Uniform Attractors for a Non-Autonomous Brinkman-Forchheimer Equation

Xue Li SONG ${ }^{1, *}$, Yan Ren HOU ${ }^{2}$
1. College of Science, Xi'an University of Science and Technology, Shaanxi 710054, P. R. China;
2. College of Science, Xi'an Jiaotong University, Shaanxi 710049, P. R. China

Abstract

This paper is concerned with the three-dimensional non-autonomous BrinkmanForchheimer equation. By Galerkin approximation method, we give the existence and uniqueness of weak solutions for non-autonomous Brinkman-Forchheimer equation. And we investigate the asymptotic behavior of the weak solution, the existence and structures of the (H, H)-uniform attractor and (H, V)-uniform attractor. Then we prove that an L^{2}-uniform attractor is actually an H^{1}-uniform attractor.

Keywords Galerkin approximation; uniform attractor; non-autonomous Brinkman-Forchheimer equation.

MR(2010) Subject Classification 35B40; 35B41

1. Introduction

Consider now the non-autonomous Brinkman-Forchheimer equation:

$$
\begin{cases}u_{t}-\nu \Delta u+a u+b|u|^{\beta} u+\nabla p=g(t, x), & \text { in } \Omega \times(\tau, T) ; \tag{1}\\ \nabla \cdot u=0, & \text { in } \Omega \times(\tau, T) ; \\ u(x, \tau)=u_{\tau}(x), & \text { in } \Omega ; \\ u(x, t)=0, & \text { in } \partial \Omega \times(\tau, T),\end{cases}
$$

where $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with smooth boundary $\partial \Omega, u=\left(u_{1}, u_{2}, u_{3}\right)$ is the fluid velocity vector, ν is the Brinkman coefficient, $a>0$ is the Darcy coefficient, $b>0$ is the Forchheimer coefficient, p is the pressure, and $\beta>1$ is a constant.

The model equations (Brinkman, Darcy and Forchheimer equations) describing the flow in a porous medium have been extensively studied in [1], and several papers have been published [210]. We should note that most of these papers have been focused on the question of continuous dependence of solutions on the coefficients ν, b. In [11] and [12], Davut, Ouyang and Yang proved the existence of global attractor in H_{0}^{1} for autonomous Brinkman-Forchheimer equation, respectively, with respect to initial data $u_{0} \in V$.

[^0]In this paper, we suppose the external force $g(t, x)$ is uniformly bounded in $L^{2}(\Omega)$ with respect to $t \in \mathbb{R}$, i.e., there exists a positive constant K, such that,

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|g(t, x)\|_{L^{2}(\Omega)} \leq K \tag{2}
\end{equation*}
$$

then $g(t) \in L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$. And furthermore, suppose the weak differential of g with respect to t, denoted by $h(t)$, is in the space $L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$. Here $L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$ is the translation bounded subspace in $L_{\text {loc }}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$, i.e., $g(t) \in L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$,

$$
\begin{equation*}
\|g\|_{L_{b}^{2}}^{2}=\|g\|_{L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)}^{2}=\sup _{t \in \mathbb{R}} \int_{t}^{t+1}\|g\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s<+\infty \tag{3}
\end{equation*}
$$

In this paper, we focus on the existence and the structures of the (H, H) and (H, V)-uniform attractor. First, by the Galerkin approximation method, we give the existence of weak solutions for the non-autonomous three dimensional Brinkman-Forchheimer equation. After that, we explore the asymptotic behavior of the solutions. The existence and structures of the (H, H) uniform attractor and (H, V)-uniform attractor are obtained. Finally, the asymptotic smoothing effect of the solutions is addressed.

The mathematical setting of our problem is similar to that of the Navier-Stokes equations. Let us introduce the following spaces

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{3}: \operatorname{div} u=0\right\}, H=\operatorname{cl}_{\left(L^{2}(\Omega)\right)^{3}} \mathcal{V}, V=\operatorname{cl}_{\left(H_{0}^{1}(\Omega)\right)^{3}} \mathcal{V}
$$

where cl_{X} denotes the closure in the space $X . H$ and V endowed, respectively, with the inner products

$$
(u, v)=\int_{\Omega} u \cdot v \mathrm{~d} x, \quad u, v \in H
$$

and

$$
((u, v))=\sum_{i=1}^{3} \int_{\Omega} \nabla u_{i} \cdot \nabla v_{i} \mathrm{~d} x, \quad u, v \in V
$$

and norm $|\cdot|_{2}=(\cdot, \cdot)^{1 / 2},\|\cdot\|=((\cdot, \cdot))^{1 / 2}$.
In this paper, $\mathbf{L}^{p}(\Omega)=\left(L^{p}(\Omega)\right)^{3}$, and we use $|\cdot|_{p}$ to denote the norm in $\mathbf{L}^{p}(\Omega)$.
Let \tilde{P} be the orthogonal projection from $\mathbf{L}^{2}(\Omega)$ onto H. Then applying \tilde{P} to (1), we obtain

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\nu A u+a u+B(u)=g \tag{4}\\
& u(\tau)=u_{\tau}
\end{align*}
$$

where $A=\tilde{P}(-\Delta)$ is the Stokes operator with the domain $D(A)=\left(H^{2}(\Omega)\right)^{3} \cap V$ and $B(u)=$ $\tilde{P} F(u)$, while $F(u)=b|u|^{\beta} u$.

Throughout this paper, we use the following notations: let X be a Banach space, X^{*} be the dual space of $X,|u|$ the modular of $u,(\cdot, \cdot)$ be the inner product in $L^{2}(\Omega)$, and $\langle\cdot, \cdot\rangle$ be the duality product between X and X^{*}, and C an arbitrary positive constant, which may be different from line to line.

2. Existence and uniqueness of weak solution

The following lemma is a compactness result, whose proof can be found in [13].
Lemma 1 Let X_{0}, X be Hilbert spaces satisfying a compact imbedding $X_{0} \hookrightarrow X$. Let $0<\gamma \leq 1$ and $\left\{v_{j}\right\}_{j=1}^{\infty}$ be a sequence in $L^{2}\left(\mathbb{R} ; X_{0}\right)$ satisfying

$$
\sup _{j}\left(\int_{-\infty}^{+\infty}\left\|v_{j}\right\|_{X_{0}}^{2} \mathrm{~d} t\right)<\infty, \sup _{j}\left(\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left\|\hat{v}_{j}\right\|_{X}^{2} \mathrm{~d} \tau\right)<\infty
$$

where $\hat{v}(\tau)=\int_{-\infty}^{+\infty} v(t) \exp (-2 \pi i \tau t) \mathrm{d} t$ is the Fourier transformation of $v(t)$ on the time variable. Then there exists a subsequence of $\left\{v_{j}\right\}_{j=1}^{\infty}$ which converges strongly in $L^{2}(\mathbb{R} ; X)$ to some $v \in L^{2}(\mathbb{R} ; X)$.

Lemma 2 ([14]) Let \mathcal{O} be a bounded domain in $\mathbb{R}^{n} \times \mathbb{R}$. Given a sequence $\left\{g_{n}\right\}$ with $\left\{g_{n}\right\} \in L^{q}(\mathcal{O})$ and $1<q<\infty$. Assume that $\left\|g_{n}\right\|_{L^{q}(\mathcal{O})} \leq C$, where C is independent of $n, g_{n} \rightarrow g(n \rightarrow \infty)$ almost everywhere in \mathcal{O}, and $g \in L^{q}(\mathcal{O})$. Then $g_{n} \rightharpoondown g(n \rightarrow \infty)$ weakly in $L^{q}(\mathcal{O})$.

