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C'! Solutions of the Iterative Equation

Gz, f(x), ..., ["(x)) = F(z)

Jing Min CHEN, Li CHEN*
Department of Mathematics, Sichuan University, Sichuan 610064, P. R. China

Abstract In this paper we consider the iterative equation G(z, f(z),..., f"(z)) = F(z) on R,
and give the existence of C* solutions near the fixed point of F, which generalize some results
on the leading coefficient problem from the form of the polynomial-like iterative equations to the
general form.
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1. Introduction

Iterative equations, a class of functional equations involving iteration of the unknown func-
tion, attract extensive interests [1,2,4,12]. The problem of iterative roots [4] is to find the
unknown function f such that f"(x) = F(z) and the well-known Feigenbaum equation f(z) =
—L f(f(=Az)) are both iterative equations [8]. The general form of iterative equation can be

represented as
G(JJ, f(i[:), fz(x)7 s 7fn(w)) =0,

where f™ denotes the nth iterate of f, defined by f"(z) := f(f" () and f°(x) = z inductively.

A special form of iterative equation is the polynomial-like iterative equation
M f™ (@) + A f N @) + o+ M f(2) = F(x), v€DCA, (1)

where & is a Banach space over R, F': D — D is a given mapping, A;’s are real constants and
f : D — D is the unknown mapping. For X = R and D being a compact interval, the existence
and uniqueness of continuous solutions of this equation were discussed in [16] in 1987. Later, C*
and C" smoothness of those solutions and some generalizations to high dimensional cases and to

the general form

G(Iaf(x)an(x)vmfn(x)):F(I)a eDcC4, (2)
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where G is a given multivariate function, were given in [5-7,9-11,13,17]. Although those results

were given globally, a requirement that A\; > 0 or that

n n
Dy = il < |Gy, yn) = Gl G, Gn)| <D Bilys — il

i=1 i=1

where 3; > a; > 0 for all 4 and a7 > 0, was imposed. The nonzero constant A; or a; prevents
the equation from including the problem of iterative roots. The most natural way is to impose
such a nonzero assumption to the coefficient of the highest order term, i.e., A, > 0 or «;, > 0.
This leads the so-called “leading coefficient problem” as mentioned in [15, 19].

The first answer to the leading coefficient problem of equation (1) with X = R was given in
[18], where locally expansive C'! solutions were obtained for locally expansive F. Some construc-
tive results on continuous solutions were given in [14]. Following [18], more cases were discussed
for C* solutions in [3].

In this paper we generalize some results on the leading coefficient problem from equation
(1) to Eq. (2). We give locally contractive C! solutions for Eq.(2) near the fixed point of F in

increasing and decreasing cases separately for locally contractive or expansive F' on R.

2. Main results

Let C*(R,R) denote the set of all continuously differentiable self-mappings on R. For conve-
nience we let X denote (zg,x1,...,2,) and O denote (0,0,...,0) for short. Let G;(X) denote
the partial derivative G /0x; simply, ¢ = 0,1,...,n. A main result is the following:

Theorem 1 Let F' € C'(R,R) satisfy F(0) = 0 and G : R"*! — R be continuously differentiable
such that G(O) = 0. Suppose that

(Hit) F’ is locally Lipschitzian and F'(x) > F'(0) > 0 in a neighborhood of 0,

(H:) 0<GiX)<GLO) for alli =0,1,...,n in a neighborhood of O in R"*1 and

n
|G;(I05I15 v ,In) - G;(yoaylv .. ,yn)| S ZL1]|IJ - yJ|
=0

for (xg,1,...,2n) and (Yo, Y1, - .. ,Yn) In a neighborhood of O, where L;js (i,j = 0,1,...,n) are
nonnegative constants.

(H) 1Go(O)] < |F'(0)] < 32320 |G3(O)].

Then Eq. (2) has a locally contractive increasing C' solution near 0.

In this theorem, instead of hypothesis |G} (O) > > 0] (see [11,13]) we assume that |G(O) >
0],%=1,2,...,n, which means the equation in our theorem includes the iterative root problem
as a special case.

In order to prove Theorem 1, we apply the Schréder transformation f(z) = ¢(cp=1(z)) to

change Eq. (2) into the auxiliary equation

G((s), ¢lcs), ¢(c?s), ..., d(c"s)) = F(o(s)). 3)

Lemma 1 Under the conditions of Theorem 1, there exist constants 0 < ¢ < 1 and o > 0 such
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that for arbitrarily given 0 < 7 < 1/|F'(0)|, Eq. (3) with such a constant ¢ has a C* solution ¢
on [—o, 0| with ¢(0) =0 and ¢'(0) = 7.

