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Abstract In this paper, we consider the following viscoelastic equation

utt − ∆u +

∫

t

0

g(t − s)∆u(s)ds + a(x)ut + u |u|r = 0

with initial condition and Dirichlet boundary condition.The decay property of the energy func-

tion closely depends on the properties of the relaxation function g(t) at infinity. In the previous

works of [3, 7, 11], it was required that the relaxation function g(t) decay exponentially or poly-

nomially as t → +∞. In the recent work of Messaoudi [12, 13], it was shown that the energy

decays at a similar rate of decay of the relaxation function, which is not necessarily dacaying

in a polynomial or exponential fashion. Motivated by [12, 13], under some assumptions on g(x),

a(x) and r, and by introducing a new perturbed energy, we also prove the similar results for the

above equation.
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1. Introduction

In this paper we are concerned with the following equation with a temporal nonlocal term

utt − ∆u+

∫ t

0

g(t− s)∆u(s)ds+ a(x)ut + u |u|r = 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, the relaxation function g(x)

is a positive nonincreasing function, and the coefficient a(x) of the weak frictional damping is

supposed to be positive. The equation in (1.1) describes the motion of a viscoelastic body. It is

well known that the viscoelastic materials exhibit nature damping, which is due to the special

property of these materials to keep memory of their past history. These damping effects are

represented by memory term such as in (1.1) (see [9] and the references therein).
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One important question is at which rate the energy of solutions of the damped equation

approaches 0 as time tends to ∞. This problem has already been investigated in several papers

(see [3, 7, 8, 11]) under different additional assumptions for g. It is known to us that Cavalcanti

et al. in [7] firstly studied the above problem. Under the condition that a(x) ≥ a0 > 0 on ω ⊂ Ω,

with ω satisfying some geometric restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

when
∫ ∞

0
g(s)ds is sufficiently small, an exponential rate of decay E(t) ≤ Ce−βt was obtained for

some positive constants C, β, where E(t) will be specified in Theorem (1.5). This work extended

the result of Zuazua [16], in which (1.1) was considered with g = 0 and the linear damping was

localized.

Later, Berrimi and Cavalcanti in [3] considered

utt − k0∆u+

∫ t

0

div[a(x)g(t − τ)∇u(τ)]dτ + b(x)h(ut) + f(u) = 0,

under similar conditions on the relaxation function g and a(x) + b(x) ≥ δ > 0 and improved the

result in [7]. They established an exponential stability when g is decaying exponentially and h

is linear, and a polynomial stability when g is decaying polynomially and h is nonlinear.

In [3], Berrimi and Messaoudi studied the equation

utt − ∆u+

∫ t

0

g(t− s)∆u(s)ds+ a(x)|ut|mut + |u|ru = 0, (1.2)

in a bounded domain. Under the condition that

g′(t) ≤ −ξg(t), t ≥ 0

for some positive constant ξ, the authors also proved an exponential decay under weaker conditons

on both a and g, where a is allowed to vanish on any part of Ω (including Ω itself ). Then the

geometric restriction imposed on ∂Ω by Cavalcanti et al [7] can be dropped.

Liu [11] also considered problem (1.2) under condition

g′(t) ≤ −ξgp(t), t ≥ 0, 1 ≤ p < 3/2,

where ξ is a positive constant. They showed the exponential decay when p = 1, and polynomial

decay when 1 < p < 3/2. This result extended the work in [3] where only exponential decay was

established.

In [2], Alabau-Boussouira et al. developed a unified method to derive decay estimates for the

abstract integro-differential evolution equation

u′′(t) +Au(t) −
∫ t

0

β(t− s)Au(s)ds = ∇F
(

u(t)
)

, t ∈ (0,∞),

in a Hilbert space X , where A : D(A) ⊂ X → X is an accretive self-adjoint linear operator with

dense domain, and ∇F denotes the gradient of a Găteaux differentiable functional F : D(
√
A) →

R. Depending on the properties of convolution kernel β at infinity, they showed that the energy

of solution decays exponentially or polynomially as t→ ∞.
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Recently, in [12] Messaoudi studied the equation

utt − ∆u+

∫ t

0

g(t− s)∆u(s)ds = 0

where the relaxation function g is assumed as follows

(i) g : R+ → R+ is a nonincreasing differentiable function such that

g(0) > 0, 1 −
∫ ∞

0

g(s)ds = l > 0.

