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Abstract This paper is concerned with the three-dimensional non-autonomous Brinkman-

Forchheimer equation. By Galerkin approximation method, we give the existence and uniqueness

of weak solutions for non-autonomous Brinkman-Forchheimer equation. And we investigate the

asymptotic behavior of the weak solution, the existence and structures of the (H,H)-uniform

attractor and (H, V )-uniform attractor. Then we prove that an L2-uniform attractor is actually

an H1-uniform attractor.
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1. Introduction

Consider now the non-autonomous Brinkman-Forchheimer equation:






















ut − ν∆u + au + b|u|βu + ∇p = g(t, x), in Ω × (τ, T );

∇ · u = 0, in Ω × (τ, T );

u(x, τ) = uτ (x), in Ω;

u(x, t) = 0, in ∂Ω × (τ, T ),

(1)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, u = (u1, u2, u3) is the fluid

velocity vector, ν is the Brinkman coefficient, a > 0 is the Darcy coefficient, b > 0 is the

Forchheimer coefficient, p is the pressure, and β > 1 is a constant.

The model equations (Brinkman, Darcy and Forchheimer equations) describing the flow in a

porous medium have been extensively studied in [1], and several papers have been published [2–

10]. We should note that most of these papers have been focused on the question of continuous

dependence of solutions on the coefficients ν, b. In [11] and [12], Davut, Ouyang and Yang

proved the existence of global attractor in H1
0 for autonomous Brinkman-Forchheimer equation,

respectively, with respect to initial data u0 ∈ V .
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In this paper, we suppose the external force g(t, x) is uniformly bounded in L2(Ω) with

respect to t ∈ R, i.e., there exists a positive constant K, such that,

sup
t∈R

‖ g(t, x) ‖L2(Ω)≤ K, (2)

then g(t) ∈ L2
b(R, L2(Ω)). And furthermore, suppose the weak differential of g with respect to

t, denoted by h(t), is in the space L2
b(R, L2(Ω)). Here L2

b(R, L2(Ω)) is the translation bounded

subspace in L2
loc(R, L2(Ω)), i.e., g(t) ∈ L2

b(R, L2(Ω)),

‖ g ‖2
L2

b
=‖ g ‖2

L2
b
(R,L2(Ω))= sup

t∈R

∫ t+1

t

‖ g ‖2
L2(Ω) ds < +∞. (3)

In this paper, we focus on the existence and the structures of the (H, H) and (H, V )-uniform

attractor. First, by the Galerkin approximation method, we give the existence of weak solutions

for the non-autonomous three dimensional Brinkman-Forchheimer equation. After that, we

explore the asymptotic behavior of the solutions. The existence and structures of the (H, H)-

uniform attractor and (H, V )-uniform attractor are obtained. Finally, the asymptotic smoothing

effect of the solutions is addressed.

The mathematical setting of our problem is similar to that of the Navier-Stokes equations.

Let us introduce the following spaces

V = {u ∈ (C∞
0 (Ω))3 : divu = 0}, H = cl(L2(Ω))3V , V = cl(H1

0
(Ω))3V ,

where clX denotes the closure in the space X . H and V endowed, respectively, with the inner

products

(u, v) =

∫

Ω

u · vdx, u, v ∈ H,

and

((u, v)) =

3
∑

i=1

∫

Ω

∇ui · ∇vidx, u, v ∈ V,

and norm | · |2 = (·, ·)1/2, ‖ · ‖= ((·, ·))1/2.

In this paper, Lp(Ω) = (Lp(Ω))3, and we use | · |p to denote the norm in Lp(Ω).

Let P̃ be the orthogonal projection from L2(Ω) onto H . Then applying P̃ to (1), we obtain

∂u

∂t
+ νAu + au + B(u) = g,

u(τ) = uτ ,

(4)

where A = P̃ (−∆) is the Stokes operator with the domain D(A) = (H2(Ω))3 ∩ V and B(u) =

P̃F (u), while F (u) = b|u|βu.

Throughout this paper, we use the following notations: let X be a Banach space, X∗ be the

dual space of X , |u| the modular of u, (·, ·) be the inner product in L2(Ω), and 〈·, ·〉 be the duality

product between X and X∗, and C an arbitrary positive constant, which may be different from

line to line.

2. Existence and uniqueness of weak solution
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The following lemma is a compactness result, whose proof can be found in [13].

Lemma 1 Let X0, X be Hilbert spaces satisfying a compact imbedding X0 →֒ X . Let 0 < γ ≤ 1

and {vj}
∞
j=1 be a sequence in L2(R; X0) satisfying

sup
j

(

∫ +∞

−∞

‖ vj ‖2
X0

dt
)

< ∞, sup
j

(

∫ +∞

−∞

|τ |2γ ‖ v̂j ‖2
X dτ

)

< ∞,

where v̂(τ) =
∫ +∞

−∞
v(t) exp(−2πiτt)dt is the Fourier transformation of v(t) on the time vari-

able. Then there exists a subsequence of {vj}
∞
j=1 which converges strongly in L2(R; X) to some

v ∈ L2(R; X).