Theorem 1 For any $\tau, T \in \mathbb{R}$, suppose Ω is a bounded domain of $\mathbb{R}^{3}, g(t) \in L_{b}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$, and $u_{\tau} \in H$. Then there exists a unique solution $u(\cdot) \in L^{\infty}(\tau, T ; H) \cap L^{2}(\tau, T ; V) \cap L^{\beta+2}\left(\tau, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$.

Proof We employ the Galerkin approximation to prove the theorem. For simplicity, we take $\tau=0$, and $u(x, 0)=u_{0}(x)$. Since V is separable and \mathcal{V} is dense in V, there exists a sequence $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ of elements of \mathcal{V}, which is free and total in V. For each m we define an approximate solution u_{m} as follows:

$$
u_{m}=\sum_{i=1}^{m} g_{i m}(t) \omega_{i}(x)
$$

and

$$
\begin{equation*}
\left(u_{m}^{\prime}(t), \omega_{j}\right)+\nu\left(\nabla u_{m}(t), \nabla \omega_{j}\right)+a\left(u_{m}(t), \omega_{j}\right)+\left(b\left|u_{m}\right|^{\beta} u_{m}(t), \omega_{j}\right)=\left(g(t), \omega_{j}\right), \tag{5}
\end{equation*}
$$

$t \in[0, T], j=1,2, \ldots, m$, and $u_{0 m} \rightarrow u_{0}$ in H, as $m \rightarrow \infty$.
Multiplying on both sides of (5) by $g_{j m}(t)$ and summing over $j=1, \ldots, m$, we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|u_{m}\right|_{2}^{2}+\nu\left\|u_{m}\right\|^{2}+a\left|u_{m}\right|_{2}^{2}+b\left|u_{m}\right|_{\beta+2}^{\beta+2} \leq \frac{1}{2 a}|g(t)|_{2}^{2}+\frac{a}{2}\left|u_{m}\right|_{2}^{2}
$$

so

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left|u_{m}\right|_{2}^{2}+2 \nu\left\|u_{m}\right\|^{2}+a\left|u_{m}\right|_{2}^{2}+2 b\left|u_{m}\right|_{\beta+2}^{\beta+2} \leq \frac{1}{a}|g(t)|_{2}^{2}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left|u_{m}\right|_{2}^{2}+a\left|u_{m}\right|_{2}^{2} \leq \frac{1}{a}|g(t)|_{2}^{2} \tag{7}
\end{equation*}
$$

By Gronwall's Lemma, we obtain

$$
\begin{align*}
\left|u_{m}(t)\right|_{2}^{2} & \leq\left|u_{m}(0)\right|_{2}^{2} e^{-a t}+\frac{1}{a} \int_{0}^{t} e^{-a(t-s)}|g(s)|_{2}^{2} \mathrm{~d} s \\
& \leq\left|u_{m}(0)\right|_{2}^{2} e^{-a t}+C\|g\|_{L_{b}^{2}}^{2} \tag{8}
\end{align*}
$$

and

$$
\int_{0}^{t} e^{-a(t-s)}|g(s)|_{2}^{2} \mathrm{~d} s \leq \int_{t-1}^{t} e^{-a(t-s)}|g(s)|_{2}^{2} \mathrm{~d} s+\int_{t-2}^{t-1} e^{-a(t-s)}|g(s)|_{2}^{2} \mathrm{~d} s+\cdots
$$

$$
\begin{aligned}
& \leq \int_{t-1}^{t}|g(s)|_{2}^{2} \mathrm{~d} s+e^{-a} \int_{t-2}^{t-1}|g(s)|_{2}^{2} \mathrm{~d} s+e^{-2 a} \int_{t-3}^{t-2}|g(s)|_{2}^{2} \mathrm{~d} s+\cdots \\
& \leq\left(1+e^{-a}+e^{-2 a}+\cdots\right)\|g\|_{L_{b}^{2}}^{2} \\
& \leq \frac{1}{1-e^{-a}}\|g\|_{L_{b}^{2}}^{2} \\
& \leq C\|g\|_{L_{b}^{2}}^{2} .
\end{aligned}
$$

Integrating (6) in s from 0 to $T, T \geq 0$, we obtain

$$
\begin{align*}
& \sup _{s \in[0, T]}\left|u_{m}(s)\right|_{2}^{2}+2 \nu \int_{0}^{T}\left\|u_{m}(s)\right\|^{2} \mathrm{~d} s+a \int_{0}^{T}\left|u_{m}(s)\right|_{2}^{2} \mathrm{~d} s+2 b \int_{0}^{T}\left|u_{m}(s)\right|_{\beta+2}^{\beta+2} \mathrm{~d} s \\
& \leq \frac{1}{a} \int_{0}^{T}|g(s)|_{2}^{2} \mathrm{~d} s+\left|u_{0 m}\right|_{2}^{2} . \tag{9}
\end{align*}
$$

From (8) and (9), we deduce that the sequence $\left\{u_{m}\right\}$ is a bounded set of $L^{\infty}(0, T ; H) \cap$ $L^{2}(0, T ; V) \cap L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$.

Denote by \tilde{u}_{m} the function from \mathbb{R} into V, which is equal to u_{m} on $[0, T]$ and to 0 on the complement of this interval. Similarly, we prolong $g_{i m}(t)$ to \mathbb{R} by defining $\tilde{g}_{i m}(t)=0$ for $t \in \mathbb{R} \backslash[0, T]$. The Fourier transforms on time variable of \tilde{u}_{m} and $\tilde{g}_{i m}$ are denoted by $\hat{\tilde{u}}_{m}$ and $\hat{\tilde{g}}_{i m}$, respectively.

Note that the approximate solution \tilde{u}_{m} satisfies

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tilde{u}_{m}, \omega_{j}\right)= & -\nu\left(\nabla \tilde{u}_{m}, \nabla \omega_{j}\right)-\left(a \tilde{u}_{m}, \omega_{j}\right)-\left(b\left|\tilde{u}_{m}\right|^{\beta} \tilde{u}_{m}, \omega_{j}\right)+\left(\tilde{g}, \omega_{j}\right)+ \\
& \left(u_{0 m}, \omega_{j}\right) \delta_{0}-\left(u_{m}(T), \omega_{j}\right) \delta_{T}, \quad j=1,2, \ldots, m \tag{10}
\end{align*}
$$

where δ_{0} and δ_{T} are the Dirac distributions at 0 and T, respectively.
Taking the Fourier transform about the time variable in (10) gives

$$
\begin{equation*}
2 \pi i \tau\left(\hat{\tilde{u}}_{m}, \omega_{j}\right)=\left(\hat{\tilde{h}}_{m}, \omega_{j}\right)-\left(b\left|\widetilde{u}_{m}\right|^{\beta} \tilde{u}_{m}, \omega_{j}\right)+\left(u_{0 m}, \omega_{j}\right)-\left(u_{m}(T), \omega_{j}\right) \exp (-2 \pi i T \tau) \tag{11}
\end{equation*}
$$

where $\hat{\tilde{h}}_{m}$ denotes the Fourier transform of \tilde{h}_{m},

$$
\left(\tilde{h}_{m}, \omega_{j}\right)=\left(\tilde{g}, \omega_{j}\right)-\nu\left(\nabla \tilde{u}_{m}, \nabla \omega_{j}\right)-\left(a \tilde{u}_{m}, \omega_{j}\right)
$$