(ii) There exists a differentiable function ξ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

|ξ
′(t)

ξ(t)
t| ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, ∀ t > 0.

He proved that the solution energy decays at the same rate of decay of the relaxation function,

which is not necessarily polynomial or exponential decay.

Then in [13], the same author studied the following equation

utt − ∆u+

∫ t

0

g(t− s)∆u(s)ds = u|u|γ ,

where the relaxation function g is assumed as follows

(i) g : R+ → R+ is a nonincreasing differentiable function such that

g(0) > 0, 1 −
∫ ∞

0

g(s)ds = l > 0.

(ii) There exists a differentiable function ξ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

|ξ
′(t)

ξ(t)
| ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, ∀ t > 0.

(iii) For the nonlinear term, assume that

0 < γ ≤ 2

n− 2
, n ≥ 3, γ > 0, n = 1, 2.

It was also proved that the solution energy decays at the same rate of decay of the relaxation

function, which is not necessarily polynomial or exponential decay.

Motivated by the above work of [12, 13], in this paper we also concern with problems (1.1)

and (1.2). By using Lyapunov type technique for some perturbed energy, which was introduced

in [12, 13], we show that the solution energy decays at a similar rate of decay of the relaxation

function, which is not necessarily the decay in an exponential or polynomial fashion. Therefore,

our result allows a larger class of relaxation functions and improves earlier results in the literature

[3, 7, 11]. Our assumptions on the function g(x), a(x), and r are as follows.

(A1) g : R+ → R+ is a nonincreasing differentiable function such that

g(0) > 0, 1 −
∫ ∞

0

g(s)ds = l > 0.
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(A2) There exists a differentiable function ξ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

|ξ
′(t)

ξ(t)
| ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, ∀ t > 0.

(A3) Assume that a(x) is a nonnegative and bounded function such that

a(x) ≥ a0 > 0.

(A4) For the nonlinear term, we assume

0 < r <
2

n− 2
, n ≥ 3; r > 0, n = 1, 2.

Remark 1.1 There are many functions satisfying the assumptions (A1) and (A2), and examples

have been given in [12], such as

g1(t) = a(1 + t)v, v < −1,

g2(t) = ae−b(t+1)p

, 0 < p ≤ 1,

g3(t) =
ae−bt

(1 + t)n
, n = 1, 2,

for a, b > 0 to be chosen properly.

Remark 1.2 Since ξ is nonincreasing, ξ(t) ≤ ξ(0) = M .

Remark 1.3 Condition (A1) is necessary to guarantee the hyperbolicity of the system (1.1).

We will also use the embedding H1
0 (Ω) →֒ Lq(Ω) for 2 ≤ q ≤ 2n/n− 2, if n ≥ 3 and q ≥ 2 if

n = 1, 2; and Lr(Ω) →֒ Lq(Ω), for q < r and we will use the same embedding constant denoted

by C, i.e.,

‖u‖q ≤ C‖∇u‖2, ‖u‖q ≤ C ‖u‖r .

The existence of global solution of problem (1.1) can be easily obtained by making use of the

Faedo-Galerkin method, and we refer to [5] for details.

Proposition 1.4 Let (u0, ut) ∈ H1
0 (Ω) × L2(Ω). Assume (A1)–(A4) hold, then problem (1.1)

has a unique global solution

u ∈ C0([0,∞);H1
0 (Ω)) ∩ C1([0,∞);L2(Ω)).

Our main result is stated as follows.

