Journal of Mathematical Research with Applications Jan., 2012, Vol. 32, No. 1, pp. 63–75 DOI:10.3770/j.issn:2095-2651.2012.01.008 Http://jmre.dlut.edu.cn

Uniform Attractors for a Non-Autonomous Brinkman-Forchheimer Equation

Xue Li $SONG^{1,*}$, Yan Ren HOU^2

1. College of Science, Xi'an University of Science and Technology, Shaanxi 710054, P. R. China;

2. College of Science, Xi'an Jiaotong University, Shaanxi 710049, P. R. China

Abstract This paper is concerned with the three-dimensional non-autonomous Brinkman-Forchheimer equation. By Galerkin approximation method, we give the existence and uniqueness of weak solutions for non-autonomous Brinkman-Forchheimer equation. And we investigate the asymptotic behavior of the weak solution, the existence and structures of the (H, H)-uniform attractor and (H, V)-uniform attractor. Then we prove that an L^2 -uniform attractor is actually an H^1 -uniform attractor.

Keywords Galerkin approximation; uniform attractor; non-autonomous Brinkman-Forchheimer equation.

MR(2010) Subject Classification 35B40; 35B41

1. Introduction

Consider now the non-autonomous Brinkman-Forchheimer equation:

$$\begin{cases} u_t - \nu \Delta u + au + b|u|^{\beta} u + \nabla p = g(t, x), & \text{in } \Omega \times (\tau, T); \\ \nabla \cdot u = 0, & \text{in } \Omega \times (\tau, T); \\ u(x, \tau) = u_{\tau}(x), & \text{in } \Omega; \\ u(x, t) = 0, & \text{in } \partial \Omega \times (\tau, T), \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^3$ is a bounded domain with smooth boundary $\partial\Omega$, $u = (u_1, u_2, u_3)$ is the fluid velocity vector, ν is the Brinkman coefficient, a > 0 is the Darcy coefficient, b > 0 is the Forchheimer coefficient, p is the pressure, and $\beta > 1$ is a constant.

The model equations (Brinkman, Darcy and Forchheimer equations) describing the flow in a porous medium have been extensively studied in [1], and several papers have been published [2– 10]. We should note that most of these papers have been focused on the question of continuous dependence of solutions on the coefficients ν, b . In [11] and [12], Davut, Ouyang and Yang proved the existence of global attractor in H_0^1 for autonomous Brinkman-Forchheimer equation, respectively, with respect to initial data $u_0 \in V$.

Received April 16, 2010; Accepted October 11, 2010

Supported by the National Natural Science Foundation of China (Grants No. 10871156).

* Corresponding author

E-mail address: shirley_212@126.com (X. L. SONG); yrhou@mail.xjtu.edu.cn (Y. R. HOU)

In this paper, we suppose the external force g(t, x) is uniformly bounded in $L^2(\Omega)$ with respect to $t \in \mathbb{R}$, i.e., there exists a positive constant K, such that,

$$\sup_{t \in \mathbb{D}} \| g(t, x) \|_{L^2(\Omega)} \le K, \tag{2}$$

then $g(t) \in L^2_b(\mathbb{R}, L^2(\Omega))$. And furthermore, suppose the weak differential of g with respect to t, denoted by h(t), is in the space $L^2_b(\mathbb{R}, L^2(\Omega))$. Here $L^2_b(\mathbb{R}, L^2(\Omega))$ is the translation bounded subspace in $L^2_{loc}(\mathbb{R}, L^2(\Omega))$, i.e., $g(t) \in L^2_b(\mathbb{R}, L^2(\Omega))$,

$$\|g\|_{L_{b}^{2}}^{2} = \|g\|_{L_{b}^{2}(\mathbb{R}, L^{2}(\Omega))}^{2} = \sup_{t \in \mathbb{R}} \int_{t}^{t+1} \|g\|_{L^{2}(\Omega)}^{2} \, \mathrm{d}s < +\infty.$$
(3)

In this paper, we focus on the existence and the structures of the (H, H) and (H, V)-uniform attractor. First, by the Galerkin approximation method, we give the existence of weak solutions for the non-autonomous three dimensional Brinkman-Forchheimer equation. After that, we explore the asymptotic behavior of the solutions. The existence and structures of the (H, H)uniform attractor and (H, V)-uniform attractor are obtained. Finally, the asymptotic smoothing effect of the solutions is addressed.

The mathematical setting of our problem is similar to that of the Navier-Stokes equations. Let us introduce the following spaces

$$\mathcal{V} = \{ u \in (C_0^{\infty}(\Omega))^3 : \operatorname{div} u = 0 \}, \ H = \operatorname{cl}_{(L^2(\Omega))^3} \mathcal{V}, V = \operatorname{cl}_{(H_0^1(\Omega))^3} \mathcal{V},$$

where cl_X denotes the closure in the space X. H and V endowed, respectively, with the inner products

$$(u,v) = \int_{\Omega} u \cdot v \mathrm{d}x, \quad u,v \in H$$

and

$$((u,v)) = \sum_{i=1}^{3} \int_{\Omega} \nabla u_i \cdot \nabla v_i dx, \quad u, v \in V,$$

and norm $|\cdot|_2 = (\cdot, \cdot)^{1/2}, \|\cdot\| = ((\cdot, \cdot))^{1/2}.$

In this paper, $\mathbf{L}^p(\Omega) = (L^p(\Omega))^3$, and we use $|\cdot|_p$ to denote the norm in $\mathbf{L}^p(\Omega)$.

Let \tilde{P} be the orthogonal projection from $\mathbf{L}^2(\Omega)$ onto H. Then applying \tilde{P} to (1), we obtain

$$\frac{\partial u}{\partial t} + \nu A u + a u + B(u) = g,$$

$$u(\tau) = u_{\tau},$$
(4)

where $A = \tilde{P}(-\Delta)$ is the Stokes operator with the domain $D(A) = (H^2(\Omega))^3 \cap V$ and $B(u) = \tilde{P}F(u)$, while $F(u) = b|u|^{\beta}u$.

Throughout this paper, we use the following notations: let X be a Banach space, X^* be the dual space of X, |u| the modular of u, (\cdot, \cdot) be the inner product in $L^2(\Omega)$, and $\langle \cdot, \cdot \rangle$ be the duality product between X and X^* , and C an arbitrary positive constant, which may be different from line to line.

2. Existence and uniqueness of weak solution

The following lemma is a compactness result, whose proof can be found in [13].

