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Abstract This paper is concerned with the three-dimensional non-autonomous Brinkman-
Forchheimer equation. By Galerkin approximation method, we give the existence and uniqueness
of weak solutions for non-autonomous Brinkman-Forchheimer equation. And we investigate the
asymptotic behavior of the weak solution, the existence and structures of the (H, H)-uniform
attractor and (H,V)-uniform attractor. Then we prove that an L?-uniform attractor is actually
an H'-uniform attractor.
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1. Introduction

Consider now the non-autonomous Brinkman-Forchheimer equation:

up — vAu + au + blulPu+ Vp = g(t,z), in Qx (1,7);

V-u=0, in Qx (7,7); 1)
u(z, 7) = ur(x), in ;
u(z,t) =0, in 9Q x (1,7T),

where 0 C R? is a bounded domain with smooth boundary 92, u = (uy,us,u3) is the fluid
velocity vector, v is the Brinkman coefficient, a > 0 is the Darcy coefficient, b > 0 is the
Forchheimer coefficient, p is the pressure, and 3 > 1 is a constant.

The model equations (Brinkman, Darcy and Forchheimer equations) describing the flow in a
porous medium have been extensively studied in [1], and several papers have been published [2—
10]. We should note that most of these papers have been focused on the question of continuous
dependence of solutions on the coefficients v,b. In [11] and [12], Davut, Ouyang and Yang
proved the existence of global attractor in H} for autonomous Brinkman-Forchheimer equation,

respectively, with respect to initial data ug € V.
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In this paper, we suppose the external force g(t,z) is uniformly bounded in L?(Q) with

respect to t € R, i.e., there exists a positive constant K, such that,
sup || g(t, @) |2 < K, (2)
teR

then g(t) € L?(R, L*(2)). And furthermore, suppose the weak differential of g with respect to
t, denoted by h(t), is in the space L?(R, L*(2)). Here LZ(R, L?(Q)) is the translation bounded
subspace in LZ (R, L*(Q)), i.e., g(t) € LZ(R, L*()),

loc

t+1
19 1231 ycececan=3up [ 119 Iagoy ds <+ 3)
teR Jt

In this paper, we focus on the existence and the structures of the (H, H) and (H, V')-uniform
attractor. First, by the Galerkin approximation method, we give the existence of weak solutions
for the non-autonomous three dimensional Brinkman-Forchheimer equation. After that, we
explore the asymptotic behavior of the solutions. The existence and structures of the (H, H)-
uniform attractor and (H, V')-uniform attractor are obtained. Finally, the asymptotic smoothing
effect of the solutions is addressed.

The mathematical setting of our problem is similar to that of the Navier-Stokes equations.

Let us introduce the following spaces
V= {u S (CSO(Q))B sdivu = 0}, H= CI(LQ(Q))SV, V= Cl(Hé(Q)):aV,

where clx denotes the closure in the space X. H and V endowed, respectively, with the inner

products
(’LL,’U) :/U"Ud.’lf, u,v €H7
Q

and

3

((u,v)) = Z/ Vu; - Vu,dx, u,v €V,

i=1 7

and norm | - | = (-, )2, || - ||= ((-,-))'/2.

In this paper, LP(Q2) = (LP(Q2))3, and we use | - |, to denote the norm in L?(Q).
Let P be the orthogonal projection from L?(Q) onto H. Then applying P to (1), we obtain

%—FVAU—I—CL’U,—{-B(’UJ):Q,

u(T) = ur,

(4)

where A = P(—A) is the Stokes operator with the domain D(A) = (H?())> NV and B(u) =
PF(u), while F(u) = blu|’u.

Throughout this paper, we use the following notations: let X be a Banach space, X™* be the
dual space of X, |u| the modular of u, (-,-) be the inner product in L?(2), and (-, -) be the duality
product between X and X*, and C' an arbitrary positive constant, which may be different from

line to line.

2. Existence and uniqueness of weak solution
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The following lemma is a compactness result, whose proof can be found in [13].

Lemma 1 Let Xy, X be Hilbert spaces satisfying a compact imbedding Xy — X. Let 0 <y <1
and {v;}32, be a sequence in L*(R; Xo) satisfying
+oo —+oo
sup (/ I v; ||§(0 dt) < 00, sup (/ 17127 1 05 |1% dT) < 00,
J —o0 J —0o0
where (1) = fjoo v(t) exp(—2miTt)dt is the Fourier transformation of v(t) on the time vari-

oo

able. Then there exists a subsequence of {v;}72; which converges strongly in L?(R; X) to some
v e L*(R; X).