Theorem 1.5 Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that (A1)–(A4) hold, then for

each t0 > 0, there exist strictly positive constantsK and λ such that the solution of (1.1) satisfies

E(t) ≤ Ke
−λ

∫

t

t0
ξ(s)ds

, t ≥ t0,

where

E(t) =
1

2

(

1 −
∫ t

0

g(s)ds
)

‖∇u‖2
2 +

1

2
‖ut‖2

2 +
1

2
(g ◦ ∇u)(t) +

1

r + 2
‖u‖r+2

r+2 (1.3)
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and

(g ◦ v)(t) =

∫ t

0

g(t− s) ‖v(t) − v(s)‖2
2ds.

Remark 1.6 Our method used in this paper is applicable to the equation (1.2) in a bounded

domain with 0 ≤ max {m, r} ≤ 2
n−2 , if n ≥ 3. Thus we can extend the result in [11].

The rest of this paper is organized as follows. In next section, we present some Lemmas

needed for our work. Section 3 contains the proof of our main result.

2. Preliminaries

In this section we will prove some lemmas.

Lemma 2.1 If u is a solution of (1.1), then energy E(t) satisfies E′(t) ≤ 0.

Proof By multiplying equation (1.1) by ut and integrating over Ω, then using integration by

parts and hypotheses (A1) and (A2), after some manipulation, we obtain.

E′(t) =
1

2
(g′ ◦ ∇u)(t) − 1

2
g(t) ‖∇u‖2

2 −
∫

Ω

a(x) |ut|2dx ≤ 0. 2 (2.1)

Remark 2.2 It follows form Lemma 2.1 that the energy is uniformly bounded (by E(0)) and

deceasing in t, which also implies that

l ‖∇u‖2
2 ≤ 2E(0). (2.2)

Then we define the perturbed energy functional

F (t) = E(t) + ε1ψ(t) + ε2φ(t), (2.3)

where ε1 and ε2 are positive constants and

ψ(t) = ξ(t)

∫

Ω

uutdx,

φ(t) = −ξ(t)
∫

Ω

ut

∫ t

0

g(t− s)(u(t) − u(s))dsdx. (2.4)

Lemma 2.3 For u ∈ H1
0 (Ω), we have

∫

Ω

(

∫ t

0

g(t− s)(u(t) − u(s))ds
)

2

dx ≤ (1 − l)C2(g ◦ ∇u)(t).

Proof
∫

Ω

(

∫ t

0

g(t− s)(u(t) − u(s))ds
)

2

dx =

∫

Ω

(

∫ t

0

√

g(t− s)
√

g(t− s)(u(t) − u(s))ds
)

2

dx.

By applying Cauchy-Schwarz inequality and Poincaré’s inequality, we easily see that

∫

Ω

(

∫ t

0

g(t− s)(u(t) − u(s))ds
)

2

dx

≤
∫

Ω

(

∫ t

0

g(t− s)ds
)(

∫ t

0

g(t− s) (u(t) − u(s))2 ds
)

dx ≤ (1 − l)C2(g ◦ ∇u)(t). 2
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Lemma 2.4 For ε1 and ε2 small enough, we have

α1F (t) ≤ E(t) ≤ α2F (t) (2.5)

holds for two positive constant α1 and α2.

Proof After straightforward computation, we can see that

F (t) ≤E(t) +
ε1
2
ξ(t)

(

∫

Ω

|u|2dx+

∫

Ω

|ut|2dx
)

+
ε2
2
ξ(t)

∫

Ω

|ut|2dx+

ε2
2
ξ(t)

∫

Ω

(

∫ t

0

g(t− s)(u(t) − u(s))ds
)

2

dx

≤E(t) + (
ε1 + ε2

2
)M

∫

Ω

|ut|2dx+
ε1
2
MC2

∫

Ω

|∇u|2dx+
ε1
2
MC2(1 − l)(g ◦ ∇u)(t)

≤α2E(t), (2.6)

and

F (t) ≥E(t) − ε1
2
ξ(t)

∫

Ω

|ut|2dx− ε1
2
ξ(t)C2

∫

Ω

|∇u|2dx−

ε2
2
ξ(t)

∫

Ω

|ut|2dx− ε2
2
ξ(t)C2(1 − l)(g ◦ ∇u)(t)