Lemma 1 Let X_0, X be Hilbert spaces satisfying a compact imbedding $X_0 \hookrightarrow X$. Let $0 < \gamma \leq 1$ and $\{v_j\}_{j=1}^{\infty}$ be a sequence in $L^2(\mathbb{R}; X_0)$ satisfying

$$\sup_{j} \left(\int_{-\infty}^{+\infty} \| v_j \|_{X_0}^2 \, \mathrm{d}t \right) < \infty, \ \sup_{j} \left(\int_{-\infty}^{+\infty} |\tau|^{2\gamma} \| \hat{v}_j \|_X^2 \, \mathrm{d}\tau \right) < \infty,$$

where $\hat{v}(\tau) = \int_{-\infty}^{+\infty} v(t) \exp(-2\pi i \tau t) dt$ is the Fourier transformation of v(t) on the time variable. Then there exists a subsequence of $\{v_j\}_{j=1}^{\infty}$ which converges strongly in $L^2(\mathbb{R}; X)$ to some $v \in L^2(\mathbb{R}; X)$.

Lemma 2 ([14]) Let \mathcal{O} be a bounded domain in $\mathbb{R}^n \times \mathbb{R}$. Given a sequence $\{g_n\}$ with $\{g_n\} \in L^q(\mathcal{O})$ and $1 < q < \infty$. Assume that $|| g_n ||_{L^q(\mathcal{O})} \leq C$, where C is independent of $n, g_n \to g \ (n \to \infty)$ almost everywhere in \mathcal{O} , and $g \in L^q(\mathcal{O})$. Then $g_n \to g \ (n \to \infty)$ weakly in $L^q(\mathcal{O})$.

Theorem 1 For any τ , $T \in \mathbb{R}$, suppose Ω is a bounded domain of \mathbb{R}^3 , $g(t) \in L^2_b(\mathbb{R}, L^2(\Omega))$, and $u_\tau \in H$. Then there exists a unique solution $u(\cdot) \in L^\infty(\tau, T; H) \cap L^2(\tau, T; V) \cap L^{\beta+2}(\tau, T; \mathbf{L}^{\beta+2}(\Omega))$.

Proof We employ the Galerkin approximation to prove the theorem. For simplicity, we take $\tau = 0$, and $u(x,0) = u_0(x)$. Since V is separable and \mathcal{V} is dense in V, there exists a sequence $\omega_1, \omega_2, \ldots, \omega_m$ of elements of \mathcal{V} , which is free and total in V. For each m we define an approximate solution u_m as follows:

$$u_m = \sum_{i=1}^m g_{im}(t)\omega_i(x)$$

and

$$(u'_{m}(t),\omega_{j}) + \nu(\nabla u_{m}(t),\nabla\omega_{j}) + a(u_{m}(t),\omega_{j}) + (b|u_{m}|^{\beta}u_{m}(t),\omega_{j}) = (g(t),\omega_{j}),$$
(5)

 $t \in [0,T], j = 1, 2, \dots, m$, and $u_{0m} \to u_0$ in H, as $m \to \infty$.

Multiplying on both sides of (5) by $g_{jm}(t)$ and summing over $j = 1, \ldots, m$, we have

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u_m|_2^2 + \nu \parallel u_m \parallel^2 + a|u_m|_2^2 + b|u_m|_{\beta+2}^{\beta+2} \le \frac{1}{2a}|g(t)|_2^2 + \frac{a}{2}|u_m|_2^2,$$

 \mathbf{so}

$$\frac{\mathrm{d}}{\mathrm{d}t}|u_m|_2^2 + 2\nu \parallel u_m \parallel^2 + a|u_m|_2^2 + 2b|u_m|_{\beta+2}^{\beta+2} \le \frac{1}{a}|g(t)|_2^2,\tag{6}$$

and

$$\frac{\mathrm{d}}{\mathrm{d}t}|u_m|_2^2 + a|u_m|_2^2 \le \frac{1}{a}|g(t)|_2^2.$$
(7)

By Gronwall's Lemma, we obtain

$$|u_m(t)|_2^2 \le |u_m(0)|_2^2 e^{-at} + \frac{1}{a} \int_0^t e^{-a(t-s)} |g(s)|_2^2 \mathrm{d}s$$

$$\le |u_m(0)|_2^2 e^{-at} + C \parallel g \parallel_{L_b^2}^2, \tag{8}$$

and

$$\int_0^t e^{-a(t-s)} |g(s)|_2^2 \mathrm{d}s \le \int_{t-1}^t e^{-a(t-s)} |g(s)|_2^2 \mathrm{d}s + \int_{t-2}^{t-1} e^{-a(t-s)} |g(s)|_2^2 \mathrm{d}s + \cdots$$

$$\begin{split} &\leq \int_{t-1}^{t} |g(s)|_{2}^{2} \mathrm{d}s + e^{-a} \int_{t-2}^{t-1} |g(s)|_{2}^{2} \mathrm{d}s + e^{-2a} \int_{t-3}^{t-2} |g(s)|_{2}^{2} \mathrm{d}s + \cdots \\ &\leq (1 + e^{-a} + e^{-2a} + \cdots) \parallel g \parallel_{L_{b}^{2}}^{2} \\ &\leq \frac{1}{1 - e^{-a}} \parallel g \parallel_{L_{b}^{2}}^{2} \\ &\leq C \parallel g \parallel_{L_{b}^{2}}^{2} \,. \end{split}$$

Integrating (6) in s from 0 to $T, T \ge 0$, we obtain

$$\sup_{s \in [0,T]} |u_m(s)|_2^2 + 2\nu \int_0^T ||u_m(s)||^2 \, \mathrm{d}s + a \int_0^T |u_m(s)|_2^2 \mathrm{d}s + 2b \int_0^T |u_m(s)|_{\beta+2}^{\beta+2} \mathrm{d}s$$

$$\leq \frac{1}{a} \int_0^T |g(s)|_2^2 \mathrm{d}s + |u_{0m}|_2^2. \tag{9}$$

From (8) and (9), we deduce that the sequence $\{u_m\}$ is a bounded set of $L^{\infty}(0,T;H) \cap L^2(0,T;V) \cap L^{\beta+2}(0,T;\mathbf{L}^{\beta+2}(\Omega))$.

Denote by \tilde{u}_m the function from \mathbb{R} into V, which is equal to u_m on [0,T] and to 0 on the complement of this interval. Similarly, we prolong $g_{im}(t)$ to \mathbb{R} by defining $\tilde{g}_{im}(t) = 0$ for $t \in \mathbb{R} \setminus [0,T]$. The Fourier transforms on time variable of \tilde{u}_m and \tilde{g}_{im} are denoted by $\hat{\tilde{u}}_m$ and $\hat{\tilde{g}}_{im}$, respectively.

Note that the approximate solution \tilde{u}_m satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}(\tilde{u}_m,\omega_j) = -\nu(\nabla \tilde{u}_m,\nabla \omega_j) - (a\tilde{u}_m,\omega_j) - (b|\tilde{u}_m|^\beta \tilde{u}_m,\omega_j) + (\tilde{g},\omega_j) + (u_{0m},\omega_j)\delta_0 - (u_m(T),\omega_j)\delta_T, \quad j = 1, 2, \dots, m,$$
(10)

where δ_0 and δ_T are the Dirac distributions at 0 and T, respectively.