Proof Differentiate Eq.(2) at z = 0. We see that if Eq.(2) has a C! solution f near 0, then

f/(0) must be a real root of polynomial
P(p) =G, (O)p" + G, (O)u" ™ + -+ + GL(O)u + GH(O) — F'(0).

The hypotheses (H), (H; ) and the signs of G4(0), i = 0,1,...,n imply P(0) < 0 and P(1) > 0.
By the continuity P(u) has a root 0 < ¢ < 1. Consider Eq. (3) with such a constant ¢. From
hypothesis (H) we note |G,(O)| < |F’(0)], then we can choose a k satisfying 0 < k < 1 such that
|GY(0)| = k|F"(0)]. If |GH(O)| = 0 we take k = 0. By (Hf), (H/;) and the continuity of F”, we
choose suitable positive constants o1, K1 and M € (|F'(0)|, |F'(0)|/((1 — |¢|)k + |¢|)) such that
0 < |F'(z)] < M and |F'(z) — F'(y)| < Ki|z — y| for all z,y € [—01,01]. We further choose a
o € (0,01) such that [—0,0] C F([~01,01]). Then F~! is well defined in [0, ¢]. For arbitrary
given T € (0,1/|F’(0)|], let

K IPO)] + M2 S S Ll

— FOIF(0)] = M((1 = [e])k + |cl)

Define a subset of C'[—0, o] by
A:={¢p € C'~0,0]: $(0) = 0,¢'(0) =7,0 < ¢/(z) < ¢'(0) = 7, and
|0/ (z) = ¢'(y)| < Kl —yl, Va,y € I},
Using Ascoli-Arzela Lemma, we can verify that A is uniformly bounded and equi-continuous.
Hence A is a convex compact subset of C'[—0, 0], a Banach space endowed with the norm || - ||,

defined by (|9l = max{|gll, |#l]} and 4] := sup{|$(x)| : = € [~0,0]} for & € C}—0,0].
Define a mapping G : A — C[—0, o] by

Go(s) := G(o(s), ¢(cs),...,o(c"s)), Vo€ A
We calculate that
d " ) . n )
0 < |=Ga(s)| =Y Gil@(s), dles)...., o(c"s))c'd/ (c's)] <[ D Gi(O)e' ¢/ (0)] < 1,
i=0 1=0
which means the range of G¢ is included in [—0, o].

For convenience, in what follows let ®(s) denote the vector (¢(s), ¢(cs),...,d(c"™s)). Define
amap 7 : A — C'[—0,0] by

Top:=F LoGp, VYoc A
We can check that 7¢(0) = 0 and

d _ 2o Gi(®(s))c' ' (c's) _ 3oy Gi(O)c'¢!(0)
0 S &Td)(s) — F?,(F_l o g(b(S)) S 0 FI(O)

=¢'(0) =T

In order to prove 7 is a self-mapping on the set A, for all z,y € [-0,0] and i =0,1,...,n
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we give following inequalities
|Gi(®(x)) = Gi (@) < Y Lijlo(la) — d(cly)| < ( ZLwlc )z —yl.
§=0
Therefore, we have
|Gi(®(2)¢' (c'w) — Gi(D(y)))¢' (c'y)]
< |G (@(2))l¢' (') — ¢'(c"y)| + ¢/ (cY|Gi' (B () — G/ (2(y))]

< (KIGi’(O)CZI+722Lijlcj|))|w—y|- (4)

§=0
By the C' continuity of G and the Lipschtiz constant K, of F”,

[F/(F~1 o G(®(x))) — F'(F~' 0 G(2(y)))]

< K |F @) ~ P (00)] € s (GOw) - G)
|F/ TZ|G/ ||I_y| KIT|I_y|' (5)

Inequalities (4) and (5) imply that

(T¢) () = (T9) (v)]
1

T @) P T o)

[F'(F~1 o G(®(y))) Z dGi(@(2)d (¢'x) = F'(F~ 0 G(2())) Y ¢'Gi(2 ()¢ (¢'y)]
i=0

< g (P oGO | - (GO () - GLp)ed ()