≥(
1

2
− M

2
(ε1 + ε2))

∫

Ω

|ut|2dx+
1

2
(l − ε1

2
MC2)

∫

Ω

|∇u|2dx+

(
1

2
− ε2

2
M)C2(1 − l)(g ◦ ∇u)(t) +

1

r + 2
‖u‖r+2

r+2 dx

≥α1E(t), (2.7)

for ε1 and ε2 small enough. 2

Lemma 2.5 Let u be the solution of problem (1.1) derived in Proposition (1.4). Then we have

ψ′(t) ≤
[

1 +
C2(k + ‖a‖∞)2

l

]

ξ(t)

∫

Ω

|ut|2dx+
1 − l

2l
ξ(t)(g ◦ ∇u)(t)−

l

4
ξ(t)

∫

Ω

|∇u|2dx− ξ(t)

∫

Ω

|u|r+2
dx. (2.8)

Proof By using Eq. (1.1), we easily see that

ψ′(t) =ξ′(t)

∫

Ω

uutdx+ ξ(t)

∫

Ω

|ut|2dx− ξ(t)

∫

Ω

∇u(t) ·
∫ t

0

g(t− s)∇u(s)dsdx−

ξ(t)

∫

Ω

a(x)uutdx− ξ(t)

∫

Ω

|u|r+2
dx. (2.9)

We now estimate the third term in the right hand side of (2.9) as follows
∫

Ω

∇u(t) ·
∫ t

0

g(t− s)∇u(s)dsdx

≤ 1

2

∫

Ω

|∇u(t)|2dx+
1

2

∫

Ω

(

∫ t

0

g(t− s)|∇u(s)|ds
)2

dx

≤ 1

2

∫

Ω

|∇u(t)|2dx+
1

2

∫

Ω

(

∫ t

0

g(t− s)(|∇u(s) −∇u(t)| + |u(t)|)ds
)2

dx. (2.10)
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Thanks to Young’s inequality, and the fact
∫ t

0
g(s)ds ≤

∫ ∞

0
g(s)ds = 1 − l, we obtain that

for any η > 0,
∫

Ω

(

∫ t

0

g(t− s)(|∇u(s) −∇u(t)| + |∇u(t)|)ds
)2

dx

≤
∫

Ω

(

∫ t

0

g(t− s)|∇u(s) −∇u(t)|ds
)2

dx+

∫

Ω

(

∫ t

0

g(t− s)(|∇u(t)|)ds
)2

dx+

2

∫

Ω

(

∫ t

0

g(t− s) |∇u(s) −∇u(t)| ds
)

·
(

∫ t

0

g(t− s) |∇u(t)| ds
)

dx

≤ (1 + η)

∫

Ω

(

∫ t

0

g(t− s)(|∇u(t)|)ds
)2

dx+ (1 +
1

η
)

∫

Ω

(

∫ t

0

g(t− s) |∇u(s) −∇u(t)|ds
)2

dx

≤ (1 +
1

η
)(1 − l)(g ◦ ∇u)(t) + (1 + η)(1 − l)2

∫

Ω

|∇u(t)|2dx. (2.11)

Combining (2.10) and (2.11), and using
∫

Ω

uutdx ≤ αC2

∫

Ω

|∇u(t)|2dx+
1

4α

∫

Ω

u2
t dx, α > 0, (2.12)

∫

Ω

a(x)uutdx ≤ α ‖a(x)‖∞C2

∫

Ω

|∇u(t)|2dx+
1

4α
‖a(x)‖∞

∫

Ω

u2
t dx, α > 0, (2.13)

we get

ψ′(t) ≤[1 +
1

4α
(‖a‖∞ + |ξ

′(t)

ξ(t)
|)]ξ(t)

∫

Ω

|ut|2 +
1

2
(1 +

1

η
)(1 − l)ξ(t)(g ◦ ∇u)(t)−

1

2
[1 − (1 + η)(1 − l)2 − 2αC2(‖a‖∞ + |ξ

′(t)

ξ(t)
|)]ξ(t)