Taking the Fourier transform about the time variable in (10) gives

$$2\pi i \tau(\hat{\tilde{u}}_m, \omega_j) = (\hat{\tilde{h}}_m, \omega_j) - (b|\widehat{\tilde{u}_m}|^\beta \tilde{u}_m, \omega_j) + (u_{0m}, \omega_j) - (u_m(T), \omega_j) \exp(-2\pi i T\tau),$$
(11)

where \tilde{h}_m denotes the Fourier transform of \tilde{h}_m ,

$$(\tilde{h}_m, \omega_j) = (\tilde{g}, \omega_j) - \nu(\nabla \tilde{u}_m, \nabla \omega_j) - (a \tilde{u}_m, \omega_j)$$

Multiplying (11) by $\hat{\tilde{g}}_{jm}(\tau)$ and summing the results for $j = 1, \ldots, m$, one finds that

$$2\pi i\tau |\hat{\tilde{u}}_m(\tau)|_2^2 = (\tilde{\tilde{h}}_m, \hat{\tilde{u}}_m) - b(|\widehat{\tilde{u}_m}|^\beta \tilde{\tilde{u}}_m, \hat{\tilde{u}}_m) + (u_{0m}, \hat{\tilde{u}}_m) - (u_m(T), \hat{\tilde{u}}_m) \exp\left(-2\pi i T\tau\right).$$
(12)

For any $v \in L^2(0,T;V) \cap L^{\beta+2}(0,T;\mathbf{L}^{\beta+2}(\Omega))$, we have

$$(h_m(t), v) = (g(t), v) - \nu(\nabla u_m, \nabla v) - (au_m, v) \le C(|g(t)|_2 + ||u_m|| + |u_m|_2) ||v||.$$

It follows that for any given T > 0

$$\int_0^T \|h_m(t)\|_{V'} \, \mathrm{d}t \le \int_0^T C(|g(t)|_2 + \|u_m\| + |u_m|_2) \mathrm{d}t \le C,$$

and hence

$$\sup_{s \in \mathbb{R}} \| \hat{\tilde{h}}_m(s) \|_{V'} \leq \int_0^T \| h_m(t) \|_{V'} \, \mathrm{d}t \leq C.$$
(13)

Moreover,

$$\int_0^T \left| |u_m|^\beta u_m \right|_{\frac{\beta+2}{\beta+1}} \mathrm{d}t \le \int_0^T |u_m|_{\beta+2}^{\beta+1} \mathrm{d}t \le C,$$

which implies that

$$\sup_{s \in \mathbb{R}} \left| \widehat{|u_m|^{\beta} u_m(s)|} \right|_{\frac{\beta+2}{\beta+1}} \le C.$$
(14)

From (9), we have

$$|u_m(0)|_2 \le C, \quad |u_m(T)|_2 \le C.$$
 (15)

So we deduce from (13)–(15) that

$$|\tau||\hat{\hat{u}}_m(\tau)|_2^2 \le C(\|\ \hat{\hat{u}}_m(\tau)\ \|+|\hat{\hat{u}}_m(\tau)|_{\beta+2}).$$
(16)

For any γ fixed, $0 < \gamma < \frac{1}{4}$, we observe that

$$|\tau|^{2\gamma} \le C \frac{1+|\tau|}{1+|\tau|^{1-2\gamma}}, \quad \forall \tau \in \mathbb{R}.$$

Thus

$$\int_{-\infty}^{+\infty} |\tau|^{2\gamma} |\hat{\hat{u}}_{m}(\tau)|_{2}^{2} d\tau \leq C \int_{-\infty}^{+\infty} \frac{1+|\tau|}{1+|\tau|^{1-2\gamma}} |\hat{\hat{u}}_{m}(\tau)|_{2}^{2} d\tau \\
\leq C \int_{-\infty}^{+\infty} |\hat{\hat{u}}_{m}(\tau)|_{2}^{2} d\tau + C \int_{-\infty}^{+\infty} \frac{\|\hat{\hat{u}}_{m}(\tau)\|}{1+|\tau|^{1-2\gamma}} d\tau + C \int_{-\infty}^{+\infty} \frac{|\hat{\hat{u}}_{m}(\tau)|_{\beta+2}}{1+|\tau|^{1-2\gamma}} d\tau.$$
(17)

Thanks to the Parseval equality and (9), the first integral on the right-hand side of (17) is bounded uniformly on m.

By the Schwarz inequality, Parseval equality and (9), we have

$$\int_{-\infty}^{+\infty} \frac{\|\hat{\hat{u}}_m\|}{1+|\tau|^{1-2\gamma}} \mathrm{d}\tau \le \left(\int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{(1+|\tau|^{1-2\gamma})^2}\right)^{\frac{1}{2}} \left(\int_0^T \|u_m(\tau)\|^2 \,\mathrm{d}\tau\right)^{\frac{1}{2}} \le C$$

for $0 < \gamma < \frac{1}{4}$.

Similarly, when $0 < \gamma < \frac{1}{2(\beta+2)}$, we have

$$\int_{-\infty}^{+\infty} \frac{|\hat{\hat{u}}_m(\tau)|_{\beta+2}}{1+|\tau|^{1-2\gamma}} d\tau \le \left(\int_{-\infty}^{+\infty} \frac{d\tau}{(1+|\tau|^{1-2\gamma})^{\frac{\beta+2}{\beta+1}}}\right)^{\frac{\beta+1}{\beta+2}} \left(\int_{-\infty}^{+\infty} |\hat{\hat{u}}_m(\tau)|^{\frac{\beta+2}{\beta+2}} d\tau\right)^{\frac{1}{\beta+2}} \\ \le C \left(\int_{-\infty}^{+\infty} |\tilde{u}_m(\tau)|^{\frac{\beta+2}{\beta+1}}_{\beta+2} d\tau\right)^{\frac{\beta+1}{\beta+2}} \\ \le CT^{\frac{\beta}{\beta+2}} \left(\int_{0}^{T} |u_m(\tau)|^{\frac{\beta+2}{\beta+2}}_{\beta+2} d\tau\right)^{\frac{1}{\beta+2}}.$$

It follows from (17) that

$$\int_{-\infty}^{+\infty} |\tau|^{2\gamma} |\hat{\tilde{u}}_m(\tau)|_2^2 \mathrm{d}\tau \le C.$$
(18)

Now, since $F(u_m)u_m = b|u_m|^{\beta+2} \le b|u_m|^{\beta+2} + \delta|u_m|^2$, and $\delta > 0$ is a positive constant, we have $|F(u_m)| \le C(|u_m|^{\beta+1} + |u_m|)$. Since $\mathbf{L}^{\beta+2}(\Omega) \hookrightarrow \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega)$, we obtain

$$\begin{split} \int_0^T \int_\Omega |F(u_m)|^{\frac{\beta+2}{\beta+1}} \mathrm{d}x \mathrm{d}t &\leq C \int_0^T \int_\Omega [|u_m|^{\beta+1} + |u_m|]^{\frac{\beta+2}{\beta+1}} \mathrm{d}x \mathrm{d}t \\ &\leq C \int_0^T \int_\Omega |u_m|^{\beta+2} \mathrm{d}x \mathrm{d}t + C \int_0^T \int_\Omega |u_m|^{\frac{\beta+2}{\beta+1}} \mathrm{d}x \mathrm{d}t \\ &\leq C \int_0^T \int_\Omega |u_m|^{\beta+2} \mathrm{d}x \mathrm{d}t + C \int_0^T \int_\Omega |u_m|^{\beta+2} \mathrm{d}x \mathrm{d}t. \end{split}$$

From (9) we know that $\{u_m\}$ is bounded in $L^{\beta+2}(0,T; \mathbf{L}^{\beta+2}(\mathbf{\Omega}))$, so $\{F(u_m)\}$ is bounded in $L^{\frac{\beta+2}{\beta+1}}(0,T; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\mathbf{\Omega}))$.