Lemma 2 ([14]) Let O be a bounded domain in R™ x R. Given a sequence {g,} with
{gn} € LYO) and 1 < q < oo. Assume that || gn ||re0)< C, where C is independent of
n, gn — g (n — o00) almost everywhere in O, and g € L9(0O). Then g, — g (n — o00) weakly in
L1(0).

Theorem 1 For any 7, T € R, suppose ) is a bounded domain of R?, g(t) € L(R, L*(Q)), and
u, € H. Then there exists a unique solution u(-) € L*>(r,T; H)NL*(r,T; V)NLP+2(r, T; LP+2(Q)).

Proof We employ the Galerkin approximation to prove the theorem. For simplicity, we take
7 =0, and u(z,0) = up(x). Since V is separable and V is dense in V, there exists a sequence
w1,Wwa, ..., wn of elements of V, which is free and total in V. For each m we define an approximate

solution u,, as follows:
Uy, = Z Gim (t)wi (),
and -
(g (8),05) + (Vum (£), Vw;) + alum (), w5) + (Blwm| um(t),w;) = (9(t), w;)), (5)

tel0,7],7=1,2,...,m, and ugm — ug in H, as m — .

Multiplying on both sides of (5) by g;m, () and summing over j =1,...,m, we have

5l 1 12 b3 + Do 572 < Lo + Sl
SO d 1
a3+ 20 | i 1? Halun 3 + 2bluml 515 < ~19(0), (6)
and
d 2 2 1 2
o3 + alunl3 < ~lg(0) @

By Gronwall’s Lemma, we obtain
1 [t
a0 < [ (@) 4 & [ &0 g(s)as
aJo
< lum (OB +C [ g |- ®)
and

t t t—1
/eﬂHw@&bg/e”W%mM¢+/ o) g(s)|2ds + - -
0 t—1 t

—2
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¢ t—1 t—2
< [ loBds e [ lgts)Eds e [ lg(s)ds
t

—1 t—2 t—3
S(U+e e+ ) lgli
1 2
<—— gl
<Cllglis

Integrating (6) in s from 0 to 7', T > 0, we obtain

T T T
sup |um(s)]3 + 2V/ | wm (s) || ds + a/ [t (5)|5ds + 2b/ [tem () gigds
s€[0,T] 0 0 0
e 2 2
< [ lao)as ¢ uou . )

From (8) and (9), we deduce that the sequence {u,,} is a bounded set of L*>(0,7;H) N
L2(0,T;V) N LP+2(0, T; LA+2(Q)).

Denote by ., the function from R into V, which is equal to u,, on [0,7] and to 0 on
the complement of this interval. Similarly, we prolong g, (t) to R by defining g;m(t) = 0 for
t € R\[0,T]. The Fourier transforms on time variable of @, and §;,, are denoted by Uy and §im,
respectively.

Note that the approximate solution u,, satisfies

d N N - - N
E(um,wj) = —v(Viy, Vw,) — (aliy, w;) — (b|um|ﬁum,wj) + (g, w;)+
(wom, wj)00 — (um(T),w;)or, §=1,2,...,m, (10)

where dy and d7 are the Dirac distributions at 0 and 7', respectively.

Taking the Fourier transform about the time variable in (10) gives
207 (fimy 3) = (s ) — (Blitm [P, ;) + (W0, @5) — (un(T), wj) exp(=2miTr), (1)
where ;Lm denotes the Fourier transform of ﬁm,
(hnsw;) = (s ws) = V(Vitn, Vwy) = (alim, w))-
Multiplying (11) by §jm(r) and summing the results for j = 1,...,m, one finds that
2miT | (7)]5 = (zm,ﬁm) - b(lﬁﬂﬁ\ﬁm, Uim) + (om, tm) — (U (T), ) exp (=2miT7).  (12)
For any v € L2(0,T;V) N LP+2(0,T; LA+2(Q)), we have
(hm(t),0) = (9(t), ) = ¥(Vtm, Vo) = (atim, v) < C(lg(#)]a+ [| um || +luml2) | v ] -