∫

Ω

|∇u|2dx− ξ(t)

∫

Ω

|u|r+2dx

≤[1 +
1

4α
(‖a‖∞ + k)]ξ(t)

∫

Ω

|ut|2 +
1

2
(1 +

1

η
)(1 − l)ξ(t)(g ◦ ∇u)(t)−

1

2
[1 − (1 + η)(1 − l)2 − 2αC2(‖a‖∞ + k)]ξ(t)

∫

Ω

|∇u|2dx− ξ(t)

∫

Ω

|u|r+2dx. (2.14)

Choosing η = l
1−l

and α = l
4C2(k+‖a‖∞)2 yields (2.9). 2

Lemma 2.6 Let u be the solution of problem (1.1) derived in Proposition (1.4). Then we have

φ′(t) ≤δ[1 + 2(1 − l)2 + C2r+2(
2E(0)

l
)r]ξ(t)

∫

Ω

|∇u(t)|2dx+ kδξ(t)(g ◦ ∇u)(t)−

g(0)

4δ
C2ξ(t)(g′ ◦ ∇u)(t) +

[

δ(1 + k + ‖a‖∞) −
∫ t

0

g(s)ds
]

ξ(t)

∫

Ω

|ut|2dx, (2.15)

where

Kδ =
1 − l

4δ
+ (2δ +

1

4δ
)(1 − l) + (‖a‖∞ + k + 1)

C2

4δ
(1 − l). (2.16)

Proof It is obtained after direct computations that

φ′(t) =ξ(t)

∫

Ω

∇u(t) ·
(

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds
)

dx−

ξ(t)

∫

Ω

(

∫ t

0

g(t− s)∇u(s)ds
)

·
(

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds
)

dx+
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ξ(t)

∫

Ω

a(x)ut

∫ t

0

g(t− s)(u(t) − u(s))dsdx+

ξ(t)

∫

Ω

|u|r u
∫ t

0

g(t− s)(u(t) − u(s))dsdx−

ξ(t)

∫

Ω

ut

∫ t

0

g′(t− s)(u(t) − u(s))dsdx − ξ(t)

∫ t

0

g(s)ds

∫

Ω

|ut|2dx−

ξ′(t)

∫

Ω

ut

∫ t

0

g(t− s)(u(t) − u(s))dsdx. (2.17)

We now estimate the right-hand side terms of (2.17). Applying Young’s inequality to the

first term gives
∫

Ω

∇u(t) ·
(

∫ t

0

g(t−s)(∇u(t)−∇u(s))ds
)

dx ≤ δ

∫

Ω

|∇u|2dx+
1 − l

4δ
(g◦∇u)(t), ∀δ > 0. (2.18)

Similarly, the second term can be estimated as follows:
∫

Ω

(

∫ t

0

g(t− s)∇u(s)ds
)

·
(

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds
)

dx

≤ δ

∫

Ω

∣

∣

∣

∫ t

0

g(t− s)|∇u(s)|ds
∣

∣

∣

2

dx+
1

4δ

∫

Ω

∣

∣

∣

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds
∣

∣

∣

2

dx

≤ δ

∫

Ω

(

∫ t

0

g(t− s)(|∇u(t) −∇u(s)| + |∇u(t)|)ds
)2

dx+

1

4δ

∫

Ω

(

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds
)2

dx

≤ (2δ +
1

4δ
)

∫

Ω

(

∫ t

0

g(t− s)(|∇u(t) −∇u(s)|ds
)2

dx + 2δ(1 − l)2
∫

Ω

|∇u|2dx

≤ (2δ +
1

4δ
)(1 − l)(g ◦ ∇u)(t) + 2δ(1 − l)2

∫

Ω

|∇u|2dx. (2.19)

As for the third term, we have
∫

Ω

a(x)ut

∫ t

0

g(t− s)(u(t) − u(s))dsdx ≤ δ‖a‖∞
∫

Ω

|ut|2dx+ ‖a‖∞
C2

4δ
(1− l)(g ◦∇u)(t). (2.20)

