A Note on the Exponential Diophantine Equation $\left(a^{m}-1\right)\left(b^{n}-1\right)=x^{2}$

Min TANG
Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China

Abstract

Let a and b be fixed positive integers. In this paper, using some elementary methods, we study the diophantine equation $\left(a^{m}-1\right)\left(b^{n}-1\right)=x^{2}$. For example, we prove that if $a \equiv 2$ $(\bmod 6), b \equiv 3(\bmod 12)$, then $\left(a^{n}-1\right)\left(b^{m}-1\right)=x^{2}$ has no solutions in positive integers n, m and x.

Keywords Pell's equation; congruences.
MR(2010) Subject Classification 11D61
Chinese Library Classification O156.1

1. Introduction

Let a and b be fixed positive integers. There are many works concerning the diophantine equation $\left(a^{m}-1\right)\left(b^{n}-1\right)=x^{2}$. In [5], Szalay proved that the diophantine equation $\left(2^{n}-1\right)\left(3^{n}-\right.$ $1)=x^{2}$ has no solutions in positive integers n and $x,\left(2^{n}-1\right)\left(5^{n}-1\right)=x^{2}$ has the only solution $n=1, x=2$ in positive integers n and x, and $\left(2^{n}-1\right)\left(\left(2^{k}\right)^{n}-1\right)=x^{2}$ has the only solution $k=2, n=3, x=21$ in positive integers $k \geq 2, n$ and x. In 2000, Hajdu and Szalay [1] proved the equation $\left(2^{n}-1\right)\left(6^{n}-1\right)=x^{2}$ has no solutions in positive integers (n, x), while the only solutions to the equation $\left(a^{n}-1\right)\left(a^{k n}-1\right)=x^{2}$, with $a>1, k>1, k n>2$ are $(a, n, k, x)=$ $(2,3,2,21),(3,1,5,22),(7,1,4,120)$. In 2000, Walsh [6] proved that $\left(2^{n}-1\right)\left(3^{m}-1\right)=x^{2}$ has no solutions in positive integers n, m and x.

Following these works, Luca and Walsh [4] showed that the diophantine equation $\left(a^{k}-1\right)\left(b^{k}-\right.$ $1)=x^{n}$ has finite solutions in positive integers (k, x, n) with $n>1$. Moreover, they showed how one can determine all integers $(k, x, 2)$ of the equation above with $k \geq 1$, for almost all pairs (a, b) with $2 \leq b<a \leq 100$. In 2009, Le [3] proved that if $3 \mid b$, then $\left(2^{n}-1\right)\left(b^{n}-1\right)=x^{2}$ has no solutions in positive integers n and x. Recently, Li and Lzalay [2] proved that if $a \equiv 2(\bmod 6)$ and $b \equiv 0(\bmod 3)$, then the equation $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$ has no positive integer solution (n, x).

In this paper, using some elementary methods, we obtain the following results:
Theorem 1 If $a \equiv 0(\bmod 2), b \equiv 15(\bmod 20)$, then the equation

$$
\begin{equation*}
\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2} \tag{1}
\end{equation*}
$$

Received July, 10, 2010; Accepted November 20, 2010
Supported by the National Natural Science Foundation of China (Grant No. 10901002).
E-mail address: tmzzz2000@163.com
has no solutions in positive integers n and x.
Theorem 2 If $a \equiv 2(\bmod 6), b \equiv 3(\bmod 12)$, then the equation

$$
\begin{equation*}
\left(a^{n}-1\right)\left(b^{m}-1\right)=x^{2} \tag{2}
\end{equation*}
$$

has no solutions in positive integers n, m and x.

2. Proofs of Theorems

Let d be a positive integer which is not a square. It is well known that the Pell's equation $x^{2}-d y^{2}=1$ has infinitely many positive solutions. If $\left(x_{1}, y_{1}\right)$ is the smallest positive integer solution, then for $n=1,2,3, \ldots$, define $x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$. The pairs $\left(x_{n}, y_{n}\right)$ are all positive solutions of the Pell's equation. Moreover, the $x_{n}{ }^{\prime} s$ and $y_{n}{ }^{\prime} s$ satisfy the following recurrence relations

$$
\begin{equation*}
x_{2 n}=2 x_{n}^{2}-1, \quad x_{n+2}=2 x_{1} x_{n+1}-x_{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2 n}=2 x_{n} y_{n}, \quad y_{n+2}=2 x_{1} y_{n+1}-y_{n} . \tag{4}
\end{equation*}
$$

Proof of Theorem 1 If Eq.(1) has a solution (n, x), then we have

$$
\begin{equation*}
a^{n}-1=d y^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{n}-1=d z^{2} \tag{6}
\end{equation*}
$$

where d, y and z are positive integers satisfying $d y z=x$, and d is square-free. Note that $a \equiv 0$ $(\bmod 2)$. By (5) we know that d is odd. Thus $b^{n}-1$ is properly divisible by an even power of 2. Hence $b^{n}-1 \equiv 3^{n}-1 \equiv 0(\bmod 4)$, and we know that n must be even.