It follows that for any given T' > 0

T T
/ [ B (2) (v dt S/ C(lg@) ]2+ || um || +luml2)dt < C,
0 0
and hence

N T
sup || () [lvr< / I hon(t) [l dt < C. (13)
sER 0
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T
/ ‘lumlﬁum
0

Moreover,

T
1
Ldt</0 |1 5dt < C,
B+

which implies that

sup‘|u?|3\um(s) i SC. (14)
seR BF1
From (9), we have
[um (0)]2 < C, fum(T)|2 < C. (15)
So we deduce from (13)—(15) that
[l (7)]3 < CU| i (7) || +lim(7)]g+2). (16)
For any ~ fixed, 0 < v < i, we observe that
1+ |7
n<C———, VreR.
1™ < Oy €
Thus
oo 2 oo 1+ |T| S
| i <0 [ ) ar
+oo +oo
ST () I
Sc/ioo |Um(7')|2d7'+0/700 T =2 dr+
2 Jm ()| 42
C ———=dr. 17
/_OO 1+ |72 T (17)

Thanks to the Parseval equality and (9), the first integral on the right-hand side of (17) is
bounded uniformly on m.

By the Schwarz inequality, Parseval equality and (9), we have

T |t | oo dr o7 1
L dr < T - d
/700 1+ |r[t=* T—(/,oo (1+|T|1—2v)2) (/0 I um(7) 11 T) <€

for 0 <~ < 1.
Similarly, when 0 < v < 2(B—1+2)’ we have

/Jroo |ﬁm(7’)|ﬁ+2d7_< (/Jroo dr )212(/+00| ( )| +2d7’)ﬁ
—o00 1+|T|1_2’Y N e} (1—|—|7’|1 2’)’)27 —o0 A

IN
Q

3 T
Tm(/o (1) 20r) 7

It follows from (17) that

+oo
/ |T|2'Y|ﬁm(7')|§d7' <C. (18)

— 00
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Now, since F (tm )tm = bltm|? 2 < blum|[PT2 + 6um|?, and 6 > 0 is a positive constant, we
have |F ()| < O(|tm|?T + |tm|). Since LAT2(Q) — L%(Q), we obtain

T T
/ / |F ()| 51 dardt < c/ /[|um|ﬁ+1 + ||| 751 dadt
0 Q 0 Q

T T
< C/ / |um|5+2dxdt+0/ |um|%dxdt
0o Jo o Jo

T T
< c/ / |um|ﬁ+2dxdt+c/ / |ty [P T2 A2t
0 Q 0 Q

From (9) we know that {u,,} is bounded in LA*2(0,T;L’*2%(£2)), so {F(u.)} is bounded in
L5 0, T, L5 ().
Since Vv € L?(0,T;V), we have

T T
/ /—VAum-vdxdt:V/ /Vum-Vvdxdt
o Ja o Ja
T ol T .
<o [ un P[0
0 0

It follows from (9) that {u,,} is bounded in L%(0,T;V), so {—vAum,} € L*(0,T;V’). There-
fore, by taking a subsequence when necessary, we can assume that there exists a function
u(-) € L>(0,T;H) N L%(0,T;V) N LPT2(0, T; LAP*2(Q)) such that u,,(s) — u(s) weakly in
L2(0,T;V), weakly in L°*+2(0,T;L’*2(Q)), and weak-star in L>(0,7;H) as n — oo. So,
as n — 00, —VAu,(s) — —vAu(s) weakly in L2(0,T; V"), and dyum(s) — Oyu(s) weakly in
L%(O,T;H_S(Q)) for some s > 0. Assume F(u,,(s)) — n(s) weakly in L%(O,T;L%(Q))
for some n(s) € Lo+ 0,T; Lo+ (©)). Passing to the limit in (1); with respect to u,,, we obtain
the equality
Oru — vAu + au +n = g(t)

in the space L%(O, T; H*(Q)).

By Lemma 1 and (18), there exists a subsequence of {u,,}2°_;, still denoted by itself, such
that w,, — w strongly in L*(0,T; H), and 80 u,(z, s) — u(z, s) for almost every (z, s) € Qx [0, T
as m — oo. Since F(u) € C°(R), F(um(z,s)) — F(u(z,s)) (m — oo) for almost every (z,s) €
) x [0,T]. On the other hand, the sequence F'(uy,) is bounded in Lo+ 0,T; L%(Q)). From
Lemma 2, we conclude that F(u,,) — F(u) (m — oo) weakly in L%(O,T;L%(Q)), hence
n(s) = F(u(z,s)). Sou e L>(0,T; H)N L*(0,T; V)N LA*2(0, T; LA*2(2)) is a solution of (1).