Lemma 2 ([14]) Let O be a bounded domain in Rn × R. Given a sequence {gn} with

{gn} ∈ Lq(O) and 1 < q < ∞. Assume that ‖ gn ‖Lq(O)≤ C, where C is independent of

n, gn → g (n → ∞) almost everywhere in O, and g ∈ Lq(O). Then gn ⇁ g (n → ∞) weakly in

Lq(O).

Theorem 1 For any τ , T ∈ R, suppose Ω is a bounded domain of R3, g(t) ∈ L2
b(R, L2(Ω)), and

uτ ∈ H . Then there exists a unique solution u(·) ∈ L∞(τ, T ; H)∩L2(τ, T ; V )∩Lβ+2(τ, T ;Lβ+2(Ω)).

Proof We employ the Galerkin approximation to prove the theorem. For simplicity, we take

τ = 0, and u(x, 0) = u0(x). Since V is separable and V is dense in V , there exists a sequence

ω1, ω2, . . . , ωm of elements of V , which is free and total in V . For each m we define an approximate

solution um as follows:

um =

m
∑

i=1

gim(t)ωi(x),

and

(u′
m(t), ωj) + ν(∇um(t),∇ωj) + a(um(t), ωj) + (b|um|βum(t), ωj) = (g(t), ωj), (5)

t ∈ [0, T ], j = 1, 2, . . . , m, and u0m → u0 in H , as m → ∞.

Multiplying on both sides of (5) by gjm(t) and summing over j = 1, . . . , m, we have

1

2

d

dt
|um|22 + ν ‖ um ‖2 +a|um|22 + b|um|β+2

β+2 ≤
1

2a
|g(t)|22 +

a

2
|um|22,

so
d

dt
|um|22 + 2ν ‖ um ‖2 +a|um|22 + 2b|um|β+2

β+2 ≤
1

a
|g(t)|22, (6)

and
d

dt
|um|22 + a|um|22 ≤

1

a
|g(t)|22. (7)

By Gronwall’s Lemma, we obtain

|um(t)|22 ≤ |um(0)|22e
−at +

1

a

∫ t

0

e−a(t−s)|g(s)|22ds

≤ |um(0)|22e
−at + C ‖ g ‖2

L2
b
, (8)

and
∫ t

0

e−a(t−s)|g(s)|22ds ≤

∫ t

t−1

e−a(t−s)|g(s)|22ds +

∫ t−1

t−2

e−a(t−s)|g(s)|22ds + · · ·



66 X. L. SONG and Y. R. HOU

≤

∫ t

t−1

|g(s)|22ds + e−a

∫ t−1

t−2

|g(s)|22ds + e−2a

∫ t−2

t−3

|g(s)|22ds + · · ·

≤ (1 + e−a + e−2a + · · · ) ‖ g ‖2
L2

b

≤
1

1 − e−a
‖ g ‖2

L2
b

≤ C ‖ g ‖2
L2

b
.

Integrating (6) in s from 0 to T , T ≥ 0, we obtain

sup
s∈[0,T ]

|um(s)|22 + 2ν

∫ T

0

‖ um(s) ‖2 ds + a

∫ T

0

|um(s)|22ds + 2b

∫ T

0

|um(s)|β+2
β+2ds

≤
1

a

∫ T

0

|g(s)|22ds + |u0m|22. (9)

From (8) and (9), we deduce that the sequence {um} is a bounded set of L∞(0, T ; H) ∩

L2(0, T ; V ) ∩ Lβ+2(0, T ;Lβ+2(Ω)).

Denote by ũm the function from R into V , which is equal to um on [0, T ] and to 0 on

the complement of this interval. Similarly, we prolong gim(t) to R by defining g̃im(t) = 0 for

t ∈ R\[0, T ]. The Fourier transforms on time variable of ũm and g̃im are denoted by ˆ̃um and ˆ̃gim,

respectively.

Note that the approximate solution ũm satisfies

d

dt
(ũm, ωj) = − ν(∇ũm,∇ωj) − (aũm, ωj) − (b|ũm|β ũm, ωj) + (g̃, ωj)+

(u0m, ωj)δ0 − (um(T ), ωj)δT , j = 1, 2, . . . , m, (10)

where δ0 and δT are the Dirac distributions at 0 and T , respectively.