IZG’ ' (c'y)| - |F(F~1oG(2(y)) — F(F~ oG (®(x))[}

|F/0|2{ |Z (G4 (O Kc+T2ZL”cJ|+K17-QZ|cG’ Nz — v

Jj=0 1=0
|Ff<10>|2{MKZIC”G’ O) + M2 33 L] + Ky P O) o — o]
1=0 5=0
M (- [eDIGHO)] + (GH(0)] + T, [ GLO))
PO [F7(0)] Kl —yl+
|F/(10)|2{K1T2|F/(0)|+MT2ZZLij|ci+j|}|x—y|
i=0 j=0
M (L= [e)k[E"(0)] + e[ (Eiso [<'Gi(0)])
— |E(0)] [E7(0)] ; Kl —yl+

1 2| ! 2 < i+J
FOE PO+ M7 52 Lyl s
1=0 5=
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M (1= [cDKIE"(0)] + [cF'(0)]

- |Ff< M F0) Ko~y
gy T F 4 23S Ly e} o
1=0 j=0

which implies 7 (A) C A. Considering ¢1, ¢2 € A, we have

| T¢1 — T o = popax [F~ 0 Gr(x) — F~" 0 Ga(x)|
< max |G(¢1(x),¢1(cx),.,.,(bl(c”x)) —G((bg(.f),(bQ(CI),...,¢2(Cn$))|

" z€[—0,0] |F/(O)|

Yo IGHO)]
< WH% — o2

and

d d
”d_ST(bl - &T%H

= max |Z?:0 Gi(P1(x))c'¢1 (c'x) B Do G§(¢2($))Ci¢/2(ci:r)|
€[] FI(F~1 o Gdi(x)) F'(F~10Ggpa(x))

1
< max

= wel—oo] [F/(F~ 1og¢1< NE(F~T0Ga(x))]

{|F'(F~ o Ggo(a |Z|C IG3(®1(2))9"1(c'x) — Gy(@2())¢2(c"x) |+

|[F'(F~' o Ggo(x)) — F'(F ' oGy (x |Z|c |G (®a(2))¢ 2 (ciz) |}

1 S 7 / / T / / T
< P ML 405, 2 G @)1 () — Gi@a(e)eh (o)t
Gi(@2(2))01(¢'2) = Gi(a(w))o/2(c0)
KleG’ ¢, max |F~'oGéi(a) ~ F~" 0 Goa(a)]}

< M Z|c| max | |G}(@(x) — G{(@a(a) |+

MZ|G’ éllgr — dalls + Kar 3 1GUO) 61 — o2l

=0

|F/ |2{MTZZL”|C|+MZ|GI

1=0 j=0

K172|G/ H¢r = ¢all1.

123
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Hence

S GO 1 NS S o
_ < i= % P / )
1761 = Téall <mad = gy M7 2 2, Bl + M DG (O)' 1+

K17 ) |G O))}Iér — ¢l
i=0

This proves that 7 maps the convex compact subset A continuously into itself. By Schauder’s
fixed point theorem, there exists a function ¢ € A such that 7 ¢ = ¢, which means ¢ is a solution
of equation (3) with derivative 7 at 0. This completes the proof. O

Proof of Theorem 1 Choose ¢,0,T, ¢ as in Lemma 1. Because of the continuity of ¢’, we
choose a small closed subset I of [—o, o], a neighborhood of 0, such that ¢! exists and is C* on I.
Moreover, c'¢p~1(x) € [~0,0] fori =1,2,...,nsince 0 < ¢ < 1. Let f(z) := ¢(cp~1(x)) forz € I.
Obviously, f is C* and invertible on I and satisfies f(0) = 0 and f/(0) = ¢'(0)c(¢~1)'(0) = c.
One can check that

Gz, f(2), f2(@),.... [M(2)) =G(8(¢7" (@), p(cd ™ (2)), $(c* 6 ()., $(c" ¢! (2))
F(¢(¢7"(2))) = F(x), Vael,

implying that f is a solution of Eq. (2) near 0. The proof is completed. O

Theorem 1 gives a local contractive increasing solution for increasing F'. The following theo-

rems give locally contractive decreasing solutions for decreasing F' and increasing F', respectively.