Finally, let us verify the uniqueness of the solution. Let wuj,us be two solutions of (1) with
the initial data ui|i—0 = u1(0), uz|i=o = u2(0), respectively. Subtracting the corresponding to

equation (4)1, we obtain
O¢(u1 — u2) + vA(u; — ug) + a(uy — uz) + B(uy) — B(uz) = 0. (19)

Taking the inner product of (19) with u; — us, we obtain

1d

5&'“1 —ugl3 +v || ur — ug ||* +aluy — ual3 = —(F(u1) — F(ug),uy — ua). (20)
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Since the function F'(u) is monotone, (F(u) — F(v),u —v) > 0, and hence from (20) we obtain

D — w2 2alug — usl? <

|up — ual3 + 2alu; — uszl; < 0.

dt

Using the Gronwall Lemma, we obtain
lur — u2|3 < e uy (0) — ua(0)[5.

So the uniqueness of the solution is proved.

Lemma 3 Let F(u) = a|u|/’u. Then

(i) F is continuously differentiable in R® and for u = (u1,ug,u3) in R? the Jacobian matrix

is given by:
Bui +[ul*  Buiug Buius
F'(u) = alul?~2 Buius Bu3 + |ul? Busgus
Buiusz Bugus Bu3 + |ul?

Further, F'(u) is positive definite and for any u,v,w € R3:
|(F' (w)v) - w| < e|ul|v]|w],

where ¢ is a positive constant depending on 3 and «.

(ii) F is monotonic in R3, i.e., for any u,v € R3:
(F(u) — F(v),u —v) > 0.

Proof (i) can be obtained by simple calculations, and (ii) is an immediate consequence of (i).

3. Preliminaries about processes

Let ¥ be a metric space, X, Y be two spaces, and Y C X continuously. {U,(t,7)}sex is a
family of processes in Banach space X. Denote by B(X) the set of all bounded subsets of X.
R™ = [1, +0).

Definition 1 A set By € B(Y) is said to be (X,Y)-uniformly absorbing for the family of pro-
cesses {Uy(t,T)}oex if, for any 7 € R and every B € B(X), there exists to = to(r, B) > 7 such
that |,y Us(t,7)B C By for all t > to. A set P belonging to 'Y is said to be (X,Y)-uniformly
attracting for the family of processes {U,(t, T)}oex if, for an arbitrary fixed 7 € R and B € B(X),
limy 4 o0 (SUp, 5 disty (Uq (t, 7)B, P)) = 0.

Definition 2 A closed set As;, C Y is said to be (X,Y)-uniformly attractor of the family of
processes {Uy(t,7)}oex if it is (X,Y)-uniformly attracting and it is contained in any closed
(X, Y)-uniformly attracting set A" of the family of processes {Uy(t,7)}oex : Ax C A'.

Definition 3 Define the uniform w-limit set of B by wr, s(B) = V>, Uyex Us; Us (s, 7)B.
This can be characterized by the following: y € w. »(B) < there are sequences {z,} C
B,{on} C Z,{tn} C R, t, — o0 such that Uy, (tn,T)xn — y (n — 00).
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Definition 4 A family of processes {U,(t,T)}sex possessing a compact (X,Y )-uniformly ab-
sorbing set is called (X,Y )-uniformly compact. And a family of processes {Uy(t, T)}sex is called
(X,Y)-uniformly asymptotically compact if it possesses a compact (X,Y)-uniformly attracting
set.

Now let us consider the most interesting case where U, (t,7) satisfies the following cocycle

property: there is a dynamical system {7'(h)|h > 0} on ¥ such that:
(C1) T(h)X =%, Vh € Rt; (C2) translation identity:

Us(t +h, 74+ h) = Upmn)(t,7), Yo X, t>71, T€R, h>0.

Definition 5 The kernel K of the process {U(t,7)} acting on X consists of all bounded complete
trajectories of the process {U(t,7)}: K = {u()|U(t, T)u(r) = u(t), dist(u(t),u(0)) < Cy, ¥t > 7,
T € R}. The set K(s) = {u(s)|u(-) € K} is said to be kernel section at time t = s, s € R.