Since $\forall v \in L^2(0,T;V)$, we have

$$\int_0^T \int_\Omega -\nu \Delta u_m \cdot v dx dt = \nu \int_0^T \int_\Omega \nabla u_m \cdot \nabla v dx dt$$
$$\leq \nu \Big(\int_0^T \| u_m \|^2 \Big)^{\frac{1}{2}} \Big(\int_0^T \| v \|^2 \Big)^{\frac{1}{2}}.$$

It follows from (9) that $\{u_m\}$ is bounded in $L^2(0,T;V)$, so $\{-\nu\Delta u_m\} \in L^2(0,T;V')$. Therefore, by taking a subsequence when necessary, we can assume that there exists a function $u(\cdot) \in L^{\infty}(0,T;H) \cap L^2(0,T;V) \cap L^{\beta+2}(0,T;\mathbf{L}^{\beta+2}(\Omega))$ such that $u_m(s) \to u(s)$ weakly in $L^2(0,T;V)$, weakly in $L^{\beta+2}(0,T;\mathbf{L}^{\beta+2}(\Omega))$, and weak-star in $L^{\infty}(0,T;H)$ as $n \to \infty$. So, as $n \to \infty$, $-\nu\Delta u_m(s) \to -\nu\Delta u(s)$ weakly in $L^2(0,T;V')$, and $\partial_t u_m(s) \to \partial_t u(s)$ weakly in $L^{\frac{\beta+2}{\beta+1}}(0,T;\mathbf{H}^{-s}(\Omega))$ for some s > 0. Assume $F(u_m(s)) \to \eta(s)$ weakly in $L^{\frac{\beta+2}{\beta+1}}(0,T;\mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega))$ for some $\eta(s) \in L^{\frac{\beta+2}{\beta+1}}(\Omega,T;\mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega))$. Passing to the limit in $(1)_1$ with respect to u_m , we obtain the equality

$$\partial_t u - \nu \Delta u + au + \eta = g(t)$$

in the space $L^{\frac{\beta+2}{\beta+1}}(0,T;H^{-s}(\Omega)).$

By Lemma 1 and (18), there exists a subsequence of $\{u_m\}_{m=1}^{\infty}$, still denoted by itself, such that $u_m \to u$ strongly in $L^2(0,T;H)$, and so $u_m(x,s) \to u(x,s)$ for almost every $(x,s) \in \Omega \times [0,T]$ as $m \to \infty$. Since $F(u) \in C^0(\mathbb{R})$, $F(u_m(x,s)) \to F(u(x,s))$ $(m \to \infty)$ for almost every $(x,s) \in \Omega \times [0,T]$. On the other hand, the sequence $F(u_m)$ is bounded in $L^{\frac{\beta+2}{\beta+1}}(0,T;\mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega))$. From Lemma 2, we conclude that $F(u_m) \to F(u)$ $(m \to \infty)$ weakly in $L^{\frac{\beta+2}{\beta+1}}(0,T;\mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega))$, hence $\eta(s) = F(u(x,s))$. So $u \in L^{\infty}(0,T;H) \cap L^2(0,T;V) \cap L^{\beta+2}(0,T;\mathbf{L}^{\beta+2}(\Omega))$ is a solution of (1).

Finally, let us verify the uniqueness of the solution. Let u_1, u_2 be two solutions of (1) with the initial data $u_1|_{t=0} = u_1(0), u_2|_{t=0} = u_2(0)$, respectively. Subtracting the corresponding to equation (4)₁, we obtain

$$\partial_t (u_1 - u_2) + \nu A(u_1 - u_2) + a(u_1 - u_2) + B(u_1) - B(u_2) = 0.$$
(19)

Taking the inner product of (19) with $u_1 - u_2$, we obtain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u_1 - u_2|_2^2 + \nu \parallel u_1 - u_2 \parallel^2 + a|u_1 - u_2|_2^2 = -\langle F(u_1) - F(u_2), u_1 - u_2 \rangle.$$
(20)

Since the function F(u) is monotone, $(F(u) - F(v), u - v) \ge 0$, and hence from (20) we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t}|u_1 - u_2|_2^2 + 2a|u_1 - u_2|_2^2 \le 0.$$

Using the Gronwall Lemma, we obtain

$$|u_1 - u_2|_2^2 \le e^{-2at} |u_1(0) - u_2(0)|_2^2.$$

So the uniqueness of the solution is proved.

Lemma 3 Let $F(u) = \alpha |u|^{\beta} u$. Then

(i) F is continuously differentiable in \mathbb{R}^3 and for $u = (u_1, u_2, u_3)$ in \mathbb{R}^3 the Jacobian matrix is given by:

$$F'(u) = \alpha |u|^{\beta-2} \begin{pmatrix} \beta u_1^2 + |u|^2 & \beta u_1 u_2 & \beta u_1 u_3 \\ \beta u_1 u_2 & \beta u_2^2 + |u|^2 & \beta u_2 u_3 \\ \beta u_1 u_3 & \beta u_2 u_3 & \beta u_3^2 + |u|^2 \end{pmatrix}.$$

Further, F'(u) is positive definite and for any $u, v, w \in \mathbb{R}^3$:

$$(F'(u)v) \cdot w| \le c|u|^{\beta}|v||w|,$$

where c is a positive constant depending on β and α .

(ii) F is monotonic in \mathbb{R}^3 , i.e., for any $u, v \in \mathbb{R}^3$:

$$(F(u) - F(v), u - v) \ge 0$$

Proof (i) can be obtained by simple calculations, and (ii) is an immediate consequence of (i).