Taking the Fourier transform about the time variable in (10) gives

2πiτ(ˆ̃um, ωj) = (
ˆ̃
hm, ωj) − (b ̂|ũm|βũm, ωj) + (u0m, ωj) − (um(T ), ωj) exp(−2πiT τ), (11)

where ˆ̃
hm denotes the Fourier transform of h̃m,

(h̃m, ωj) = (g̃, ωj) − ν(∇ũm,∇ωj) − (aũm, ωj).

Multiplying (11) by ˆ̃gjm(τ) and summing the results for j = 1, . . . , m, one finds that

2πiτ |ˆ̃um(τ)|22 = (ˆ̃hm, ˆ̃um) − b( ̂|ũm|β ũm, ˆ̃um) + (u0m, ˆ̃um) − (um(T ), ˆ̃um) exp (−2πiT τ). (12)

For any v ∈ L2(0, T ; V ) ∩ Lβ+2(0, T ;Lβ+2(Ω)), we have

(hm(t), v) = (g(t), v) − ν(∇um,∇v) − (aum, v) ≤ C(|g(t)|2+ ‖ um ‖ +|um|2) ‖ v ‖ .

It follows that for any given T > 0
∫ T

0

‖ hm(t) ‖V ′ dt ≤

∫ T

0

C(|g(t)|2+ ‖ um ‖ +|um|2)dt ≤ C,

and hence

sup
s∈R

‖ ˆ̃
hm(s) ‖V ′≤

∫ T

0

‖ hm(t) ‖V ′ dt ≤ C. (13)
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Moreover,
∫ T

0

∣

∣

∣|um|βum

∣

∣

∣

β+2

β+1

dt ≤

∫ T

0

|um|β+1
β+2dt ≤ C,

which implies that

sup
s∈R

∣

∣

∣

̂|um|βum(s)
∣

∣

∣

β+2

β+1

≤ C. (14)

From (9), we have

|um(0)|2 ≤ C, |um(T )|2 ≤ C. (15)

So we deduce from (13)–(15) that

|τ ||ˆ̃um(τ)|22 ≤ C(‖ ˆ̃um(τ) ‖ +|ˆ̃um(τ)|β+2). (16)

For any γ fixed, 0 < γ < 1
4 , we observe that

|τ |2γ ≤ C
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Thus
∫ +∞

−∞

|τ |2γ |ˆ̃um(τ)|22dτ ≤C

∫ +∞

−∞

1 + |τ |

1 + |τ |1−2γ
|ˆ̃um(τ)|22dτ

≤C

∫ +∞

−∞

|ˆ̃um(τ)|22dτ + C

∫ +∞

−∞

‖ ˆ̃um(τ) ‖

1 + |τ |1−2γ
dτ+

C

∫ +∞

−∞

|ˆ̃um(τ)|β+2

1 + |τ |1−2γ
dτ. (17)

Thanks to the Parseval equality and (9), the first integral on the right-hand side of (17) is

bounded uniformly on m.

By the Schwarz inequality, Parseval equality and (9), we have

∫ +∞

−∞

‖ ˆ̃um ‖

1 + |τ |1−2γ
dτ ≤

(

∫ +∞

−∞

dτ

(1 + |τ |1−2γ)2

)
1
2
(

∫ T

0

‖ um(τ) ‖2 dτ
)

1
2

≤ C

for 0 < γ < 1
4 .

Similarly, when 0 < γ < 1
2(β+2) , we have

∫ +∞

−∞

|ˆ̃um(τ)|β+2

1 + |τ |1−2γ
dτ ≤

(

∫ +∞

−∞

dτ

(1 + |τ |1−2γ)
β+2

β+1

)
β+1

β+2
(

∫ +∞

−∞

|ˆ̃um(τ)|β+2
β+2dτ

)
1

β+2

≤ C
(

∫ +∞

−∞

|ũm(τ)|
β+2

β+1

β+2dτ
)

β+1

β+2

≤ CT
β

β+2

(

∫ T

0

|um(τ)|β+2
β+2dτ

)
1

β+2

.

It follows from (17) that
∫ +∞

−∞

|τ |2γ |ˆ̃um(τ)|22dτ ≤ C. (18)
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Now, since F (um)um = b|um|β+2 ≤ b|um|β+2 + δ|um|2, and δ > 0 is a positive constant, we

have |F (um)| ≤ C(|um|β+1 + |um|). Since Lβ+2(Ω) →֒ L
β+2

β+1 (Ω), we obtain

∫ T

0

∫

Ω

|F (um)|
β+2

β+1 dxdt ≤ C

∫ T

0

∫

Ω

[|um|β+1 + |um|]
β+2

β+1 dxdt

≤ C

∫ T

0

∫

Ω

|um|β+2dxdt + C

∫ T

0

∫

Ω

|um|
β+2

β+1 dxdt

≤ C

∫ T

0

∫

Ω

|um|β+2dxdt + C

∫ T

0

∫

Ω

|um|β+2dxdt.

