A Note on the Exponential Diophantine Equation

\[(a^m - 1)(b^n - 1) = x^2\]

Min TANG
Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China

Abstract Let \(a\) and \(b\) be fixed positive integers. In this paper, using some elementary methods, we study the diophantine equation \((a^m - 1)(b^n - 1) = x^2\). For example, we prove that if \(a \equiv 2 \pmod{6}\), \(b \equiv 3 \pmod{12}\), then \((a^n - 1)(b^m - 1) = x^2\) has no solutions in positive integers \(n, m\) and \(x\).

Keywords Pell’s equation; congruences.

MR(2010) Subject Classification 11D61
Chinese Library Classification O156.1

1. Introduction

Let \(a\) and \(b\) be fixed positive integers. There are many works concerning the diophantine equation \((a^m - 1)(b^n - 1) = x^2\). In [5], Szalay proved that the diophantine equation \((2^n - 1)(3^n - 1) = x^2\) has no solutions in positive integers \(n\) and \(x\), \((2^n - 1)(5^n - 1) = x^2\) has the only solution \(n = 1, x = 2\) in positive integers \(n\) and \(x\), and \((2^n - 1)((2^k)^n - 1) = x^2\) has the only solution \(k = 2, n = 3, x = 21\) in positive integers \(k \geq 2, n\) and \(x\). In 2000, Hajdu and Szalay [1] proved the equation \((2^n - 1)(6^n - 1) = x^2\) has no solutions in positive integers \((n, x)\), while the only solutions to the equation \((a^n - 1)(a^{kn} - 1) = x^2\), with \(a > 1, k > 1, kn > 2\) are \((a, n, k, x) = (2, 3, 2, 21), (3, 1, 5, 22), (7, 1, 4, 120)\). In 2000, Walsh [6] proved that \((2^n - 1)(3^m - 1) = x^2\) has no solutions in positive integers \(n, m\) and \(x\).

Following these works, Luca and Walsh [4] showed that the diophantine equation \((a^k - 1)(b^k - 1) = x^n\) has finite solutions in positive integers \((k, x, n)\) with \(n > 1\). Moreover, they showed how one can determine all integers \((k, x, 2)\) of the equation above with \(k \geq 1\), for almost all pairs \((a, b)\) with \(2 \leq b < a \leq 100\). In 2009, Le [3] proved that if \(3 \mid b\), then \((2^n - 1)(b^n - 1) = x^2\) has no solutions in positive integers \(n\) and \(x\). Recently, Li and Lzalay [2] proved that if \(a \equiv 2 \pmod{6}\) and \(b \equiv 0 \pmod{3}\), then the equation \((a^n - 1)(b^n - 1) = x^2\) has no positive integer solution \((n, x)\).

In this paper, using some elementary methods, we obtain the following results:

Theorem 1 If \(a \equiv 0 \pmod{2}\), \(b \equiv 15 \pmod{20}\), then the equation

\[(a^n - 1)(b^n - 1) = x^2\]

Received July, 10, 2010; Accepted November 20, 2010
Supported by the National Natural Science Foundation of China (Grant No.10901002).
E-mail address: tmzxx@2000@163.com
A note on the exponential diophantine equation \((a^m - 1)(b^n - 1) = x^2\) has no solutions in positive integers \(n\) and \(x\).

Theorem 2 If \(a \equiv 2 \pmod{6}\), \(b \equiv 3 \pmod{12}\), then the equation

\[
(a^n - 1)(b^m - 1) = x^2
\]

(2)

has no solutions in positive integers \(n, m\) and \(x\).