Definition 6 {U,(t,7)}sex is said to be (X x .Y )-weakly continuous if, for any fixed t > T,
7 € R, the mapping (u,0) — U, (t,T)u is weakly continuous from X x ¥ to Y.

Assumption 1 Let ¥ be a weakly compact set and {Uy(t,7)}sex be (X x X,Y)-weakly con-

tinuous.

Theorem 2 ([15]) Under (C1), (C2) and Assumption 1 with {T(h)}n>0, which is a weakly
continuous semigroup, if {U,(t,7)}sex acting on X is (X,Y)-uniformly asymptotically com-
pact, then it possesses an (X,Y)-uniform attractor As, As, is compact in Y, and attracts the

bounded subset of X in the topology of Y'; moreover,
As = Wr, E(BO) = U ICU(S), Vs € R,
ocx
where By is a bounded neighborhood of the compact (X,Y)-uniformly attracting set in 'Y, i.e.,
By is a bounded (X,Y)-uniformly absorbing set of {U,(t,T)}sex, and K,(s) is the section at
t = s of kernel K, of the process {U,(t,7)} with symbol o € ¥. Furthermore, KC, is nonempty
for all o € X.

4. (H, H)-uniform attractor

We denote by L (R, L2(£2)) the space L2 _(R; L2(2)) endowed with a local weak convergence

loc loc

topology. Let H,,(g) be the hull of g in L3 (R; L2(R2)), i.e., the closure of the set {g(h+s)|h € R}

loc

in L2"(R; L2(2)), and g(z,s) € L3(R; L*(Q)).

loc

Proposition 1 ([16]) If X is reflective separable, ¢ € L2(R; X), then

() Forall g1 € Hu(o). |l 1 12,50 @ [
(ii) The translation group {T'(h)} is weakly continuous on H,,(¢);

(iii) T(h)Hw(p) = Hu(p) for h > 0;
(iv) Huy(p) is weakly compact.
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Because of the uniqueness of solution, the following translation identity holds
Us(t +h, 7+ h) = Upmnys(t,7), Yo € Hu(g), t>7, TER, h >0. (21)

Theorem 3 The family of processes {Uy(t,T)}sen,, (g) corresponding to problem (i) is (H x
Huw(g), H)-weakly continuous, and (H x H,(g), V N LP+2(Q))-weakly continuous.

Proof For any fixed ¢; and 7, ¢t;1 > 7, 7 € R, let u,;y, — u, weakly in H, and o,, — 09
weakly in H,(g) as m — oo. Denote by un(t) = Us,, (¢, 7)turm. The same estimate for uy,
given in the Galerkin approximations in Section 2 is valid for the w,,(¢) here. Therefore, for
some subsequence {n} C {m} and w(t), we have for any ¢t;, 7 < t1 < T, up(t1) — w(t1)
weakly in H and V N LP*2(Q). And the sequence {u,(s)}, 7 < s < T, is bounded in the class
L>(r,T; H) N L2(7,T; V) N LA*2(7, T; LP+2(Q)). Denote by 71 (s), and no(s) the weak limits
of —Auy,(s) and F(uy,(s)) in L?(7,T; V') and L%(T,T; L%(Q)), respectively. So we get the
equation for w(s)

Oyw + v + aw + Ny = 0.

By the same method as in Theorem 1.3.1 in [14] and the proof of the Theorem 1, we know that

m = —Aw and g = F(w), which means that w(s) in L>(r, T; H)NL?(r, T; V)NLP2(r, T; LP+2(Q))
is the weak solution of (1) with initial condition u,. Due to the uniqueness of the solution, we
state that Uy, (t1, T)urn — Uy (t1, T)u, weakly in H and V N LAT2(Q). For any other subse-
quences {ury } and {0, }, we have u,, — u, weakly in H and o,/ — 0¢. By the same process
we obtain the analogous relation Uy, (t1, T)trn: — Uy, (t1, T)u, weakly in H and V N LAT2(Q)
holds. Then it can be easily seen that for any weakly convergent initial sequence {u,,m} € H
and weakly convergent sequence {0,,} € Hy(g), we have U, (¢, r)Urm — U, (t1, T)u, weakly in

H and V N LA+2(Q).