Multiplying (11) by $\hat{\tilde{g}}_{j m}(\tau)$ and summing the results for $j=1, \ldots, m$, one finds that

$$
\begin{equation*}
2 \pi i \tau\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2}=\left(\tilde{\tilde{h}}_{m}, \hat{\tilde{u}}_{m}\right)-b\left(\left|\widehat{u}_{m}\right|^{\beta} \tilde{u}_{m}, \hat{\tilde{u}}_{m}\right)+\left(u_{0 m}, \hat{\tilde{u}}_{m}\right)-\left(u_{m}(T), \hat{\tilde{u}}_{m}\right) \exp (-2 \pi i T \tau) . \tag{12}
\end{equation*}
$$

For any $v \in L^{2}(0, T ; V) \cap L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$, we have

$$
\left(h_{m}(t), v\right)=(g(t), v)-\nu\left(\nabla u_{m}, \nabla v\right)-\left(a u_{m}, v\right) \leq C\left(|g(t)|_{2}+\left\|u_{m}\right\|+\left|u_{m}\right|_{2}\right)\|v\| .
$$

It follows that for any given $T>0$

$$
\int_{0}^{T}\left\|h_{m}(t)\right\|_{V^{\prime}} \mathrm{d} t \leq \int_{0}^{T} C\left(|g(t)|_{2}+\left\|u_{m}\right\|+\left|u_{m}\right|_{2}\right) \mathrm{d} t \leq C
$$

and hence

$$
\begin{equation*}
\sup _{s \in \mathbb{R}}\left\|\hat{\tilde{h}}_{m}(s)\right\|_{V^{\prime}} \leq \int_{0}^{T}\left\|h_{m}(t)\right\|_{V^{\prime}} \mathrm{d} t \leq C \tag{13}
\end{equation*}
$$

Moreover,

$$
\left.\left.\int_{0}^{T}| | u_{m}\right|^{\beta} u_{m}\right|_{\frac{\beta+2}{\beta+1}} \mathrm{~d} t \leq \int_{0}^{T}\left|u_{m}\right|_{\beta+2}^{\beta+1} \mathrm{~d} t \leq C
$$

which implies that

$$
\begin{equation*}
\sup _{s \in \mathbb{R}}\left|\widehat{\left.u_{m}\right|^{\beta} u_{m}}(s)\right|_{\frac{\beta+2}{\beta+1}} \leq C . \tag{14}
\end{equation*}
$$

From (9), we have

$$
\begin{equation*}
\left|u_{m}(0)\right|_{2} \leq C, \quad\left|u_{m}(T)\right|_{2} \leq C \tag{15}
\end{equation*}
$$

So we deduce from (13)-(15) that

$$
\begin{equation*}
|\tau|\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2} \leq C\left(\left\|\hat{\tilde{u}}_{m}(\tau)\right\|+\left|\hat{\tilde{u}}_{m}(\tau)\right|_{\beta+2}\right) \tag{16}
\end{equation*}
$$

For any γ fixed, $0<\gamma<\frac{1}{4}$, we observe that

$$
|\tau|^{2 \gamma} \leq C \frac{1+|\tau|}{1+|\tau|^{1-2 \gamma}}, \quad \forall \tau \in \mathbb{R}
$$

Thus

$$
\begin{align*}
\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2} \mathrm{~d} \tau \leq & C \int_{-\infty}^{+\infty} \frac{1+|\tau|}{1+|\tau|^{1-2 \gamma}}\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2} \mathrm{~d} \tau \\
\leq & C \int_{-\infty}^{+\infty}\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2} \mathrm{~d} \tau+C \int_{-\infty}^{+\infty} \frac{\left\|\hat{\tilde{u}}_{m}(\tau)\right\|}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau+ \\
& C \int_{-\infty}^{+\infty} \frac{\left|\hat{\tilde{u}}_{m}(\tau)\right|_{\beta+2}}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau \tag{17}
\end{align*}
$$

Thanks to the Parseval equality and (9), the first integral on the right-hand side of (17) is bounded uniformly on m.

By the Schwarz inequality, Parseval equality and (9), we have

$$
\int_{-\infty}^{+\infty} \frac{\left\|\hat{\tilde{u}}_{m}\right\|}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau \leq\left(\int_{-\infty}^{+\infty} \frac{\mathrm{d} \tau}{\left(1+|\tau|^{1-2 \gamma}\right)^{2}}\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|u_{m}(\tau)\right\|^{2} \mathrm{~d} \tau\right)^{\frac{1}{2}} \leq C
$$

for $0<\gamma<\frac{1}{4}$.
Similarly, when $0<\gamma<\frac{1}{2(\beta+2)}$, we have

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{\left|\hat{\tilde{u}}_{m}(\tau)\right|_{\beta+2}}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau & \leq\left(\int_{-\infty}^{+\infty} \frac{\mathrm{d} \tau}{\left(1+|\tau|^{1-2 \gamma}\right)^{\frac{\beta+2}{\beta+1}}}\right)^{\frac{\beta+1}{\beta+2}}\left(\int_{-\infty}^{+\infty}\left|\hat{\tilde{u}}_{m}(\tau)\right|_{\beta+2}^{\beta+2} \mathrm{~d} \tau\right)^{\frac{1}{\beta+2}} \\
& \leq C\left(\int_{-\infty}^{+\infty}\left|\tilde{u}_{m}(\tau)\right|_{\beta+2}^{\frac{\beta+2}{\beta+1}} \mathrm{~d} \tau\right)^{\frac{\beta+1}{\beta+2}} \\
& \leq C T^{\frac{\beta}{\beta+2}}\left(\int_{0}^{T}\left|u_{m}(\tau)\right|_{\beta+2}^{\beta+2} \mathrm{~d} \tau\right)^{\frac{1}{\beta+2}}
\end{aligned}
$$

It follows from (17) that

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left|\hat{\tilde{u}}_{m}(\tau)\right|_{2}^{2} \mathrm{~d} \tau \leq C \tag{18}
\end{equation*}
$$

Now, since $F\left(u_{m}\right) u_{m}=b\left|u_{m}\right|^{\beta+2} \leq b\left|u_{m}\right|^{\beta+2}+\delta\left|u_{m}\right|^{2}$, and $\delta>0$ is a positive constant, we have $\left|F\left(u_{m}\right)\right| \leq C\left(\left|u_{m}\right|^{\beta+1}+\left|u_{m}\right|\right)$. Since $\mathbf{L}^{\beta+2}(\Omega) \hookrightarrow \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)$, we obtain

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left|F\left(u_{m}\right)\right|^{\frac{\beta+2}{\beta+1}} \mathrm{~d} x \mathrm{~d} t & \leq C \int_{0}^{T} \int_{\Omega}\left[\left|u_{m}\right|^{\beta+1}+\left|u_{m}\right|\right]^{\frac{\beta+2}{\beta+1}} \mathrm{~d} x \mathrm{~d} t \\
& \leq C \int_{0}^{T} \int_{\Omega}\left|u_{m}\right|^{\beta+2} \mathrm{~d} x \mathrm{~d} t+C \int_{0}^{T} \int_{\Omega}\left|u_{m}\right|^{\frac{\beta+2}{\beta+1}} \mathrm{~d} x \mathrm{~d} t \\
& \leq C \int_{0}^{T} \int_{\Omega}\left|u_{m}\right|^{\beta+2} \mathrm{~d} x \mathrm{~d} t+C \int_{0}^{T} \int_{\Omega}\left|u_{m}\right|^{\beta+2} \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

From (9) we know that $\left\{u_{m}\right\}$ is bounded in $L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+\mathbf{2}}(\boldsymbol{\Omega})\right)$, so $\left\{F\left(u_{m}\right)\right\}$ is bounded in $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$.