2. Proofs of Theorems

Let \(d\) be a positive integer which is not a square. It is well known that the Pell’s equation

\[x^2 - dy^2 = 1\]

has infinitely many positive solutions. If \((x_1, y_1)\) is the smallest positive integer solution, then for \(n = 1, 2, 3, \ldots\), define \(x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n\). The pairs \((x_n, y_n)\) are all positive solutions of the Pell’s equation. Moreover, the \(x_n’s\) and \(y_n’s\) satisfy the following recurrence relations

\[x_{2n} = 2x_n^2 - 1, \quad x_{n+2} = 2x_1x_{n+1} - x_n,\]

(3)

and

\[y_{2n} = 2x_ny_n, \quad y_{n+2} = 2x_1y_{n+1} - y_n.\]

(4)

Proof of Theorem 1 If Eq.(1) has a solution \((n, x)\), then we have

\[a^n - 1 = dy^2,\]

(5)

and

\[b^n - 1 = dz^2,\]

(6)

where \(d, y\) and \(z\) are positive integers satisfying \(dyz = x\), and \(d\) is square-free. Note that \(a \equiv 0 \pmod{2}\). By (5) we know that \(d\) is odd. Thus \(b^n - 1\) is properly divisible by an even power of \(2\). Hence \(b^n - 1 \equiv 3^n - 1 \equiv 0 \pmod{4}\), and we know that \(n\) must be even.

Let \((x_1, y_1)\) denote the smallest positive integer solution, and \(x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n\) for \(n \geq 1\). By (4), if \(n\) is even, then \(y_n = 2x_n/2y_n/2\) is even. Since \((x_n, y_n) = 1\) \((n \geq 1)\), we have \(x_n\) is odd for all even values of \(n\). Hence

\[a^{n/2} + y\sqrt{d} = x_r + y_r \sqrt{d}\]

(7)

holds for some odd positive integer \(r\). By (3), we know that \(x_n\) is even for all odd positive integers \(n\). Thus

\[b^{n/2} + y\sqrt{d} = x_s + y_s \sqrt{d}\]

(8)

holds for some positive even integers. Let \(s = 2t\). Then by (3) we have \(b^{n/2} = x_{2t} = 2x^2 - 1 \equiv 0 \pmod{5}\). It follows that \(x^2 \equiv 3 \pmod{5}\), which is impossible.

This completes the proof of Theorem 1.

Proof of Theorem 2 If Eq.(2) has a solution \((n, m, x)\), then we have

\[a^n - 1 = dy^2,\]

(9)
and

\[b^m - 1 = dz^2, \tag{10} \]

where \(d, y \) and \(z \) are positive integers satisfying \(dyz = x \), and \(d \) is square-free. Since \(b \equiv 3 \pmod{12} \), by (10) we have \(dz^2 \equiv 2 \pmod{3} \), thus \(3 \nmid d \), \(3 \nmid z \), hence \(z^2 \equiv 1 \pmod{3} \), \(d \equiv 2 \pmod{3} \).

If \(3 \nmid y \), then \(y^2 \equiv 1 \pmod{3} \), thus

\[a^n = dy^2 + 1 \equiv 0 \pmod{3}, \]

hence \(m = 4 \). By (9), we know that \(d \) is odd, thus \(b^m - 1 \) is properly divisible by an even power of 2. Hence

\[b^m - 1 \equiv 3^m - 1 \equiv 0 \pmod{4}, \]

and we know that \(m \) must be even.

Let \((x_1, y_1)\) denote the smallest positive integer solution, and \(x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n \) for \(n \geq 1 \). By (4), if \(n \) is even, then \(y_n = 2x_n/2y_n/2 \) is even. Noting that \((x_n, y_n) = 1 \) \((n \geq 1)\), we have \(x_n \) is odd for all even values of \(n \). Hence

\[a^{n/2} + y \sqrt{d} = x_r + y \sqrt{d}\] (11)

holds for some odd positive integer \(r \). By (3), we know that \(x_n \) is even for all odd positive integers \(n \), thus

\[b^{m/2} + y \sqrt{d} = x_s + y \sqrt{d}\] (12)

holds for some positive even integers. Let \(s = 2t \). Then by (3) we have \(b^{m/2} = 2x_t^2 - 1 \equiv 0 \pmod{3} \). It follows that \(x_t^2 \equiv 2 \pmod{3} \), which is impossible.

This completes the proof of Theorem 2. \(\Box \)

References