3. Preliminaries about processes

Let Σ be a metric space, X, Y be two spaces, and $Y \subset X$ continuously. $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma}$ is a family of processes in Banach space X. Denote by $\mathcal{B}(X)$ the set of all bounded subsets of X. $\mathbb{R}^{\tau} = [\tau, +\infty).$

Definition 1 A set $B_0 \in \mathcal{B}(Y)$ is said to be (X, Y)-uniformly absorbing for the family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ if, for any $\tau \in \mathbb{R}$ and every $B \in \mathcal{B}(X)$, there exists $t_0 = t_0(\tau, B) \geq \tau$ such that $\bigcup_{\sigma\in\Sigma} U_{\sigma}(t,\tau)B \subset B_0$ for all $t \geq t_0$. A set P belonging to Y is said to be (X,Y)-uniformly attracting for the family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ if, for an arbitrary fixed $\tau \in \mathbb{R}$ and $B \in \mathcal{B}(X)$, $\lim_{t\to+\infty} (\sup_{\sigma\in\Sigma} \operatorname{dist}_Y(U_{\sigma}(t,\tau)B,P)) = 0$.

Definition 2 A closed set $A_{\Sigma} \subset Y$ is said to be (X, Y)-uniformly attractor of the family of processes $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma}$ if it is (X, Y)-uniformly attracting and it is contained in any closed (X, Y)-uniformly attracting set \mathcal{A}' of the family of processes $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma} : \mathcal{A}_{\Sigma} \subset \mathcal{A}'$.

Definition 3 Define the uniform ω -limit set of B by $\omega_{\tau, \Sigma}(B) = \bigcap_{t \geq \tau} \overline{\bigcup_{\sigma \in \Sigma} \bigcup_{s \geq t} U_{\sigma}(s, \tau)B}$. This can be characterized by the following: $y \in \omega_{\tau, \Sigma}(B) \Leftrightarrow$ there are sequences $\{x_n\} \subset B, \{\sigma_n\} \subset \Sigma, \{t_n\} \subset \mathbb{R}^{\tau}, t_n \to \infty$ such that $U_{\sigma_n}(t_n, \tau)x_n \to y \ (n \to \infty)$. **Definition 4** A family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ possessing a compact (X,Y)-uniformly absorbing set is called (X,Y)-uniformly compact. And a family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ is called (X,Y)-uniformly asymptotically compact if it possesses a compact (X,Y)-uniformly attracting set.

Now let us consider the most interesting case where $U_{\sigma}(t,\tau)$ satisfies the following cocycle property: there is a dynamical system $\{T(h)|h \ge 0\}$ on Σ such that:

(C1) $T(h)\Sigma = \Sigma, \forall h \in \mathbb{R}^+$; (C2) translation identity:

$$U_{\sigma}(t+h,\tau+h) = U_{T(h)\sigma}(t,\tau), \quad \forall \sigma \in \Sigma, \ t \ge \tau, \ \tau \in \mathbb{R}, \ h \ge 0.$$

Definition 5 The kernel \mathcal{K} of the process $\{U(t,\tau)\}$ acting on X consists of all bounded complete trajectories of the process $\{U(t,\tau)\}$: $\mathcal{K} = \{u(\cdot)|U(t,\tau)u(\tau) = u(t), \operatorname{dist}(u(t), u(0)) \leq C_u, \forall t \geq \tau, \tau \in \mathbb{R}\}$. The set $\mathcal{K}(s) = \{u(s)|u(\cdot) \in \mathcal{K}\}$ is said to be kernel section at time $t = s, s \in \mathbb{R}$.

Definition 6 $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ is said to be $(X \times \Sigma, Y)$ -weakly continuous if, for any fixed $t \geq \tau$, $\tau \in \mathbb{R}$, the mapping $(u,\sigma) \to U_{\sigma}(t,\tau)u$ is weakly continuous from $X \times \Sigma$ to Y.

Assumption 1 Let Σ be a weakly compact set and $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ be $(X \times \Sigma, Y)$ -weakly continuous.

Theorem 2 ([15]) Under (C1), (C2) and Assumption 1 with $\{T(h)\}_{h\geq 0}$, which is a weakly continuous semigroup, if $\{U_{\sigma}(t,\tau)\}_{\sigma\in\Sigma}$ acting on X is (X,Y)-uniformly asymptotically compact, then it possesses an (X,Y)-uniform attractor \mathcal{A}_{Σ} , \mathcal{A}_{Σ} is compact in Y, and attracts the bounded subset of X in the topology of Y; moreover,

$$\mathcal{A}_{\Sigma} = \omega_{\tau, \ \Sigma}(B_0) = \bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(s), \quad \forall s \in \mathbb{R},$$

where B_0 is a bounded neighborhood of the compact (X, Y)-uniformly attracting set in Y, i.e., B_0 is a bounded (X, Y)-uniformly absorbing set of $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma}$, and $\mathcal{K}_{\sigma}(s)$ is the section at t = s of kernel \mathcal{K}_{σ} of the process $\{U_{\sigma}(t, \tau)\}$ with symbol $\sigma \in \Sigma$. Furthermore, \mathcal{K}_{σ} is nonempty for all $\sigma \in \Sigma$.

4. (H, H)-uniform attractor

We denote by $L^{2,w}_{\text{loc}}(\mathbb{R}, L^2(\Omega))$ the space $L^2_{\text{loc}}(\mathbb{R}; L^2(\Omega))$ endowed with a local weak convergence topology. Let $\mathcal{H}_w(g)$ be the hull of g in $L^{2,w}_{\text{loc}}(\mathbb{R}; L^2(\Omega))$, i.e., the closure of the set $\{g(h+s)|h \in \mathbb{R}\}$ in $L^{2,w}_{\text{loc}}(\mathbb{R}; L^2(\Omega))$, and $g(x, s) \in L^2_b(\mathbb{R}; L^2(\Omega))$.

Proposition 1 ([16]) If X is reflective separable, $\varphi \in L^2_b(\mathbb{R}; X)$, then

- (i) For all $\varphi_1 \in \mathcal{H}_w(\varphi)$, $\|\varphi_1\|_{L^2_h}^2 \leq \|\varphi\|_{L^2_h}^2$;
- (ii) The translation group $\{T(h)\}$ is weakly continuous on $\mathcal{H}_w(\varphi)$;
- (iii) $T(h)\mathcal{H}_w(\varphi) = \mathcal{H}_w(\varphi)$ for $h \ge 0$;
- (iv) $\mathcal{H}_w(\varphi)$ is weakly compact.

Because of the uniqueness of solution, the following translation identity holds

$$U_{\sigma}(t+h,\tau+h) = U_{T(h)\sigma}(t,\tau), \quad \forall \sigma \in \mathcal{H}_w(g), \ t \ge \tau, \ \tau \in \mathbb{R}, \ h \ge 0.$$

$$(21)$$

Theorem 3 The family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ corresponding to problem (i) is $(H \times \mathcal{H}_w(g), H)$ -weakly continuous, and $(H \times \mathcal{H}_w(g), V \cap \mathbf{L}^{\beta+2}(\Omega))$ -weakly continuous.