Since $\forall v \in L^{2}(0, T ; V)$, we have

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}-\nu \Delta u_{m} \cdot v \mathrm{~d} x \mathrm{~d} t & =\nu \int_{0}^{T} \int_{\Omega} \nabla u_{m} \cdot \nabla v \mathrm{~d} x \mathrm{~d} t \\
& \leq \nu\left(\int_{0}^{T}\left\|u_{m}\right\|^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{T}\|v\|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

It follows from (9) that $\left\{u_{m}\right\}$ is bounded in $L^{2}(0, T ; V)$, so $\left\{-\nu \Delta u_{m}\right\} \in L^{2}\left(0, T ; V^{\prime}\right)$. Therefore, by taking a subsequence when necessary, we can assume that there exists a function $u(\cdot) \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V) \cap L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$ such that $u_{m}(s) \rightharpoondown u(s)$ weakly in $L^{2}(0, T ; V)$, weakly in $L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$, and weak-star in $L^{\infty}(0, T ; H)$ as $n \rightarrow \infty$. So, as $n \rightarrow \infty,-\nu \Delta u_{m}(s) \rightharpoondown-\nu \Delta u(s)$ weakly in $L^{2}\left(0, T ; V^{\prime}\right)$, and $\partial_{t} u_{m}(s) \rightharpoondown \partial_{t} u(s)$ weakly in $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; H^{-s}(\Omega)\right)$ for some $s>0$. Assume $F\left(u_{m}(s)\right) \rightharpoondown \eta(s)$ weakly in $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$ for some $\eta(s) \in L^{\frac{\beta+2}{\beta+1}}\left(0, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$. Passing to the limit in $(1)_{1}$ with respect to u_{m}, we obtain the equality

$$
\partial_{t} u-\nu \Delta u+a u+\eta=g(t)
$$

in the space $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; H^{-s}(\Omega)\right)$.
By Lemma 1 and (18), there exists a subsequence of $\left\{u_{m}\right\}_{m=1}^{\infty}$, still denoted by itself, such that $u_{m} \rightarrow u$ strongly in $L^{2}(0, T ; H)$, and so $u_{m}(x, s) \rightarrow u(x, s)$ for almost every $(x, s) \in \Omega \times[0, T]$ as $m \rightarrow \infty$. Since $F(u) \in C^{0}(\mathbb{R}), F\left(u_{m}(x, s)\right) \rightarrow F(u(x, s))(m \rightarrow \infty)$ for almost every $(x, s) \in$ $\Omega \times[0, T]$. On the other hand, the sequence $F\left(u_{m}\right)$ is bounded in $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$. From Lemma 2, we conclude that $F\left(u_{m}\right) \rightharpoondown F(u)(m \rightarrow \infty)$ weakly in $L^{\frac{\beta+2}{\beta+1}}\left(0, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$, hence $\eta(s)=F(u(x, s))$. So $u \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V) \cap L^{\beta+2}\left(0, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$ is a solution of (1).

Finally, let us verify the uniqueness of the solution. Let u_{1}, u_{2} be two solutions of (1) with the initial data $\left.u_{1}\right|_{t=0}=u_{1}(0),\left.u_{2}\right|_{t=0}=u_{2}(0)$, respectively. Subtracting the corresponding to equation $(4)_{1}$, we obtain

$$
\begin{equation*}
\partial_{t}\left(u_{1}-u_{2}\right)+\nu A\left(u_{1}-u_{2}\right)+a\left(u_{1}-u_{2}\right)+B\left(u_{1}\right)-B\left(u_{2}\right)=0 \tag{19}
\end{equation*}
$$

Taking the inner product of (19) with $u_{1}-u_{2}$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|u_{1}-u_{2}\right|_{2}^{2}+\nu\left\|u_{1}-u_{2}\right\|^{2}+a\left|u_{1}-u_{2}\right|_{2}^{2}=-\left\langle F\left(u_{1}\right)-F\left(u_{2}\right), u_{1}-u_{2}\right\rangle \tag{20}
\end{equation*}
$$

Since the function $F(u)$ is monotone, $(F(u)-F(v), u-v) \geq 0$, and hence from (20) we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left|u_{1}-u_{2}\right|_{2}^{2}+2 a\left|u_{1}-u_{2}\right|_{2}^{2} \leq 0
$$

Using the Gronwall Lemma, we obtain

$$
\left|u_{1}-u_{2}\right|_{2}^{2} \leq e^{-2 a t}\left|u_{1}(0)-u_{2}(0)\right|_{2}^{2}
$$

So the uniqueness of the solution is proved.
Lemma 3 Let $F(u)=\alpha|u|^{\beta} u$. Then
(i) F is continuously differentiable in \mathbb{R}^{3} and for $u=\left(u_{1}, u_{2}, u_{3}\right)$ in \mathbb{R}^{3} the Jacobian matrix is given by:

$$
F^{\prime}(u)=\alpha|u|^{\beta-2}\left(\begin{array}{ccc}
\beta u_{1}^{2}+|u|^{2} & \beta u_{1} u_{2} & \beta u_{1} u_{3} \\
\beta u_{1} u_{2} & \beta u_{2}^{2}+|u|^{2} & \beta u_{2} u_{3} \\
\beta u_{1} u_{3} & \beta u_{2} u_{3} & \beta u_{3}^{2}+|u|^{2}
\end{array}\right)
$$

Further, $F^{\prime}(u)$ is positive definite and for any $u, v, w \in \mathbb{R}^{3}$:

$$
\left|\left(F^{\prime}(u) v\right) \cdot w\right| \leq c|u|^{\beta}|v||w|
$$

where c is a positive constant depending on β and α.
(ii) F is monotonic in \mathbb{R}^{3}, i.e., for any $u, v \in \mathbb{R}^{3}$:

$$
(F(u)-F(v), u-v) \geq 0
$$

Proof (i) can be obtained by simple calculations, and (ii) is an immediate consequence of (i).

3. Preliminaries about processes

Let Σ be a metric space, X, Y be two spaces, and $Y \subset X$ continuously. $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ is a family of processes in Banach space X. Denote by $\mathcal{B}(X)$ the set of all bounded subsets of X. $\mathbb{R}^{\tau}=[\tau,+\infty)$.