Theorem 4 The family of processes {Us(t,T)}secm, (g) corresponding to problem (i) has a
bounded (H,V NLA*2(Q))-uniformly absorbing set.

Proof Taking the inner product of (i); with w, with respect to an external force o € H,(g),

yields
1d

1 a
2 2 2 B+2 _ 2 2
gl v P alulf + ol = [ o0y < gl + Flul (22)

that is,
d , 1
S+ 2w ) u ? +alul} + 20l 12 < Tlo(0). (23)
Applying the Gronwall Lemma, we get
1 t
(O < urlfe ¢ 45 [ et o(s) s
< Jurlze "+ C g7z -

From this inequality, we know that the family of processes {Uy(t,7)}oen, (g has an (H, H)-
uniformly absorbing set, i.e., for an arbitrary bounded subset B in H, there exists Ty = T1(B, 7)
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such that

lu(t)|3 < polll g Hig), for all t > T4, u, € B,o € Hy(g). (24)

Taking t > T3, integrating (23) on [t,t + 1] and combining with (24), we have

t+1
/ [ u(s) 17 +lu(s)[3 + [u(s)l512)ds < Clpo, |l g 1I7s), for all ¢ > T1. (25)
t
On the other hand, taking the inner product of (i); with u; yields

|Ut|§

1 1
2 B+2 _ 2 2
= Hugdr < — —lo(t)|5.
g 0P 5 B+ g gl = [ 0w < Ghuld + 5100
Therefore,
2
[H w |[* +ul3 + [ul5 3] < Clo(b)]3. (26)
From (25) and (26), by virtue of the uniform Gronwall Lemma, we get

@) |17 +u(®)]3 + [u®)]515 < p, forall ¢ > Ty + 1, (27)

where p is a positive constant. From (27), we get the (H,V NLA*2(Q))-uniformly absorbing set
and thus complete the proof. O
From Theorem 4 and the compactness of the Sobolev embedding V' < H, and Theorem 2

we have the following result:

Corollary 1 The family of processes {U, (t,T) }oe1,, (g) generated by (i) with initial datau, € H
has an (H, H)-uniform attractor Ay, which is compact in H and attracts every bounded subset
of H in the topology of H. Moreover,

Ao =wrauBo) = | J Kols), Vs €R,
oc€Hw(g)

where By is the (H, H)-uniformly absorbing set in H, and K, (s) is the section at t = s of kernel
Ko of the processes {U,(t,7)} with symbol o € Hy(g).
5. (H,V)-uniform attractor

In this section, we prove the existence of the (H, V')-uniform attractor. For this purpose, first

we will give a priori estimate about u; endowed with an H-norm.

Lemma 4 For any bounded subset B C H, any 7 € R and o € H,(g), there exists a positive

constant T = T(B,T) > 7, and a positive constant py, such that

lu(s)|3 < p1, for any u, € B, s > T, 0 € Hu(g),
where u;(s) = & (U, (t,7)ur)|i=s and py is a positive constant which is independent of B and o.
Proof By differentiating (i); with the external force o in time, we get

Uy — vAUy + aug + F'(u)uy = o' (t).
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Taking the inner product of above equation with u,; yields

1d
5 dt|ut|2 + v ug ||? +aluz = — / (F'(u)uy) - ugda —|—/ o' (t)upd.
Q

By Lemma 3, fQ ) - ugdz is non-positive definite, hence we have

d 1
el < 710" (013 + 2afu3
Taking the inner product of (i)l with u; yields

| |ﬁ+2

L hupe+ B+2

|Ut|§

2dt 2dt| ul3 + +2dt
— [ oo < JloB + 5lul.
0 2 2
Therefore,

2 B+2 2
+ + t)|5.
| t|2+2dt [l 2dt| ul3 ﬁ+2dt| |ﬁ+2—2 o)z

Integrating (29) from ¢ to t + 1, and according to Theorem 4, we have

t+1
/ |ut|§ S C7
t

Combining (28) with (30), and using the uniform Gronwall Lemma, we get

for ¢ large enough.

luel3 < p1

for ¢ large enough, where p; is a positive constant independent of o.
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(28)

(29)

(30)

Theorem 5 The family of processes {Us (t,T)} e, (g) corresponding to problem (1) with initial

data u, € H is (H,V)-uniformly asymptotically compact, i.e., there exists a compact uniformly

attracting set in V', which attracts any bounded subset B C H in the topology of V.