Proof For any fixed t_1 and τ , $t_1 \geq \tau$, $\tau \in \mathbb{R}$, let $u_{\tau m} \rightharpoonup u_{\tau}$ weakly in H, and $\sigma_m \rightharpoonup \sigma_0$ weakly in $\mathcal{H}_w(g)$ as $m \to \infty$. Denote by $u_m(t) = U_{\sigma_m}(t,\tau)u_{\tau m}$. The same estimate for u_m given in the Galerkin approximations in Section 2 is valid for the $u_m(t)$ here. Therefore, for some subsequence $\{n\} \subset \{m\}$ and w(t), we have for any $t_1, \tau \leq t_1 \leq T, u_n(t_1) \rightarrow w(t_1)$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$. And the sequence $\{u_n(s)\}, \tau \leq s \leq T$, is bounded in the class $L^{\infty}(\tau, T; H) \cap L^2(\tau, T; V) \cap L^{\beta+2}(\tau, T; \mathbf{L}^{\beta+2}(\Omega))$. Denote by $\eta_1(s)$, and $\eta_0(s)$ the weak limits of $-\Delta u_n(s)$ and $F(u_n(s))$ in $L^2(\tau, T; V')$ and $L^{\frac{\beta+2}{\beta+1}}(\tau, T; \mathbf{L}^{\frac{\beta+2}{\beta+1}}(\Omega))$, respectively. So we get the equation for w(s)

$$\partial_t w + \nu \eta_1 + aw + \eta_0 = \sigma_0$$

By the same method as in Theorem 1.3.1 in [14] and the proof of the Theorem 1, we know that $\eta_1 = -\Delta w$ and $\eta_0 = F(w)$, which means that w(s) in $L^{\infty}(\tau, T; H) \cap L^2(\tau, T; V) \cap L^{\beta+2}(\tau, T; \mathbf{L}^{\beta+2}(\Omega))$ is the weak solution of (1) with initial condition u_{τ} . Due to the uniqueness of the solution, we state that $U_{\sigma_n}(t_1, \tau)u_{\tau n} \to U_{\sigma_0}(t_1, \tau)u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$. For any other subsequences $\{u_{\tau n'}\}$ and $\{\sigma_{n'}\}$, we have $u_{\tau n'} \to u_{\tau}$ weakly in H and $\sigma_{n'} \to \sigma_0$. By the same process we obtain the analogous relation $U_{\sigma n'}(t_1, \tau)u_{\tau n'} \to U_{\sigma_0}(t_1, \tau)u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$ holds. Then it can be easily seen that for any weakly convergent initial sequence $\{u_{\tau m}\} \in H$ and weakly convergent sequence $\{\sigma_m\} \in \mathcal{H}_w(g)$, we have $U_{\sigma_m(t_1,\tau)}u_{\tau m} \to U_{\sigma_0}(t_1,\tau)u_{\tau}$ weakly in H and $V \cap \mathbf{L}^{\beta+2}(\Omega)$.

Theorem 4 The family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ corresponding to problem (i) has a bounded $(H, V \cap \mathbf{L}^{\beta+2}(\Omega))$ -uniformly absorbing set.

Proof Taking the inner product of (i)₁ with u, with respect to an external force $\sigma \in \mathcal{H}_w(g)$, yields

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u|_{2}^{2}+\nu \parallel u \parallel^{2}+a|u|_{2}^{2}+b|u|_{\beta+2}^{\beta+2}=\int_{\Omega}\sigma(t)u\leq\frac{1}{2a}|\sigma(t)|_{2}^{2}+\frac{a}{2}|u|_{2}^{2},$$
(22)

that is,

$$\frac{\mathrm{d}}{\mathrm{d}t}|u|_{2}^{2} + 2\nu \parallel u \parallel^{2} + a|u|_{2}^{2} + 2b|u|_{\beta+2}^{\beta+2} \le \frac{1}{a}|\sigma(t)|_{2}^{2}.$$
(23)

Applying the Gronwall Lemma, we get

$$|u(t)|_{2}^{2} \leq |u_{\tau}|_{2}^{2} e^{-a(t-\tau)} + \frac{1}{a} \int_{\tau}^{t} e^{-a(t-s)} |\sigma(s)|_{2}^{2} \mathrm{d}s$$
$$\leq |u_{\tau}|_{2}^{2} e^{-a(t-\tau)} + C \parallel g \parallel_{L_{b}^{2}}^{2}.$$

From this inequality, we know that the family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ has an (H,H)uniformly absorbing set, i.e., for an arbitrary bounded subset B in H, there exists $T_1 = T_1(B,\tau)$ such that

$$|u(t)|_{2}^{2} \leq \rho_{0}(||g||_{L_{b}^{2}}^{2}), \text{ for all } t \geq T_{1}, \ u_{\tau} \in B, \sigma \in \mathcal{H}_{w}(g).$$
(24)

Taking $t \ge T_1$, integrating (23) on [t, t+1] and combining with (24), we have

$$\int_{t}^{t+1} [\| u(s) \|^{2} + |u(s)|_{2}^{2} + |u(s)|_{\beta+2}^{\beta+2}] \mathrm{d}s \le C(\rho_{0}, \| g \|_{L_{b}^{2}}^{2}), \text{ for all } t \ge T_{1}.$$

$$(25)$$

On the other hand, taking the inner product of $(i)_1$ with u_t yields

$$|u_t|_2^2 + \frac{\nu}{2} \frac{\mathrm{d}}{\mathrm{d}t} \parallel u \parallel^2 + \frac{a}{2} \frac{\mathrm{d}}{\mathrm{d}t} |u|_2^2 + \frac{b}{\beta + 2} \frac{\mathrm{d}}{\mathrm{d}t} |u|_{\beta + 2}^{\beta + 2} = \int_{\Omega} \sigma(t) u_t \mathrm{d}x \le \frac{1}{2} |u_t|_2^2 + \frac{1}{2} |\sigma(t)|_2^2 + \frac{1}{2} |\sigma(t)|_2^2 + \frac{1}{2} |\sigma(t)|_2^2 + \frac{1}{2} |u_t|_2^2 + \frac{1}{2} |u_$$

Therefore,

$$\frac{\mathrm{d}}{\mathrm{d}t} [\| u \|^2 + |u|_2^2 + |u|_{\beta+2}^{\beta+2}] \le C |\sigma(t)|_2^2.$$
(26)

From (25) and (26), by virtue of the uniform Gronwall Lemma, we get

$$|| u(t) ||^{2} + |u(t)|_{2}^{2} + |u(t)|_{\beta+2}^{\beta+2} \le \rho, \text{ for all } t \ge T_{1} + 1,$$
(27)

where ρ is a positive constant. From (27), we get the $(H, V \cap \mathbf{L}^{\beta+2}(\Omega))$ -uniformly absorbing set and thus complete the proof. \Box

From Theorem 4 and the compactness of the Sobolev embedding $V \hookrightarrow H$, and Theorem 2 we have the following result:

Corollary 1 The family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ generated by (i) with initial data $u_{\tau}\in H$ has an (H, H)-uniform attractor \mathcal{A}_0 , which is compact in H and attracts every bounded subset of H in the topology of H. Moreover,

$$\mathcal{A}_0 = \omega_{\tau, \mathcal{H}_w(g)}(B_0) = \bigcup_{\sigma \in \mathcal{H}_w(g)} \mathcal{K}_\sigma(s), \ \forall s \in \mathbb{R},$$

where B_0 is the (H, H)-uniformly absorbing set in H, and $\mathcal{K}_{\sigma}(s)$ is the section at t = s of kernel \mathcal{K}_{σ} of the processes $\{U_{\sigma}(t, \tau)\}$ with symbol $\sigma \in \mathcal{H}_w(g)$.