Definition $1 A$ set $B_{0} \in \mathcal{B}(Y)$ is said to be (X, Y)-uniformly absorbing for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ if, for any $\tau \in \mathbb{R}$ and every $B \in \mathcal{B}(X)$, there exists $t_{0}=t_{0}(\tau, B) \geq \tau$ such that $\bigcup_{\sigma \in \Sigma} U_{\sigma}(t, \tau) B \subset B_{0}$ for all $t \geq t_{0}$. A set P belonging to Y is said to be (X, Y)-uniformly attracting for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ if, for an arbitrary fixed $\tau \in \mathbb{R}$ and $B \in \mathcal{B}(X)$, $\lim _{t \rightarrow+\infty}\left(\sup _{\sigma \in \Sigma} \operatorname{dist}_{\mathrm{Y}}\left(\mathrm{U}_{\sigma}(\mathrm{t}, \tau) \mathrm{B}, \mathrm{P}\right)\right)=0$.

Definition $2 A$ closed set $A_{\Sigma} \subset Y$ is said to be (X, Y)-uniformly attractor of the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ if it is (X, Y)-uniformly attracting and it is contained in any closed (X, Y)-uniformly attracting set \mathcal{A}^{\prime} of the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}: \mathcal{A}_{\Sigma} \subset \mathcal{A}^{\prime}$.

Definition 3 Define the uniform ω-limit set of B by $\omega_{\tau, \Sigma}(B)=\bigcap_{t \geq \tau} \overline{\bigcup_{\sigma \in \Sigma} \bigcup_{s \geq t} U_{\sigma}(s, \tau) B}$. This can be characterized by the following: $y \in \omega_{\tau, \Sigma}(B) \Leftrightarrow$ there are sequences $\left\{x_{n}\right\} \subset$ $B,\left\{\sigma_{n}\right\} \subset \Sigma,\left\{t_{n}\right\} \subset \mathbb{R}^{\tau}, t_{n} \rightarrow \infty$ such that $U_{\sigma_{n}}\left(t_{n}, \tau\right) x_{n} \rightarrow y(n \rightarrow \infty)$.

Definition $4 A$ family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ possessing a compact (X, Y)-uniformly absorbing set is called (X, Y)-uniformly compact. And a family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ is called (X, Y)-uniformly asymptotically compact if it possesses a compact (X, Y)-uniformly attracting set.

Now let us consider the most interesting case where $U_{\sigma}(t, \tau)$ satisfies the following cocycle property: there is a dynamical system $\{T(h) \mid h \geq 0\}$ on Σ such that:
(C1) $T(h) \Sigma=\Sigma, \forall h \in \mathbb{R}^{+} ;(\mathrm{C} 2)$ translation identity:

$$
U_{\sigma}(t+h, \tau+h)=U_{T(h) \sigma}(t, \tau), \quad \forall \sigma \in \Sigma, t \geq \tau, \tau \in \mathbb{R}, h \geq 0
$$

Definition 5 The kernel \mathcal{K} of the process $\{U(t, \tau)\}$ acting on X consists of all bounded complete trajectories of the process $\{U(t, \tau)\}: \mathcal{K}=\left\{u(\cdot) \mid U(t, \tau) u(\tau)=u(t)\right.$, $\operatorname{dist}(u(t), u(0)) \leq C_{u}, \forall t \geq \tau$, $\tau \in \mathbb{R}\}$. The set $\mathcal{K}(s)=\{u(s) \mid u(\cdot) \in \mathcal{K}\}$ is said to be kernel section at time $t=s, s \in \mathbb{R}$.

Definition $6\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ is said to be $(X \times \Sigma, Y)$-weakly continuous if, for any fixed $t \geq \tau$, $\tau \in \mathbb{R}$, the mapping $(u, \sigma) \rightarrow U_{\sigma}(t, \tau) u$ is weakly continuous from $X \times \Sigma$ to Y.

Assumption 1 Let Σ be a weakly compact set and $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ be $(X \times \Sigma, Y)$-weakly continuous.

Theorem 2 ([15]) Under (C1), (C2) and Assumption 1 with $\{T(h)\}_{h \geq 0}$, which is a weakly continuous semigroup, if $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$ acting on X is (X, Y)-uniformly asymptotically compact, then it possesses an (X, Y)-uniform attractor $\mathcal{A}_{\Sigma}, \mathcal{A}_{\Sigma}$ is compact in Y, and attracts the bounded subset of X in the topology of Y; moreover,

$$
\mathcal{A}_{\Sigma}=\omega_{\tau, \Sigma}\left(B_{0}\right)=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(s), \quad \forall s \in \mathbb{R}
$$

where B_{0} is a bounded neighborhood of the compact (X, Y)-uniformly attracting set in Y, i.e., B_{0} is a bounded (X, Y)-uniformly absorbing set of $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$, and $\mathcal{K}_{\sigma}(s)$ is the section at $t=s$ of kernel \mathcal{K}_{σ} of the process $\left\{U_{\sigma}(t, \tau)\right\}$ with symbol $\sigma \in \Sigma$. Furthermore, \mathcal{K}_{σ} is nonempty for all $\sigma \in \Sigma$.

4. (H, H)-uniform attractor

We denote by $L_{\text {loc }}^{2, w}\left(\mathbb{R}, L^{2}(\Omega)\right)$ the space $L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$ endowed with a local weak convergence topology. Let $\mathcal{H}_{w}(g)$ be the hull of g in $L_{\mathrm{loc}}^{2, w}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, i.e., the closure of the set $\{g(h+s) \mid h \in \mathbb{R}\}$ in $L_{\mathrm{loc}}^{2, w}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, and $g(x, s) \in L_{b}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$.

Proposition 1 ([16]) If X is reflective separable, $\varphi \in L_{b}^{2}(\mathbb{R} ; X)$, then
(i) For all $\varphi_{1} \in \mathcal{H}_{w}(\varphi),\left\|\varphi_{1}\right\|_{L_{b}^{2}}^{2} \leq\|\varphi\|_{L_{b}^{2}}^{2}$;
(ii) The translation group $\{T(h)\}$ is weakly continuous on $\mathcal{H}_{w}(\varphi)$;
(iii) $T(h) \mathcal{H}_{w}(\varphi)=\mathcal{H}_{w}(\varphi)$ for $h \geq 0$;
(iv) $\mathcal{H}_{w}(\varphi)$ is weakly compact.

Because of the uniqueness of solution, the following translation identity holds

$$
\begin{equation*}
U_{\sigma}(t+h, \tau+h)=U_{T(h) \sigma}(t, \tau), \quad \forall \sigma \in \mathcal{H}_{w}(g), t \geq \tau, \tau \in \mathbb{R}, h \geq 0 \tag{21}
\end{equation*}
$$

Theorem 3 The family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ corresponding to problem (i) is $(H \times$ $\left.\mathcal{H}_{w}(g), H\right)$-weakly continuous, and $\left(H \times \mathcal{H}_{w}(g), V \cap \mathbf{L}^{\beta+2}(\Omega)\right)$-weakly continuous.