From (9) we know that {um} is bounded in Lβ+2(0, T ;Lβ+2(Ω)), so {F (um)} is bounded in

L
β+2

β+1 (0, T ;L
β+2

β+1 (Ω)).

Since ∀v ∈ L2(0, T ; V ), we have

∫ T

0

∫

Ω

−ν∆um · vdxdt = ν

∫ T

0

∫

Ω

∇um · ∇vdxdt

≤ ν
(

∫ T

0

‖ um ‖2
)

1
2
(

∫ T

0

‖ v ‖2
)

1
2 .

It follows from (9) that {um} is bounded in L2(0, T ; V ), so {−ν∆um} ∈ L2(0, T ; V ′). There-

fore, by taking a subsequence when necessary, we can assume that there exists a function

u(·) ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lβ+2(0, T ;Lβ+2(Ω)) such that um(s) ⇁ u(s) weakly in

L2(0, T ; V ), weakly in Lβ+2(0, T ;Lβ+2(Ω)), and weak-star in L∞(0, T ; H) as n → ∞. So,

as n → ∞, −ν∆um(s) ⇁ −ν∆u(s) weakly in L2(0, T ; V ′), and ∂tum(s) ⇁ ∂tu(s) weakly in

L
β+2

β+1 (0, T ; H−s(Ω)) for some s > 0. Assume F (um(s)) ⇁ η(s) weakly in L
β+2

β+1 (0, T ;L
β+2

β+1 (Ω))

for some η(s) ∈ L
β+2

β+1 (0, T ;L
β+2

β+1 (Ω)). Passing to the limit in (1)1 with respect to um, we obtain

the equality

∂tu − ν∆u + au + η = g(t)

in the space L
β+2

β+1 (0, T ; H−s(Ω)).

By Lemma 1 and (18), there exists a subsequence of {um}∞m=1, still denoted by itself, such

that um → u strongly in L2(0, T ; H), and so um(x, s) → u(x, s) for almost every (x, s) ∈ Ω×[0, T ]

as m → ∞. Since F (u) ∈ C0(R), F (um(x, s)) → F (u(x, s)) (m → ∞) for almost every (x, s) ∈

Ω × [0, T ]. On the other hand, the sequence F (um) is bounded in L
β+2

β+1 (0, T ;L
β+2

β+1 (Ω)). From

Lemma 2, we conclude that F (um) ⇁ F (u) (m → ∞) weakly in L
β+2

β+1 (0, T ;L
β+2

β+1 (Ω)), hence

η(s) = F (u(x, s)). So u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lβ+2(0, T ;Lβ+2(Ω)) is a solution of (1).

Finally, let us verify the uniqueness of the solution. Let u1, u2 be two solutions of (1) with

the initial data u1|t=0 = u1(0), u2|t=0 = u2(0), respectively. Subtracting the corresponding to

equation (4)1, we obtain

∂t(u1 − u2) + νA(u1 − u2) + a(u1 − u2) + B(u1) − B(u2) = 0. (19)

Taking the inner product of (19) with u1 − u2, we obtain

1

2

d

dt
|u1 − u2|

2
2 + ν ‖ u1 − u2 ‖2 +a|u1 − u2|

2
2 = −〈F (u1) − F (u2), u1 − u2〉. (20)
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Since the function F (u) is monotone, (F (u) − F (v), u − v) ≥ 0, and hence from (20) we obtain

d

dt
|u1 − u2|

2
2 + 2a|u1 − u2|

2
2 ≤ 0.

Using the Gronwall Lemma, we obtain

|u1 − u2|
2
2 ≤ e−2at|u1(0) − u2(0)|22.

So the uniqueness of the solution is proved.

Lemma 3 Let F (u) = α|u|βu. Then

(i) F is continuously differentiable in R3 and for u = (u1, u2, u3) in R3 the Jacobian matrix

is given by:

F ′(u) = α|u|β−2







βu2
1 + |u|2 βu1u2 βu1u3

βu1u2 βu2
2 + |u|2 βu2u3

βu1u3 βu2u3 βu2
3 + |u|2






.

Further, F ′(u) is positive definite and for any u, v, w ∈ R3:

|(F ′(u)v) · w| ≤ c|u|β |v||w|,

where c is a positive constant depending on β and α.

(ii) F is monotonic in R3, i.e., for any u, v ∈ R3:

(F (u) − F (v), u − v) ≥ 0.

Proof (i) can be obtained by simple calculations, and (ii) is an immediate consequence of (i).

3. Preliminaries about processes

Let Σ be a metric space, X, Y be two spaces, and Y ⊂ X continuously. {Uσ(t, τ)}σ∈Σ is a

family of processes in Banach space X . Denote by B(X) the set of all bounded subsets of X .

Rτ = [τ, +∞).