Let $\left(x_{1}, y_{1}\right)$ denote the smallest positive integer solution, and $x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$ for $n \geq 1$. By (4), if n is even, then $y_{n}=2 x_{n / 2} y_{n / 2}$ is even. Since $\left(x_{n}, y_{n}\right)=1(n \geq 1)$, we have x_{n} is odd for all even values of n. Hence

$$
\begin{equation*}
a^{n / 2}+y \sqrt{d}=x_{r}+y_{r} \sqrt{d} \tag{7}
\end{equation*}
$$

holds for some odd positive integer r. By (3), we know that x_{n} is even for all odd positive integers n. Thus

$$
\begin{equation*}
b^{n / 2}+y \sqrt{d}=x_{s}+y_{s} \sqrt{d} \tag{8}
\end{equation*}
$$

holds for some positive even integers. Let $s=2 t$. Then by (3) we have $b^{m / 2}=x_{2 t}=2 x_{t}{ }^{2}-1 \equiv 0$ $(\bmod 5)$. It follows that $x_{t}^{2} \equiv 3(\bmod 5)$, which is impossible.

This completes the proof of Theorem 1.
Proof of Theorem 2 If Eq.(2) has a solution (n, m, x), then we have

$$
\begin{equation*}
a^{n}-1=d y^{2}, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{m}-1=d z^{2} \tag{10}
\end{equation*}
$$

where d, y and z are positive integers satisfying $d y z=x$, and d is square-free. Since $b \equiv 3$ $(\bmod 12)$, by (10) we have $d z^{2} \equiv 2(\bmod 3)$, thus $3 \nmid d, 3 \nmid z$, hence $z^{2} \equiv 1(\bmod 3), d \equiv 2$ $(\bmod 3)$.

If $3 \nmid y$, then $y^{2} \equiv 1 \bmod 3, a^{n}=d y^{2}+1 \equiv 0(\bmod 3)$, which is impossible. Thus $3 \mid y$, $a^{n} \equiv 2^{n} \equiv 1(\bmod 3)$, which implies that n must be even.

By (9), we know that d is odd, thus $b^{m}-1$ is properly divisible by an even power of 2 . Hence $b^{m}-1 \equiv 3^{m}-1 \equiv 0(\bmod 4)$, and we know that m must be even.

Let $\left(x_{1}, y_{1}\right)$ denote the smallest positive integer solution, and $x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$ for $n \geq 1$. By (4), if n is even, then $y_{n}=2 x_{n / 2} y_{n / 2}$ is even. Noting that $\left(x_{n}, y_{n}\right)=1(n \geq 1)$, we have x_{n} is odd for all even values of n. Hence

$$
\begin{equation*}
a^{n / 2}+y \sqrt{d}=x_{r}+y_{r} \sqrt{d} \tag{11}
\end{equation*}
$$

holds for some odd positive integer r. By (3), we know that x_{n} is even for all odd positive integers n, thus

$$
\begin{equation*}
b^{m / 2}+y \sqrt{d}=x_{s}+y_{s} \sqrt{d} \tag{12}
\end{equation*}
$$

holds for some positive even integers. Let $s=2 t$. Then by (3) we have $b^{m / 2}=x_{2 t}=2 x_{t}{ }^{2}-1 \equiv 0$ $(\bmod 3)$. It follows that $x_{t}^{2} \equiv 2(\bmod 3)$, which is impossible.

This completes the proof of Theorem 2.

References

[1] HAJDU L, SZALAY L. On the Diophantine equations $\left(2^{n}-1\right)\left(6^{n}-1\right)=x^{2}$ and $\left(a^{n}-1\right)\left(a^{k n}-1\right)=x^{2}$ [J]. Period. Math. Hungar., 2000, 40(2): 141-145.
[2] LI Lan, SZALAY L. On the exponential diophantine $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$ [J]. Publ. Math. Debrecen, 2010, 77 (3-4): 465-470.
[3] LE Maohua. A note on the exponential Diophantine equation $\left(2^{n}-1\right)\left(b^{n}-1\right)=x^{2}$ [J]. Publ. Math. Debrecen, 2009, 74(3-4): 401-403.
[4] LUCA F, WALSH P G. The product of like-indexed terms in binary recurrences [J]. J. Number Theory, 2002, 96(1): 152-173.
[5] SZALAY L. On the diophantine equations $\left(2^{n}-1\right)\left(3^{n}-1\right)=x^{2}$ [J]. Publ. Math. Debrecen, 2000, 57(1-2): 1-9.
[6] WALSH P G. On Diophantine equations of the form $\left(x^{n}-1\right)\left(y^{m}-1\right)=z^{2}$ [J]. Tatra Mt. Math. Publ., 2000, 20: 87-89.