Proof For any fixed t_{1} and $\tau, t_{1} \geq \tau, \tau \in \mathbb{R}$, let $u_{\tau m} \rightharpoonup u_{\tau}$ weakly in H, and $\sigma_{m} \rightharpoonup \sigma_{0}$ weakly in $\mathcal{H}_{w}(g)$ as $m \rightarrow \infty$. Denote by $u_{m}(t)=U_{\sigma_{m}}(t, \tau) u_{\tau m}$. The same estimate for u_{m} given in the Galerkin approximations in Section 2 is valid for the $u_{m}(t)$ here. Therefore, for some subsequence $\{n\} \subset\{m\}$ and $w(t)$, we have for any $t_{1}, \tau \leq t_{1} \leq T, u_{n}\left(t_{1}\right) \rightharpoondown w\left(t_{1}\right)$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$. And the sequence $\left\{u_{n}(s)\right\}, \tau \leq s \leq T$, is bounded in the class $L^{\infty}(\tau, T ; H) \cap L^{2}(\tau, T ; V) \cap L^{\beta+2}\left(\tau, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$. Denote by $\eta_{1}(s)$, and $\eta_{0}(s)$ the weak limits of $-\Delta u_{n}(s)$ and $F\left(u_{n}(s)\right)$ in $L^{2}\left(\tau, T ; V^{\prime}\right)$ and $L^{\frac{\beta+2}{\beta+1}}\left(\tau, T ; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)\right)$, respectively. So we get the equation for $w(s)$

$$
\partial_{t} w+\nu \eta_{1}+a w+\eta_{0}=\sigma_{0}
$$

By the same method as in Theorem 1.3.1 in [14] and the proof of the Theorem 1, we know that $\eta_{1}=-\Delta w$ and $\eta_{0}=F(w)$, which means that $w(s)$ in $L^{\infty}(\tau, T ; H) \cap L^{2}(\tau, T ; V) \cap L^{\beta+2}\left(\tau, T ; \mathbf{L}^{\beta+2}(\Omega)\right)$ is the weak solution of (1) with initial condition u_{τ}. Due to the uniqueness of the solution, we state that $U_{\sigma_{n}}\left(t_{1}, \tau\right) u_{\tau n} \rightharpoondown U_{\sigma_{0}}\left(t_{1}, \tau\right) u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+\mathbf{2}}(\boldsymbol{\Omega})$. For any other subsequences $\left\{u_{\tau n^{\prime}}\right\}$ and $\left\{\sigma_{n^{\prime}}\right\}$, we have $u_{\tau n^{\prime}} \rightharpoondown u_{\tau}$ weakly in H and $\sigma_{n^{\prime}} \rightharpoondown \sigma_{0}$. By the same process we obtain the analogous relation $U_{\sigma n^{\prime}}\left(t_{1}, \tau\right) u_{\tau n^{\prime}} \rightharpoondown U_{\sigma_{0}}\left(t_{1}, \tau\right) u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$ holds. Then it can be easily seen that for any weakly convergent initial sequence $\left\{u_{\tau m}\right\} \in H$ and weakly convergent sequence $\left\{\sigma_{m}\right\} \in \mathcal{H}_{w}(g)$, we have $U_{\sigma_{m}\left(t_{1}, \tau\right)} u_{\tau m} \rightharpoondown U_{\sigma_{0}}\left(t_{1}, \tau\right) u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$.

Theorem 4 The family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ corresponding to problem (i) has a bounded $\left(H, V \cap \mathbf{L}^{\beta+2}(\Omega)\right)$-uniformly absorbing set.

Proof Taking the inner product of $(\mathrm{i})_{1}$ with u, with respect to an external force $\sigma \in \mathcal{H}_{w}(g)$, yields

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{2}^{2}+\nu\|u\|^{2}+a|u|_{2}^{2}+b|u|_{\beta+2}^{\beta+2}=\int_{\Omega} \sigma(t) u \leq \frac{1}{2 a}|\sigma(t)|_{2}^{2}+\frac{a}{2}|u|_{2}^{2} \tag{22}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}|u|_{2}^{2}+2 \nu\|u\|^{2}+a|u|_{2}^{2}+2 b|u|_{\beta+2}^{\beta+2} \leq \frac{1}{a}|\sigma(t)|_{2}^{2} \tag{23}
\end{equation*}
$$

Applying the Gronwall Lemma, we get

$$
\begin{aligned}
|u(t)|_{2}^{2} & \leq\left|u_{\tau}\right|_{2}^{2} e^{-a(t-\tau)}+\frac{1}{a} \int_{\tau}^{t} e^{-a(t-s)}|\sigma(s)|_{2}^{2} \mathrm{~d} s \\
& \leq\left|u_{\tau}\right|_{2}^{2} e^{-a(t-\tau)}+C\|g\|_{L_{b}^{2}}^{2}
\end{aligned}
$$

From this inequality, we know that the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ has an (H, H) uniformly absorbing set, i.e., for an arbitrary bounded subset B in H, there exists $T_{1}=T_{1}(B, \tau)$
such that

$$
\begin{equation*}
|u(t)|_{2}^{2} \leq \rho_{0}\left(\|g\|_{L_{b}^{2}}^{2}\right), \text { for all } t \geq T_{1}, u_{\tau} \in B, \sigma \in \mathcal{H}_{w}(g) \tag{24}
\end{equation*}
$$

Taking $t \geq T_{1}$, integrating (23) on $[t, t+1]$ and combining with (24), we have

$$
\begin{equation*}
\int_{t}^{t+1}\left[\|u(s)\|^{2}+|u(s)|_{2}^{2}+|u(s)|_{\beta+2}^{\beta+2}\right] \mathrm{d} s \leq C\left(\rho_{0},\|g\|_{L_{b}^{2}}^{2}\right), \text { for all } t \geq T_{1} \tag{25}
\end{equation*}
$$

On the other hand, taking the inner product of $(\mathrm{i})_{1}$ with u_{t} yields

$$
\left|u_{t}\right|_{2}^{2}+\frac{\nu}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u\|^{2}+\frac{a}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{2}^{2}+\frac{b}{\beta+2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{\beta+2}^{\beta+2}=\int_{\Omega} \sigma(t) u_{t} \mathrm{~d} x \leq \frac{1}{2}\left|u_{t}\right|_{2}^{2}+\frac{1}{2}|\sigma(t)|_{2}^{2}
$$

Therefore,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\|u\|^{2}+|u|_{2}^{2}+|u|_{\beta+2}^{\beta+2}\right] \leq C|\sigma(t)|_{2}^{2} \tag{26}
\end{equation*}
$$

From (25) and (26), by virtue of the uniform Gronwall Lemma, we get

$$
\begin{equation*}
\|u(t)\|^{2}+|u(t)|_{2}^{2}+|u(t)|_{\beta+2}^{\beta+2} \leq \rho, \text { for all } t \geq T_{1}+1 \tag{27}
\end{equation*}
$$

where ρ is a positive constant. From (27), we get the $\left(H, V \cap \mathbf{L}^{\beta+\mathbf{2}}(\boldsymbol{\Omega})\right.$)-uniformly absorbing set and thus complete the proof.