Definition 1 A set B0 ∈ B(Y ) is said to be (X, Y )-uniformly absorbing for the family of pro-

cesses {Uσ(t, τ)}σ∈Σ if, for any τ ∈ R and every B ∈ B(X), there exists t0 = t0(τ, B) ≥ τ such

that
⋃

σ∈Σ Uσ(t, τ)B ⊂ B0 for all t ≥ t0. A set P belonging to Y is said to be (X, Y )-uniformly

attracting for the family of processes {Uσ(t, τ)}σ∈Σ if, for an arbitrary fixed τ ∈ R and B ∈ B(X),

limt→+∞(supσ∈Σ distY(Uσ(t, τ)B, P)) = 0.

Definition 2 A closed set AΣ ⊂ Y is said to be (X, Y )-uniformly attractor of the family of

processes {Uσ(t, τ)}σ∈Σ if it is (X, Y )-uniformly attracting and it is contained in any closed

(X, Y )-uniformly attracting set A′ of the family of processes {Uσ(t, τ)}σ∈Σ : AΣ ⊂ A′.

Definition 3 Define the uniform ω-limit set of B by ωτ, Σ(B) =
⋂

t≥τ

⋃

σ∈Σ

⋃

s≥t Uσ(s, τ)B.

This can be characterized by the following: y ∈ ωτ, Σ(B) ⇔ there are sequences {xn} ⊂

B, {σn} ⊂ Σ, {tn} ⊂ Rτ , tn → ∞ such that Uσn
(tn, τ)xn → y (n → ∞).
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Definition 4 A family of processes {Uσ(t, τ)}σ∈Σ possessing a compact (X, Y )-uniformly ab-

sorbing set is called (X, Y )-uniformly compact. And a family of processes {Uσ(t, τ)}σ∈Σ is called

(X, Y )-uniformly asymptotically compact if it possesses a compact (X, Y )-uniformly attracting

set.

Now let us consider the most interesting case where Uσ(t, τ) satisfies the following cocycle

property: there is a dynamical system {T (h)|h ≥ 0} on Σ such that:

(C1) T (h)Σ = Σ, ∀h ∈ R+; (C2) translation identity:

Uσ(t + h, τ + h) = UT (h)σ(t, τ), ∀σ ∈ Σ, t ≥ τ, τ ∈ R, h ≥ 0.

Definition 5 The kernel K of the process {U(t, τ)} acting on X consists of all bounded complete

trajectories of the process {U(t, τ)}: K = {u(·)|U(t, τ)u(τ) = u(t), dist(u(t), u(0)) ≤ Cu, ∀t ≥ τ ,

τ ∈ R}. The set K(s) = {u(s)|u(·) ∈ K} is said to be kernel section at time t = s, s ∈ R.

Definition 6 {Uσ(t, τ)}σ∈Σ is said to be (X × Σ, Y )-weakly continuous if, for any fixed t ≥ τ ,

τ ∈ R, the mapping (u, σ) → Uσ(t, τ)u is weakly continuous from X × Σ to Y .

Assumption 1 Let Σ be a weakly compact set and {Uσ(t, τ)}σ∈Σ be (X × Σ, Y )-weakly con-

tinuous.

Theorem 2 ([15]) Under (C1), (C2) and Assumption 1 with {T (h)}h≥0, which is a weakly

continuous semigroup, if {Uσ(t, τ)}σ∈Σ acting on X is (X, Y )-uniformly asymptotically com-

pact, then it possesses an (X, Y )-uniform attractor AΣ, AΣ is compact in Y , and attracts the

bounded subset of X in the topology of Y ; moreover,

AΣ = ωτ, Σ(B0) =
⋃

σ∈Σ

Kσ(s), ∀s ∈ R,

where B0 is a bounded neighborhood of the compact (X, Y )-uniformly attracting set in Y , i.e.,

B0 is a bounded (X, Y )-uniformly absorbing set of {Uσ(t, τ)}σ∈Σ, and Kσ(s) is the section at

t = s of kernel Kσ of the process {Uσ(t, τ)} with symbol σ ∈ Σ. Furthermore, Kσ is nonempty

for all σ ∈ Σ.

4. (H, H)-uniform attractor

We denote by L
2,w
loc (R, L2(Ω)) the space L2

loc(R; L2(Ω)) endowed with a local weak convergence

topology. Let Hw(g) be the hull of g in L
2,w
loc (R; L2(Ω)), i.e., the closure of the set {g(h+s)|h ∈ R}

in L
2,w
loc (R; L2(Ω)), and g(x, s) ∈ L2

b(R; L2(Ω)).

