(\phi(B))$ whenever $\operatorname{mr}(A)=\operatorname{mr}(B)$?

Acknowledgement The authors would like to thank the referee's helpful comments which improved this paper.

References

[1] SO W. Linear operators preserving the minimal rank [J]. Linear Algebra Appl., 1999, 302/303: 461-468.
[2] YANG Qiuwei, LIU Jike. Structural damage detection with minimal update method [J]. Journal of Vbtation and Shock (Shanghai), 2008, 27(4): 7-9.
[3] ZHU Zi, CAO Shen. Damage identification of truss structures using a minimum rank method [J]. Journal of Hebei Institute of Architectural Science and Technology, 2006, 23(3): 7-10.
[4] ZHU Zi, DONG Cong. Structural damage identification based on minimal rank method [J]. Journal of Architecture and Civil Engineering (Xi'an), 2006, 23(3): 37-40.
[5] ZHANG Guoshan, ZHANG Qingling, ZHAO Zhiwu. The minimum rank of the matrix pencil $A+B K C$ and its applications [J]. Control and Decision (Shenyang), 1998, 13(S): 508-512.
[6] ZHANG Xiuling, CUI Hongyan, HOU Jinchuan. Jordan semi-triple mappings preserving rank and minimal rank [C]. Proceedings of The Third International Workshop on Matrix Analysis, 2009, 3: 273-276.
[7] PEASE M C. Methods of Matrix Algebra [M]. New York: Academic Press, 1965, 211-212.
[8] DE OLIVEIRA G N, MARQUES DE SÀ E, DIAS DA SILVA J A. On the eigenvalues of the matrix $A+$ $X B X^{-1}[J]$. Linear and Multilinear Algebra, 1977/78, 2: 119-128.
[9] ZHANG Zhixu, WU Haiyan, ZHANG Ling. The minimal rank of matrices and it's applications [J]. Journal of Jiamusi University(Natural Science Edition), 2006, 24(1): 122-124.
[10] BELL J, SOUROUR A R. Additive rank-one preserving mappings on triangular matrix algebras [J]. Linear Algebra Appl., 2000, 312(1-3): 13-33.
[11] CHOOI W L, LIM M H. Additive rank-one preservers on block triangular matrix spaces [J]. Linear Algebra Appl., 2006, 416(2-3): 588-607.
[12] CUI Jianlian, HOU Jinchuan, LI Bingren. Linear preservers on upper triangular operator matrix algebras [J]. Linear Algebra Appl., 2001, 336: 29-50.

[^0]: Received June 9, 2010; Accepted October 3, 2010
 Supported by the National Natural Science Foundation of China (Grant Nos. 10771157; 10871111) and Research Grant to Returned Scholars of Shanxi Province (Grant No. 2007-38).

 * Corresponding author

 E-mail address: guoyu3@yahoo.com.cn (Y. GUO)