From Theorem 4 and the compactness of the Sobolev embedding $V \hookrightarrow H$, and Theorem 2 we have the following result:

Corollary 1 The family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ generated by (i) with initial data $u_{\tau} \in H$ has an (H, H)-uniform attractor \mathcal{A}_{0}, which is compact in H and attracts every bounded subset of H in the topology of H. Moreover,

$$
\mathcal{A}_{0}=\omega_{\tau, \mathcal{H}_{w}(g)}\left(B_{0}\right)=\bigcup_{\sigma \in \mathcal{H}_{w}(g)} \mathcal{K}_{\sigma}(s), \forall s \in \mathbb{R}
$$

where B_{0} is the (H, H)-uniformly absorbing set in H, and $\mathcal{K}_{\sigma}(s)$ is the section at $t=s$ of kernel \mathcal{K}_{σ} of the processes $\left\{U_{\sigma}(t, \tau)\right\}$ with symbol $\sigma \in \mathcal{H}_{w}(g)$.

5. (H, V)-uniform attractor

In this section, we prove the existence of the (H, V)-uniform attractor. For this purpose, first we will give a priori estimate about u_{t} endowed with an H-norm.

Lemma 4 For any bounded subset $B \subset H$, any $\tau \in \mathbb{R}$ and $\sigma \in \mathcal{H}_{w}(g)$, there exists a positive constant $T=T(B, \tau) \geq \tau$, and a positive constant ρ_{1}, such that

$$
\left|u_{t}(s)\right|_{2}^{2} \leq \rho_{1}, \text { for any } u_{\tau} \in B, s \geq T, \sigma \in \mathcal{H}_{w}(g)
$$

where $u_{t}(s)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(U_{\sigma}(t, \tau) u_{\tau}\right)\right|_{t=s}$ and ρ_{1} is a positive constant which is independent of B and σ.
Proof By differentiating (i) $)_{1}$ with the external force σ in time, we get

$$
u_{t t}-\nu \Delta u_{t}+a u_{t}+F^{\prime}(u) u_{t}=\sigma^{\prime}(t)
$$

Taking the inner product of above equation with u_{t} yields

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|u_{t}\right|_{2}^{2}+\nu\left\|u_{t}\right\|^{2}+a\left|u_{t}\right|_{2}^{2}=-\int_{\Omega}\left(F^{\prime}(u) u_{t}\right) \cdot u_{t} \mathrm{~d} x+\int_{\Omega} \sigma^{\prime}(t) u_{t} \mathrm{~d} x
$$

By Lemma $3,-\int_{\Omega}\left(F^{\prime}(u) u_{t}\right) \cdot u_{t} \mathrm{~d} x$ is non-positive definite, hence we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left|u_{t}\right|_{2}^{2} \leq \frac{1}{4 a}\left|\sigma^{\prime}(t)\right|_{2}^{2}+2 a\left|u_{t}\right|_{2}^{2} \tag{28}
\end{equation*}
$$

Taking the inner product of $(\mathrm{i})_{1}$ with u_{t} yields

$$
\begin{aligned}
& \left|u_{t}\right|_{2}^{2}+\frac{\nu}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u\|^{2}+\frac{a}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{2}^{2}+\frac{b}{\beta+2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{\beta+2}^{\beta+2} \\
& \quad=\int_{\Omega} \sigma(t) u_{t} \mathrm{~d} x \leq \frac{1}{2}|\sigma(t)|_{2}^{2}+\frac{1}{2}\left|u_{t}\right|_{2}^{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{2}\left|u_{t}\right|_{2}^{2}+\frac{\nu}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u\|^{2}+\frac{a}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{2}^{2}+\frac{b}{\beta+2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u|_{\beta+2}^{\beta+2} \leq \frac{1}{2}|\sigma(t)|_{2}^{2} \tag{29}
\end{equation*}
$$

Integrating (29) from t to $t+1$, and according to Theorem 4, we have

$$
\begin{equation*}
\int_{t}^{t+1}\left|u_{t}\right|_{2}^{2} \leq C \tag{30}
\end{equation*}
$$

for t large enough.
Combining (28) with (30), and using the uniform Gronwall Lemma, we get

$$
\left|u_{t}\right|_{2}^{2} \leq \rho_{1}
$$

for t large enough, where ρ_{1} is a positive constant independent of σ.
Theorem 5 The family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ corresponding to problem (1) with initial data $u_{\tau} \in H$ is (H, V)-uniformly asymptotically compact, i.e., there exists a compact uniformly attracting set in V, which attracts any bounded subset $B \subset H$ in the topology of V.

Proof Let B_{0} be an (H, V)-uniformly absorbing set obtained in Theorem 4. Then we need only to show that: for any $\left\{u_{\tau n}\right\} \subset B_{0},\left\{\sigma_{n}\right\} \subset \mathcal{H}_{w}(g)$ and $t_{n} \rightarrow \infty,\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) u_{\tau n}\right\}_{n=1}^{\infty}$ is precompact in V.

In fact, from Corollary 1, we know that $\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) u_{\tau n}\right\}_{n=1}^{\infty}$ is precompact in H. Without loss of generality, we assume that $\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) u_{\tau n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in H. Now, we prove that

$$
\begin{equation*}
\left\{U_{\sigma_{n}}\left(t_{n}, \tau\right) u_{\tau n}\right\}_{n=1}^{\infty} \text { is a Cauchy sequence in } V \tag{31}
\end{equation*}
$$

Let $u_{n}^{\sigma_{n}}\left(t_{n}\right)=U_{\sigma_{n}}\left(t_{n}, \tau\right) u_{\tau n}$. We have

$$
\begin{aligned}
\nu \| & u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right) \|^{2}=\nu\left(A u_{n}^{\sigma_{n}}\left(t_{n}\right)-A u_{m}^{\sigma_{m}}\left(t_{m}\right), u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right) \\
= & \left(-\frac{\mathrm{d}}{\mathrm{~d} t} u_{n}^{\sigma_{n}}\left(t_{n}\right)+\frac{\mathrm{d}}{\mathrm{~d} t} u_{m}^{\sigma_{m}}\left(t_{m}\right)-a u_{n}^{\sigma_{n}}\left(t_{n}\right)+a u_{m}^{\sigma_{m}}\left(t_{m}\right)-\right. \\
& \left.B\left(u_{n}^{\sigma_{n}}\left(t_{n}\right)\right)+B\left(u_{m}^{\sigma_{m}}\left(t_{m}\right)\right)+\sigma_{n}-\sigma_{m}, u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right) \\
\leq & \int_{\Omega}\left|\frac{\mathrm{d}}{\mathrm{~d} t} u_{n}^{\sigma_{n}}\left(t_{n}\right)-\frac{\mathrm{d}}{\mathrm{~d} t} u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|+a \int_{\Omega}\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|^{2}+
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega}\left|\sigma_{n}-\sigma_{m}\right|\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right| \\
\leq & \left|\frac{\mathrm{d}}{\mathrm{~d} t} u_{n}^{\sigma_{n}}\left(t_{n}\right)-\frac{\mathrm{d}}{\mathrm{~d} t} u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|_{2}\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|_{2}+\left|\sigma_{n}-\sigma_{m}\right|_{2}\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|_{2}+ \\
& a\left|u_{n}^{\sigma_{n}}\left(t_{n}\right)-u_{m}^{\sigma_{m}}\left(t_{m}\right)\right|_{2}^{2},
\end{aligned}
$$

which, combined with Lemma 4, yields (31) immediately.
Theorem 6 The family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ corresponding to problem (i) with initial data $u_{\tau} \in H$ has an (H, V)-uniform attractor \mathcal{A}_{1}, where \mathcal{A}_{1} is compact in V and attracts every bounded subset B of H in the topology of V. Moreover,

$$
\mathcal{A}_{1}=\omega_{\tau, \mathcal{H}_{w}(g)}\left(B_{0}\right)=\bigcup_{\sigma \in \mathcal{H}_{w}(g)} \mathcal{K}_{\sigma}(s), \quad \forall s \in \mathbb{R}
$$

where B_{0} is the (H, V)-uniformly absorbing set, and $\mathcal{K}_{\sigma}(s)$ is the section at $t=s$ of kernel \mathcal{K}_{σ} of the processes $\left\{U_{\sigma}(t, \tau)\right\}$ with symbol $\sigma \in \mathcal{H}_{w}(g)$.