5. (H, V)-uniform attractor

In this section, we prove the existence of the (H, V)-uniform attractor. For this purpose, first we will give a priori estimate about u_t endowed with an *H*-norm.

Lemma 4 For any bounded subset $B \subset H$, any $\tau \in \mathbb{R}$ and $\sigma \in \mathcal{H}_w(g)$, there exists a positive constant $T = T(B, \tau) \geq \tau$, and a positive constant ρ_1 , such that

$$|u_t(s)|_2^2 \leq \rho_1$$
, for any $u_\tau \in B$, $s \geq T$, $\sigma \in \mathcal{H}_w(g)$,

where $u_t(s) = \frac{\mathrm{d}}{\mathrm{d}t} (U_{\sigma}(t,\tau)u_{\tau})|_{t=s}$ and ρ_1 is a positive constant which is independent of B and σ .

Proof By differentiating (i)₁ with the external force σ in time, we get

$$u_{tt} - \nu \Delta u_t + au_t + F'(u)u_t = \sigma'(t).$$

Taking the inner product of above equation with u_t yields

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u_t|_2^2 + \nu \parallel u_t \parallel^2 + a|u_t|_2^2 = -\int_{\Omega} (F'(u)u_t) \cdot u_t \mathrm{d}x + \int_{\Omega} \sigma'(t)u_t \mathrm{d}x.$$

By Lemma 3, $-\int_{\Omega} (F'(u)u_t) \cdot u_t dx$ is non-positive definite, hence we have

$$\frac{\mathrm{d}}{\mathrm{d}t}|u_t|_2^2 \le \frac{1}{4a}|\sigma'(t)|_2^2 + 2a|u_t|_2^2.$$
(28)

Taking the inner product of $(i)_1$ with u_t yields

$$\begin{aligned} |u_t|_2^2 &+ \frac{\nu}{2} \frac{\mathrm{d}}{\mathrm{d}t} \parallel u \parallel^2 + \frac{a}{2} \frac{\mathrm{d}}{\mathrm{d}t} |u|_2^2 + \frac{b}{\beta + 2} \frac{\mathrm{d}}{\mathrm{d}t} |u|_{\beta+2}^{\beta+2} \\ &= \int_{\Omega} \sigma(t) u_t \mathrm{d}x \le \frac{1}{2} |\sigma(t)|_2^2 + \frac{1}{2} |u_t|_2^2. \end{aligned}$$

Therefore,

$$\frac{1}{2}|u_t|_2^2 + \frac{\nu}{2}\frac{\mathrm{d}}{\mathrm{d}t} \parallel u \parallel^2 + \frac{a}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u|_2^2 + \frac{b}{\beta+2}\frac{\mathrm{d}}{\mathrm{d}t}|u|_{\beta+2}^{\beta+2} \le \frac{1}{2}|\sigma(t)|_2^2.$$
(29)

Integrating (29) from t to t + 1, and according to Theorem 4, we have

$$\int_{t}^{t+1} |u_t|_2^2 \le C,$$
(30)

for t large enough.

Combining (28) with (30), and using the uniform Gronwall Lemma, we get

 $|u_t|_2^2 \le \rho_1$

for t large enough, where ρ_1 is a positive constant independent of σ .

Theorem 5 The family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ corresponding to problem (1) with initial data $u_{\tau} \in H$ is (H, V)-uniformly asymptotically compact, i.e., there exists a compact uniformly attracting set in V, which attracts any bounded subset $B \subset H$ in the topology of V.

Proof Let B_0 be an (H, V)-uniformly absorbing set obtained in Theorem 4. Then we need only to show that: for any $\{u_{\tau n}\} \subset B_0$, $\{\sigma_n\} \subset \mathcal{H}_w(g)$ and $t_n \to \infty$, $\{U_{\sigma_n}(t_n, \tau)u_{\tau n}\}_{n=1}^{\infty}$ is precompact in V.

In fact, from Corollary 1, we know that $\{U_{\sigma_n}(t_n, \tau)u_{\tau n}\}_{n=1}^{\infty}$ is precompact in H. Without loss of generality, we assume that $\{U_{\sigma_n}(t_n, \tau)u_{\tau n}\}_{n=1}^{\infty}$ is a Cauchy sequence in H. Now, we prove that

$$\{U_{\sigma_n}(t_n,\tau)u_{\tau n}\}_{n=1}^{\infty} \text{ is a Cauchy sequence in } V.$$
(31)

Let $u_n^{\sigma_n}(t_n) = U_{\sigma_n}(t_n, \tau) u_{\tau n}$. We have

$$\begin{split} \nu &\| u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m) \|^2 = \nu (A u_n^{\sigma_n}(t_n) - A u_m^{\sigma_m}(t_m), u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)) \\ &= (-\frac{\mathrm{d}}{\mathrm{d}t} u_n^{\sigma_n}(t_n) + \frac{\mathrm{d}}{\mathrm{d}t} u_m^{\sigma_m}(t_m) - a u_n^{\sigma_n}(t_n) + a u_m^{\sigma_m}(t_m) - \\ & B(u_n^{\sigma_n}(t_n)) + B(u_m^{\sigma_m}(t_m)) + \sigma_n - \sigma_m, u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)) \\ &\leq \int_{\Omega} \left| \frac{\mathrm{d}}{\mathrm{d}t} u_n^{\sigma_n}(t_n) - \frac{\mathrm{d}}{\mathrm{d}t} u_m^{\sigma_m}(t_m) \right| \, |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)| + a \int_{\Omega} |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)|^2 + \end{split}$$

$$\begin{split} &\int_{\Omega} |\sigma_n - \sigma_m| \ |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)| \\ &\leq \left| \frac{\mathrm{d}}{\mathrm{d}t} u_n^{\sigma_n}(t_n) - \frac{\mathrm{d}}{\mathrm{d}t} u_m^{\sigma_m}(t_m) \right|_2 |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)|_2 + |\sigma_n - \sigma_m|_2 |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)|_2 + \\ &a |u_n^{\sigma_n}(t_n) - u_m^{\sigma_m}(t_m)|_2^2, \end{split}$$

which, combined with Lemma 4, yields (31) immediately.