Proposition 1 ([16]) If X is reflective separable, ϕ ∈ L2
b(R; X), then

(i) For all ϕ1 ∈ Hw(ϕ), ‖ ϕ1 ‖2
L2

b

≤‖ ϕ ‖2
L2

b

;

(ii) The translation group {T (h)} is weakly continuous on Hw(ϕ);

(iii) T (h)Hw(ϕ) = Hw(ϕ) for h ≥ 0;

(iv) Hw(ϕ) is weakly compact.



Uniform attractors for a non-autonomous Brinkman-Forchheimer equation 71

Because of the uniqueness of solution, the following translation identity holds

Uσ(t + h, τ + h) = UT (h)σ(t, τ), ∀σ ∈ Hw(g), t ≥ τ, τ ∈ R, h ≥ 0. (21)

Theorem 3 The family of processes {Uσ(t, τ)}σ∈Hw(g) corresponding to problem (i) is (H ×

Hw(g), H)-weakly continuous, and (H ×Hw(g), V ∩ Lβ+2(Ω))-weakly continuous.

Proof For any fixed t1 and τ , t1 ≥ τ , τ ∈ R, let uτm ⇀ uτ weakly in H , and σm ⇀ σ0

weakly in Hw(g) as m → ∞. Denote by um(t) = Uσm
(t, τ)uτm. The same estimate for um

given in the Galerkin approximations in Section 2 is valid for the um(t) here. Therefore, for

some subsequence {n} ⊂ {m} and w(t), we have for any t1, τ ≤ t1 ≤ T , un(t1) ⇁ w(t1)

weakly in H and V ∩ Lβ+2(Ω). And the sequence {un(s)}, τ ≤ s ≤ T , is bounded in the class

L∞(τ, T ; H) ∩ L2(τ, T ; V ) ∩ Lβ+2(τ, T ;Lβ+2(Ω)). Denote by η1(s), and η0(s) the weak limits

of −∆un(s) and F (un(s)) in L2(τ, T ; V ′) and L
β+2

β+1 (τ, T ;L
β+2

β+1 (Ω)), respectively. So we get the

equation for w(s)

∂tw + νη1 + aw + η0 = σ0.

By the same method as in Theorem 1.3.1 in [14] and the proof of the Theorem 1, we know that

η1 = −∆w and η0 = F (w), which means that w(s) in L∞(τ, T ; H)∩L2(τ, T ; V )∩Lβ+2(τ, T ;Lβ+2(Ω))

is the weak solution of (1) with initial condition uτ . Due to the uniqueness of the solution, we

state that Uσn
(t1, τ)uτn ⇁ Uσ0

(t1, τ)uτ weakly in H and V ∩ Lβ+2(Ω). For any other subse-

quences {uτn′} and {σn′}, we have uτn′ ⇁ uτ weakly in H and σn′ ⇁ σ0. By the same process

we obtain the analogous relation Uσn′(t1, τ)uτn′ ⇁ Uσ0
(t1, τ)uτ weakly in H and V ∩ Lβ+2(Ω)

holds. Then it can be easily seen that for any weakly convergent initial sequence {uτm} ∈ H

and weakly convergent sequence {σm} ∈ Hw(g), we have Uσm(t1,τ)uτm ⇁ Uσ0
(t1, τ)uτ weakly in

H and V ∩ Lβ+2(Ω).

Theorem 4 The family of processes {Uσ(t, τ)}σ∈Hw(g) corresponding to problem (i) has a

bounded (H, V ∩ Lβ+2(Ω))-uniformly absorbing set.

Proof Taking the inner product of (i)1 with u, with respect to an external force σ ∈ Hw(g),

yields
1

2

d

dt
|u|22 + ν ‖ u ‖2 +a|u|22 + b|u|β+2

β+2 =

∫

Ω

σ(t)u ≤
1

2a
|σ(t)|22 +

a

2
|u|22, (22)

that is,
d

dt
|u|22 + 2ν ‖ u ‖2 +a|u|22 + 2b|u|β+2

β+2 ≤
1

a
|σ(t)|22. (23)

Applying the Gronwall Lemma, we get

|u(t)|22 ≤ |uτ |
2
2e

−a(t−τ) +
1

a

∫ t

τ

e−a(t−s)|σ(s)|22ds

≤ |uτ |
2
2e

−a(t−τ) + C ‖ g ‖2
L2

b
.

From this inequality, we know that the family of processes {Uσ(t, τ)}σ∈Hw(g) has an (H, H)-

uniformly absorbing set, i.e., for an arbitrary bounded subset B in H , there exists T1 = T1(B, τ)



72 X. L. SONG and Y. R. HOU

such that

|u(t)|22 ≤ ρ0(‖ g ‖2
L2

b
), for all t ≥ T1, uτ ∈ B, σ ∈ Hw(g). (24)

Taking t ≥ T1, integrating (23) on [t, t + 1] and combining with (24), we have
∫ t+1

t

[‖ u(s) ‖2 +|u(s)|22 + |u(s)|β+2
β+2]ds ≤ C(ρ0, ‖ g ‖2

L2
b
), for all t ≥ T1. (25)

On the other hand, taking the inner product of (i)1 with ut yields

|ut|
2
2 +

ν

2

d

dt
‖ u ‖2 +

a

2

d

dt
|u|22 +

b

β + 2

d

dt
|u|β+2

β+2 =

∫

Ω

σ(t)utdx ≤
1

2
|ut|

2
2 +

1

2
|σ(t)|22.