Proof Let By be an (H,V)-uniformly absorbing set obtained in Theorem 4. Then we need
only to show that: for any {u-,} C By, {on} C Huw(g) and t, — oo, {Us, (tn, T)Urn 152 is

precompact in V.

In fact, from Corollary 1, we know that {Us,, (tn, T)urn o2, is precompact in H. Without

loss of generality, we assume that {Us, (tn, T)urn }o2; is a Cauchy sequence in H. Now, we prove

that

{Usy, (tn, T)turn}oeq is a Cauchy sequence in V.

Let uZ(tn) = Uy, (tn, T)trn. We have

n

v ug (tn) = ug (tn) 1= v(Aug (tn) — AuZ (tm), uf” (tn) — ug (tm))

m

d
—ul" (tn) + i —ul" (b)) — aud™ (ty) + aud™ (tp)—

B(up™ (tn)) + B(ugy (tm)) + 0n — om, up” (tn) — up (tm

d d
< [ g ) = o )] 1z (6) = 1) + 0 / 0 (bn) = i (b +

(31)
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/Q 10 — ] 1457 (E) — U5 ()|
d o d o o o o g
< ‘&un” (tn) = Uy (tm) 2|unn (tn) = Up," (tm)|2 + |Un - Um|2|un” (tn) = Up," (tm)|2+

de ™

alug () — ug (tm )13,
which, combined with Lemma 4, yields (31) immediately.

Theorem 6 The family of processes {Us (t,T) e, (g) corresponding to problem (i) with initial
data u, € H has an (H,V)-uniform attractor Ay, where Ay is compact in V and attracts every
bounded subset B of H in the topology of V. Moreover,
Al =wes,Bo)= | Kols), VseR,
0c€Hw(9)

where By is the (H,V)-uniformly absorbing set, and K, (s) is the section at t = s of kernel K,
of the processes {U,(t,7)} with symbol o € H.,(g).

6. Asymptotic smoothing effect

Theorem 7 The (H, H)-uniform attractor Ay is equivalent with the (H,V)-uniform attractor
.Al, i.e., Ao - Al.

Proof First, let us prove Ay C A;. Since A; is bounded in V' and the imbedding V — H
is continuous, we see Ay is bounded in H. Also we deduce from Theorem 6 that A; attracts
uniformly all bounded sets of H and thus .4; can be regarded as a bounded uniformly attracting
set for {Uy(t,7)}ser, () in H. By the minimality property of Ao, we obtain Ay C Aj.

Now, let us prove A; C Aj. First, we want to prove Ag is (H,V)-uniform attracting for the
family of processes {U,(t,T)}sex. That is to say, we will prove for any 7 € R and B € B(H),

lim (supdisty (U, (t,7)B, Ag)) = 0. (32)

t—+4o0 tsexm

Suppose (32) is not true. Then there are 7 € R, B € B(H), g9 > 0, 0, € Hyw(g) and ¢, — +00

as n — +oo, such that, for all n > 1,

diStV(UU (tnv T)Ba AO) > 2505

n

which implies that, there exists v,, € B such that

diStv(UU (tn,T)Un,.Ao) > €p. (33)

n

By Theorem 5, there are w € V and a subsequence of Uy, (t,, 7)v, (not relabeled) such that

Uy, (tn, ), — w in V. (34)

n

On the other hand, by Corollary 1, there are v € H and a subsequence of U, (t,,7)v, (not
relabeled) such that

Us, (tn, T)vp, — v in H. (35)
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By (34) and (35), we find that v = w, and hence by (34) we have

Uy, (tn, T)vp, — v in V. (36)
Since Ag attracts B in H by Corollary 1, we get

lim disty (Us, (tn, T)vn, Ao) = 0. (37)

n—-+4oo
By (35), (37) and the compactness of Ag in H, we must have v € Ay, which along with (36)
shows that

lim disty (Uy, (tn, T)Un,Ao) < lim disty (Us,, (tn, 7)vn,v) =0, (38)

n—-+4oo n—+00
a contradiction with (33). So A is (H,V)-uniform attracting for the family of processes
{Uy(t,7)}sex. By minimality property of A;, we obtain A; C Ap.

Theorem 7 shows that the L2-uniform attractor is actually the H!-uniform attractor.
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