Theorem 6 The family of processes $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ corresponding to problem (i) with initial data $u_{\tau} \in H$ has an (H, V)-uniform attractor \mathcal{A}_1 , where \mathcal{A}_1 is compact in V and attracts every bounded subset B of H in the topology of V. Moreover,

$$\mathcal{A}_1 = \omega_{\tau, \mathcal{H}_w(g)}(B_0) = \bigcup_{\sigma \in \mathcal{H}_w(g)} \mathcal{K}_\sigma(s), \quad \forall s \in \mathbb{R},$$

where B_0 is the (H, V)-uniformly absorbing set, and $\mathcal{K}_{\sigma}(s)$ is the section at t = s of kernel \mathcal{K}_{σ} of the processes $\{U_{\sigma}(t, \tau)\}$ with symbol $\sigma \in \mathcal{H}_w(g)$.

6. Asymptotic smoothing effect

Theorem 7 The (H, H)-uniform attractor \mathcal{A}_0 is equivalent with the (H, V)-uniform attractor \mathcal{A}_1 , i.e., $\mathcal{A}_0 = \mathcal{A}_1$.

Proof First, let us prove $\mathcal{A}_0 \subset \mathcal{A}_1$. Since \mathcal{A}_1 is bounded in V and the imbedding $V \hookrightarrow H$ is continuous, we see \mathcal{A}_1 is bounded in H. Also we deduce from Theorem 6 that \mathcal{A}_1 attracts uniformly all bounded sets of H and thus \mathcal{A}_1 can be regarded as a bounded uniformly attracting set for $\{U_{\sigma}(t,\tau)\}_{\sigma\in\mathcal{H}_w(g)}$ in H. By the minimality property of \mathcal{A}_0 , we obtain $\mathcal{A}_0 \subset \mathcal{A}_1$.

Now, let us prove $\mathcal{A}_1 \subset \mathcal{A}_0$. First, we want to prove \mathcal{A}_0 is (H, V)-uniform attracting for the family of processes $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma}$. That is to say, we will prove for any $\tau \in \mathbb{R}$ and $B \in \mathcal{B}(H)$,

$$\lim_{t \to +\infty} \left(\sup_{\sigma \in \Sigma} \operatorname{dist}_V(U_{\sigma}(t,\tau)B,\mathcal{A}_0) \right) = 0.$$
(32)

Suppose (32) is not true. Then there are $\tau \in \mathbb{R}$, $B \in \mathcal{B}(H)$, $\varepsilon_0 > 0$, $\sigma_n \in \mathcal{H}_w(g)$ and $t_n \to +\infty$ as $n \to +\infty$, such that, for all $n \ge 1$,

$$\operatorname{dist}_{V}(U_{\sigma_{n}}(t_{n},\tau)B,\mathcal{A}_{0}) \geq 2\varepsilon_{0},$$

which implies that, there exists $v_n \in B$ such that

$$\operatorname{dist}_{V}(U_{\sigma_{n}}(t_{n},\tau)v_{n},\mathcal{A}_{0}) \geq \varepsilon_{0}.$$
(33)

By Theorem 5, there are $w \in V$ and a subsequence of $U_{\sigma_n}(t_n, \tau)v_n$ (not relabeled) such that

$$U_{\sigma_n}(t_n, \tau)v_n \to w \text{ in } V. \tag{34}$$

On the other hand, by Corollary 1, there are $v \in H$ and a subsequence of $U_{\sigma_n}(t_n, \tau)v_n$ (not relabeled) such that

$$U_{\sigma_n}(t_n, \tau) v_n \to v \text{ in } H. \tag{35}$$

By (34) and (35), we find that v = w, and hence by (34) we have

$$U_{\sigma_n}(t_n, \tau) v_n \to v \text{ in } V.$$
(36)

Since \mathcal{A}_0 attracts *B* in *H* by Corollary 1, we get

$$\lim_{n \to +\infty} \operatorname{dist}_{H}(U_{\sigma_{n}}(t_{n},\tau)v_{n},\mathcal{A}_{0}) = 0.$$
(37)

By (35), (37) and the compactness of \mathcal{A}_0 in H, we must have $v \in \mathcal{A}_0$, which along with (36) shows that

$$\lim_{n \to +\infty} \operatorname{dist}_{V}(U_{\sigma_{n}}(t_{n},\tau)v_{n},\mathcal{A}_{0}) \leq \lim_{n \to +\infty} \operatorname{dist}_{V}(U_{\sigma_{n}}(t_{n},\tau)v_{n},v) = 0,$$
(38)

a contradiction with (33). So \mathcal{A}_0 is (H, V)-uniform attracting for the family of processes $\{U_{\sigma}(t, \tau)\}_{\sigma \in \Sigma}$. By minimality property of \mathcal{A}_1 , we obtain $\mathcal{A}_1 \subset \mathcal{A}_0$.

Theorem 7 shows that the L^2 -uniform attractor is actually the H^1 -uniform attractor.

Acknowledgement The authors would like to thank the referees for their helpful comments, which have improved the original version of the manuscript.

References

- B. STRAUGHAN. Mathematical Aspects of Penetrative Convection. Copublished in the United States with John Wiley & Sons, Inc., New York, 1993.
- Yu QIN, P. N. KALONI. Spatial decay estimates for plane flow in Brinkman-Forchheimer model. Quart. Appl. Math., 1998, 56(1): 71–87.
- [3] P. N. KALONI, Jianlin GUO. Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl., 1996, 204(1): 138–155.
- [4] L. E. PAYNE, B. STRAUGHAN. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. J. Math. Pures Appl. (9), 1996, 75(3): 225–271.
- [5] L. E. PAYNE, B. STRAUGHAN. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math., 1999, 102(4): 419–439.
- [6] L. E. PAYNE, J. C. SONG, B. STRAUGHAN. Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 1999, 455(1986): 2173–2190.
- [7] A. O. ÇELEBI, V. K. KAIANTAROV, D. UĞURLU. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett., 2006, 19(8): 801–807.
- [8] A. O. ÇELEBI, V. K. KALANTAROV, D. UGŨRLU. Continuous dependence for the convective Brinkman-Forchheimer equations. Appl. Anal., 2005, 84(9): 877–888.
- [9] A. O. ÇELEBI, V. K. KALANTAROV, D. UĞURLU. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett., 2006, 19(8): 801–807.
- [10] Yan LIU. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modelling, 2009, 49(7-8): 1401–1415.
- [11] D. UĞURLU. On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 2008, 68(7): 1986–1992.
- [12] Yan OUYANG, Ling'e YANG. A note on the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 2009, 70(5): 2054–2059.
- [13] R. TEMAM. Navier-Stokes Equations Theory and Numerical Analysis. North-Holland, Amsterdam, 1984.
- [14] A. V. BABIN, M. I. VISHIK. Attractors of Evolution Equations. North-Holland, Amsterdam, 1992.
- [15] Guangxia CHEN, Chengkui ZHONG. Uniform attractors for non-autonomous p-Laplacian equations. Nonlinear Anal., 2008, 68(11): 3349–3363.
- [16] Songsong LU, Hongqing WU, Chengkui ZHONG. Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces. Discrete Contin. Dyn. Syst., 2005, 13(3): 701–719.