Therefore,

d

dt
[‖ u ‖2 +|u|22 + |u|β+2

β+2] ≤ C|σ(t)|22. (26)

From (25) and (26), by virtue of the uniform Gronwall Lemma, we get

‖ u(t) ‖2 +|u(t)|22 + |u(t)|β+2
β+2 ≤ ρ, for all t ≥ T1 + 1, (27)

where ρ is a positive constant. From (27), we get the (H, V ∩Lβ+2(Ω))-uniformly absorbing set

and thus complete the proof. 2

From Theorem 4 and the compactness of the Sobolev embedding V →֒ H , and Theorem 2

we have the following result:

Corollary 1 The family of processes {Uσ(t, τ)}σ∈Hw(g) generated by (i) with initial data uτ ∈ H

has an (H, H)-uniform attractor A0, which is compact in H and attracts every bounded subset

of H in the topology of H . Moreover,

A0 = ωτ,Hw(g)(B0) =
⋃

σ∈Hw(g)

Kσ(s), ∀s ∈ R,

where B0 is the (H, H)-uniformly absorbing set in H , and Kσ(s) is the section at t = s of kernel

Kσ of the processes {Uσ(t, τ)} with symbol σ ∈ Hw(g).

5. (H, V )-uniform attractor

In this section, we prove the existence of the (H, V )-uniform attractor. For this purpose, first

we will give a priori estimate about ut endowed with an H-norm.

Lemma 4 For any bounded subset B ⊂ H , any τ ∈ R and σ ∈ Hw(g), there exists a positive

constant T = T (B, τ) ≥ τ , and a positive constant ρ1, such that

|ut(s)|
2
2 ≤ ρ1, for any uτ ∈ B, s ≥ T, σ ∈ Hw(g),

where ut(s) = d
dt (Uσ(t, τ)uτ )|t=s and ρ1 is a positive constant which is independent of B and σ.

Proof By differentiating (i)1 with the external force σ in time, we get

utt − ν∆ut + aut + F ′(u)ut = σ′(t).
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Taking the inner product of above equation with ut yields

1

2

d

dt
|ut|

2
2 + ν ‖ ut ‖

2 +a|ut|
2
2 = −

∫

Ω

(F ′(u)ut) · utdx +

∫

Ω

σ′(t)utdx.

By Lemma 3, −
∫

Ω
(F ′(u)ut) · utdx is non-positive definite, hence we have

d

dt
|ut|

2
2 ≤

1

4a
|σ′(t)|22 + 2a|ut|

2
2. (28)

Taking the inner product of (i)1 with ut yields

|ut|
2
2 +

ν

2

d

dt
‖ u ‖2 +

a

2

d

dt
|u|22 +

b

β + 2

d

dt
|u|β+2

β+2

=

∫

Ω

σ(t)utdx ≤
1

2
|σ(t)|22 +

1

2
|ut|

2
2.

Therefore,
1

2
|ut|

2
2 +

ν

2

d

dt
‖ u ‖2 +

a

2

d

dt
|u|22 +

b

β + 2

d

dt
|u|β+2

β+2 ≤
1

2
|σ(t)|22. (29)

Integrating (29) from t to t + 1, and according to Theorem 4, we have
∫ t+1

t

|ut|
2
2 ≤ C, (30)

for t large enough.

Combining (28) with (30), and using the uniform Gronwall Lemma, we get

|ut|
2
2 ≤ ρ1

for t large enough, where ρ1 is a positive constant independent of σ.

Theorem 5 The family of processes {Uσ(t, τ)}σ∈Hw(g) corresponding to problem (1) with initial

data uτ ∈ H is (H, V )-uniformly asymptotically compact, i.e., there exists a compact uniformly

attracting set in V , which attracts any bounded subset B ⊂ H in the topology of V .

Proof Let B0 be an (H, V )-uniformly absorbing set obtained in Theorem 4. Then we need

only to show that: for any {uτn} ⊂ B0, {σn} ⊂ Hw(g) and tn → ∞, {Uσn
(tn, τ)uτn}

∞
n=1 is

precompact in V .