6. Asymptotic smoothing effect

Theorem 7 The (H, H)-uniform attractor \mathcal{A}_{0} is equivalent with the (H, V)-uniform attractor \mathcal{A}_{1}, i.e., $\mathcal{A}_{0}=\mathcal{A}_{1}$.

Proof First, let us prove $\mathcal{A}_{0} \subset \mathcal{A}_{1}$. Since \mathcal{A}_{1} is bounded in V and the imbedding $V \hookrightarrow H$ is continuous, we see \mathcal{A}_{1} is bounded in H. Also we deduce from Theorem 6 that \mathcal{A}_{1} attracts uniformly all bounded sets of H and thus \mathcal{A}_{1} can be regarded as a bounded uniformly attracting set for $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \mathcal{H}_{w}(g)}$ in H. By the minimality property of \mathcal{A}_{0}, we obtain $\mathcal{A}_{0} \subset \mathcal{A}_{1}$.

Now, let us prove $\mathcal{A}_{1} \subset \mathcal{A}_{0}$. First, we want to prove \mathcal{A}_{0} is (H, V)-uniform attracting for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$. That is to say, we will prove for any $\tau \in \mathbb{R}$ and $B \in \mathcal{B}(H)$,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(\sup _{\sigma \in \Sigma} \operatorname{dist}_{V}\left(U_{\sigma}(t, \tau) B, \mathcal{A}_{0}\right)\right)=0 \tag{32}
\end{equation*}
$$

Suppose (32) is not true. Then there are $\tau \in \mathbb{R}, B \in \mathcal{B}(H), \varepsilon_{0}>0, \sigma_{n} \in \mathcal{H}_{w}(g)$ and $t_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$, such that, for all $n \geq 1$,

$$
\operatorname{dist}_{V}\left(U_{\sigma_{n}}\left(t_{n}, \tau\right) B, \mathcal{A}_{0}\right) \geq 2 \varepsilon_{0}
$$

which implies that, there exists $v_{n} \in B$ such that

$$
\begin{equation*}
\operatorname{dist}_{V}\left(U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}, \mathcal{A}_{0}\right) \geq \varepsilon_{0} \tag{33}
\end{equation*}
$$

By Theorem 5, there are $w \in V$ and a subsequence of $U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}$ (not relabeled) such that

$$
\begin{equation*}
U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n} \rightarrow w \text { in } V . \tag{34}
\end{equation*}
$$

On the other hand, by Corollary 1, there are $v \in H$ and a subsequence of $U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}$ (not relabeled) such that

$$
\begin{equation*}
U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n} \rightarrow v \text { in } H . \tag{35}
\end{equation*}
$$

By (34) and (35), we find that $v=w$, and hence by (34) we have

$$
\begin{equation*}
U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n} \rightarrow v \text { in } V . \tag{36}
\end{equation*}
$$

Since \mathcal{A}_{0} attracts B in H by Corollary 1 , we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \operatorname{dist}_{H}\left(U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}, \mathcal{A}_{0}\right)=0 \tag{37}
\end{equation*}
$$

By (35), (37) and the compactness of \mathcal{A}_{0} in H, we must have $v \in \mathcal{A}_{0}$, which along with (36) shows that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \operatorname{dist}_{V}\left(U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}, \mathcal{A}_{0}\right) \leq \lim _{n \rightarrow+\infty} \operatorname{dist}_{V}\left(U_{\sigma_{n}}\left(t_{n}, \tau\right) v_{n}, v\right)=0 \tag{38}
\end{equation*}
$$

a contradiction with (33). So \mathcal{A}_{0} is (H, V)-uniform attracting for the family of processes $\left\{U_{\sigma}(t, \tau)\right\}_{\sigma \in \Sigma}$. By minimality property of \mathcal{A}_{1}, we obtain $\mathcal{A}_{1} \subset \mathcal{A}_{0}$.

Theorem 7 shows that the L^{2}-uniform attractor is actually the H^{1}-uniform attractor.
Acknowledgement The authors would like to thank the referees for their helpful comments, which have improved the original version of the manuscript.

References

[1] B. STRAUGHAN. Mathematical Aspects of Penetrative Convection. Copublished in the United States with John Wiley \& Sons, Inc., New York, 1993.
[2] Yu QIN, P. N. KALONI. Spatial decay estimates for plane flow in Brinkman-Forchheimer model. Quart. Appl. Math., 1998, 56(1): 71-87.
[3] P. N. KALONI, Jianlin GUO. Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl., 1996, 204(1): 138-155.
[4] L. E. PAYNE, B. STRAUGHAN. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. J. Math. Pures Appl. (9), 1996, 75(3): 225-271.
[5] L. E. PAYNE, B. STRAUGHAN. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math., 1999, 102(4): 419-439.
[6] L. E. PAYNE, J. C. SONG, B. STRAUGHAN. Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 1999, 455(1986): 2173-2190.
[7] A. O. ÇELEBI, V. K. KAIANTAROV, D. UĞURLU. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett., 2006, 19(8): 801-807.
[8] A. O. ÇELEBI, V. K. KALANTAROV, D. UGŨRLU. Continuous dependence for the convective BrinkmanForchheimer equations. Appl. Anal., 2005, 84(9): 877-888.
[9] A. O. ÇELEBI, V. K. KALANTAROV, D. UĞURLU. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett., 2006, 19(8): 801-807.
[10] Yan LIU. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modelling, 2009, 49(7-8): 1401-1415.
[11] D. UĞURLU. On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 2008, 68(7): 1986-1992.
[12] Yan OUYANG, Ling'e YANG. A note on the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 2009, 70(5): 2054-2059.
[13] R. TEMAM. Navier-Stokes Equations Theory and Numerical Analysis. North-Holland, Amsterdam, 1984.
[14] A. V. BABIN, M. I. VISHIK. Attractors of Evolution Equations. North-Holland, Amsterdam, 1992.
[15] Guangxia CHEN, Chengkui ZHONG. Uniform attractors for non-autonomous p-Laplacian equations. Nonlinear Anal., 2008, 68(11): 3349-3363.
[16] Songsong LU, Hongqing WU, Chengkui ZHONG. Attractors for nonautonomous $2 D$ Navier-Stokes equations with normal external forces. Discrete Contin. Dyn. Syst., 2005, 13(3): 701-719.

[^0]: Received April 16, 2010; Accepted October 11, 2010
 Supported by the National Natural Science Foundation of China (Grants No. 10871156).

 * Corresponding author

 E-mail address: shirley_212@126.com (X. L. SONG); yrhou@mail.xjtu.edu.cn (Y. R. HOU)