The fourth term
∫

Ω

|u|r u
∫ t

0

g(t− s)(u(t) − u(s))dsdx

≤ δ

∫

Ω

|u|2r+2
dx+

C2

4δ
(1 − l)(g ◦ ∇u)(t)

≤ δC2r+2 ‖∇u‖2r+2
2 +

C2

4δ
(1 − l)(g ◦ ∇u)(t)

≤ δC2r+2(
2E(0)

l
)r ‖∇u‖2

2 +
C2

4δ
(1 − l)(g ◦ ∇u)(t). (2.21)

The fifth term

−
∫

Ω

ut

∫ t

0

g′(t− s)(u(t) − u(s))dsdx ≤ δ

∫

Ω

|ut|2 dx− g(0)

4δ
(g′ ◦ ∇u)(t). (2.22)

Combining (2.18)–(2.22) gives Lemma 2.6. 2
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3. Decay of solutions

Now we prove our main result Theorem 1.4.

Proof Since g is positive, continuous and g(0) > 0, for any t0 ≥ 0, we have
∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, ∀ t ≥ t0.

By using (2.2), (2.9) and (2.16), we obtain for t ≥ t0,

F ′(t) ≤−
[

ε2{g0 − δ(1 + k + ‖a‖∞)} − ε1(1 +
C2(k + ‖a‖∞)2

l
)
]

ξ(t)

∫

Ω

|ut|2dx−

[

ε1
1

4l
− ε2δ{1 + 2(1 − l)2 + C2r+2(

2E(0)

l
)r}

]

ξ(t)

∫

Ω

|∇u|2dx+

(
1

2
− ε2

g(0)

4δ
C2M)(g′ ◦ ∇u)(t) + (ε1

1 − l

2l
+ ε2kδ)ξ(t)(g ◦ ∇u)(t)−

ε1ξ(t)

∫

Ω

|u|r+2
dx. (3.1)

At this point we choose δ so small that

g0 − δ(1 + k) >
1

2
g0,

4

l
δ[1 + 2(1 − l)2 + C2r+2(

2E(0)

l
)r] <

1

4(1 + C2(k+‖a‖∞)2

l
)
g0, (3.2)

where δ is fixed. The choice of any two positive constants ε1 and ε2 satisfying

g0

4(1 + C2(k+‖a‖∞)2

l
)
ε2 < ε1 <

g0

2(1 + C2(k+‖a‖∞)2

l
)
ε2 (3.3)

will make

k1 = ε2 {g0 − δ(1 + k + |a|∞)} − ε1(1 +
C2(k + ‖a‖∞)2

l
) > 0,

k2 = ε1
l

4
− ε2δ[1 + 2(1 − l)2 + C2r+2(

2E(0)

l
)r] > 0. (3.4)

We then take ε1 and ε2 such that (2.6) and (3.3) remain valid. Further,

k3 = (
1

2
− ε2

g(0)

4δ
C2M) − (ε1

1 − l

2l
+ ε2kδ) > 0. (3.5)

Hence

(
1

2
− ε2

g(0)

4δ
C2M)(g′ ◦ ∇u)(t) + (ε1

1 − l

2l
+ ε2kδ)ξ(t)(g ◦ ∇u)(t) ≤ −k3ξ(t)(g ◦ ∇u)(t). (3.6)

Since ξ is nonincreasing, by using (2.6), (3.1) and (3.6) we arrive at

F ′(t) ≤ −β1ξ(t)E(t) ≤ −β1α1ξ(t)F (t). (3.7)

A simple integration of (3.7) leads to

F (t) ≤ F (t0)e
−β1α1

∫

t

t0
ξ(s)ds

, ∀ t ≥ t0. (3.8)

Thus from (2.6) and (3.8) it follows

E(t) ≤ α2F (t0)e
−β1α1

∫

t

t0
ξ(s)ds

= Ke
−λ

∫

t

t0
ξ(s)ds

, t ≥ t0, (3.9)
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where K = α2F (t0), λ = β1α1. This completes the proof. 2
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