In fact, from Corollary 1, we know that {Uσn
(tn, τ)uτn}

∞
n=1 is precompact in H . Without

loss of generality, we assume that {Uσn
(tn, τ)uτn}

∞
n=1 is a Cauchy sequence in H . Now, we prove

that

{Uσn
(tn, τ)uτn}

∞
n=1 is a Cauchy sequence in V. (31)

Let uσn
n (tn) = Uσn

(tn, τ)uτn. We have

ν ‖ uσn

n (tn) − uσm

m (tm) ‖2= ν(Auσn

n (tn) − Auσm

m (tm), uσn

n (tn) − uσm

m (tm))

= (−
d

dt
uσn

n (tn) +
d

dt
uσm

m (tm) − auσn

n (tn) + auσm

m (tm)−

B(uσn

n (tn)) + B(uσm

m (tm)) + σn − σm, uσn

n (tn) − uσm

m (tm))

≤

∫

Ω

∣

∣

∣

d

dt
uσn

n (tn) −
d

dt
uσm

m (tm)
∣

∣

∣ |uσn

n (tn) − uσm

m (tm)| + a

∫

Ω

|uσn

n (tn) − uσm

m (tm)|2+



74 X. L. SONG and Y. R. HOU

∫

Ω

|σn − σm| |uσn

n (tn) − uσm

m (tm)|

≤
∣

∣

∣

d

dt
uσn

n (tn) −
d

dt
uσm

m (tm)
∣

∣

∣

2
|uσn

n (tn) − uσm
m (tm)|2 + |σn − σm|2|u

σn
n (tn) − uσm

m (tm)|2+

a|uσn
n (tn) − uσm

m (tm)|22,

which, combined with Lemma 4, yields (31) immediately.

Theorem 6 The family of processes {Uσ(t, τ)}σ∈Hw(g) corresponding to problem (i) with initial

data uτ ∈ H has an (H, V )-uniform attractor A1, where A1 is compact in V and attracts every

bounded subset B of H in the topology of V . Moreover,

A1 = ωτ,Hw(g)(B0) =
⋃

σ∈Hw(g)

Kσ(s), ∀s ∈ R,

where B0 is the (H, V )-uniformly absorbing set, and Kσ(s) is the section at t = s of kernel Kσ

of the processes {Uσ(t, τ)} with symbol σ ∈ Hw(g).

6. Asymptotic smoothing effect

Theorem 7 The (H, H)-uniform attractor A0 is equivalent with the (H, V )-uniform attractor

A1, i.e., A0 = A1.

Proof First, let us prove A0 ⊂ A1. Since A1 is bounded in V and the imbedding V →֒ H

is continuous, we see A1 is bounded in H . Also we deduce from Theorem 6 that A1 attracts

uniformly all bounded sets of H and thus A1 can be regarded as a bounded uniformly attracting

set for {Uσ(t, τ)}σ∈Hw(g) in H . By the minimality property of A0, we obtain A0 ⊂ A1.

Now, let us prove A1 ⊂ A0. First, we want to prove A0 is (H, V )-uniform attracting for the

family of processes {Uσ(t, τ)}σ∈Σ. That is to say, we will prove for any τ ∈ R and B ∈ B(H),

lim
t→+∞

(

sup
σ∈Σ

distV (Uσ(t, τ)B,A0)
)

= 0. (32)

Suppose (32) is not true. Then there are τ ∈ R, B ∈ B(H), ε0 > 0, σn ∈ Hw(g) and tn → +∞

as n → +∞, such that, for all n ≥ 1,

distV (Uσn
(tn, τ)B,A0) ≥ 2ε0,

which implies that, there exists vn ∈ B such that

distV (Uσn
(tn, τ)vn,A0) ≥ ε0. (33)

By Theorem 5, there are w ∈ V and a subsequence of Uσn
(tn, τ)vn (not relabeled) such that

Uσn
(tn, τ)vn → w in V. (34)

On the other hand, by Corollary 1, there are v ∈ H and a subsequence of Uσn
(tn, τ)vn (not

relabeled) such that

Uσn
(tn, τ)vn → v in H. (35)
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By (34) and (35), we find that v = w, and hence by (34) we have

Uσn
(tn, τ)vn → v in V. (36)

Since A0 attracts B in H by Corollary 1, we get

lim
n→+∞

distH(Uσn
(tn, τ)vn,A0) = 0. (37)

By (35), (37) and the compactness of A0 in H , we must have v ∈ A0, which along with (36)

shows that

lim
n→+∞

distV (Uσn
(tn, τ)vn,A0) ≤ lim

n→+∞
distV (Uσn

(tn, τ)vn, v) = 0, (38)

a contradiction with (33). So A0 is (H, V )-uniform attracting for the family of processes

{Uσ(t, τ)}σ∈Σ. By minimality property of A1, we obtain A1 ⊂ A0.

Theorem 7 shows that the L2-uniform attractor is actually the H1-uniform attractor.
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