Theorem 2 Suppose that n is odd, F € C*(R,R) satisfies F(0) = 0 and G : R*"*! — R is
continuously differentiable such that G(O) = 0 and (H) holds. Suppose that
[(Hr)] F’ is locally Lipschitzian and F'(x) < F'(0) < 0 in a neighborhood of 0, and
[(HE)] 0<GiX) < Gi(O) for odd i and G4(O) < G4(X) < 0 for even i, i =0,1,...,n in a
neighborhood of O in R**! and

n
|G;;(:E07:E17' ..,.’L’n) - G;(y07y17" 7yn)| S ZLwlx_] _y_]l

j=0
for (xo,1,...,2n) and (Yo, Y1, - .. ,Yn) In a neighborhood of O, where L;js (i,j = 0,1,...,n) are
nonnegative constants.

Then Eq. (2) has a locally contractive decreasing C! solution near 0.

Theorem 3 Suppose that n is even. Let F' € C*(R,R) satisfy F(0) = 0 and F' satisfy (H}").
G : R"™ — R be continuously differentiable such that G(O) = 0 and (H) holds. Suppose that

[(HE)] G5(0) < Gi(X) <0 foroddi and 0 < Gi(X) < G(O) for eveni, i =0,1,...,nin a
neighborhood of O in R"*! and

n
|G;(I05I15 v ,In) - G;(yoaylv .. ,yn)| S ZL1]|IJ - yJ|
=0

for (xo, 21, .. .,%n) and (Yo,Y1,- - -,Yn) in a neighborhood of O, where L;;s (i,j =0,1,...,n) are

nonnegative constants.
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Then Eq. (2) has a locally contractive decreasing C* solution near 0.

In order to prove Theorem 2 (resp., Theorem 3), we first notice that P(—1) < 0 (resp.,
P(-1) > 0) and P(0) > 0 (resp., P(0) < 0), which implies that P has a root —1 < ¢ < 0 by
the continuity. Then we consider Eq. (3) with this constant ¢. The rest of proof for Theorem 2
(resp., Theorem 3) is similar to that of Theorem 1.

Remark that we do not consider the increasing solution for decreasing F' throughout our
paper. If the characteristic polynomial P has a positive real root, we have the fact that at least
one of G;(0),i =0,1,...,n must be negative since F’(0) < 0. By this method we cannot come

to analogous conclusion as above.

3. Examples

Example 1 The equation sin(Aoz(1 4+ 22)~2 + A1 f2(z)) 4 sin(Aa f3(2)) = a22® + Asx, where
x is in a neighborhood of 0, and A;, i = 0,1,2,3, are nonnegative constants and A; s satisfy
Ap < Az < Ao+ Ay + As. In this equation, G(xg, z1, 22, 23) = G(X) = sin(Apxo(1 + x%)’% +
Ajx5) +sin(Agz3), and we calculate that Gy (X) = Ag cos(Aowo(1+22) "2 + Aya)((1422)"2 —
22(1+22)72), and G4(X) = A; cos(Agzo(1+32) "2 + A1), G4(X) = Ay cos(Agzs). It is easy to
verify that G(O) = 0, and 0 < G{(X) < G(O) for i = 0,1,2,3. The rest hypotheses of Theorem
1 can be verified similarly. So this equation has a locally invertible contractive increasing C*

solution in a neighborhood of x = 0.

Example 2 The equation sin(Agz + A, f4(z)) + Ay arctan(f3(z)) = Asz(1 — 22)~2, where =
is in a neighborhood of 0, and A;, i = 0,1, 2,3, are real constants. A;s satisfy Ag < 0, 4; <
0,42 > 0, A3 < 0 and |Ag| < |A3] < |Ao| + |A1] + |A2|. It is easy to verify that G(xo, 21, 22,
x3,24,25) = G(X) = sin(Aoxg + A1z4) + Az arctanxs, and G{(X) = Agcos(Aozog + A1xs),
G (X) = Ay cos(Agzg + A14), GE(X) = Az(1 + 22)~ L. Simultaneously, we notice that F(z) =
Asz(1 —2?)~ 2, and F'(z) = As((1 — 22)"2 + 22(1 — 22)~2). Then this equation satisfies the
hypotheses of Theorem 2. It has a locally invertible contractive decreasing C' solution in a

neighborhood of x = 0.

Example 3 The equation sin(Ag In(z+(1+22)72)+ Ay f2(z))+ Az f4(z) = 43 1n 22 where z is
in a neighborhood of 0, A;, i = 0, 1, 2, are nonnegative constants, and A; s satisfy Ag < Az < Ao+
A1+A,. In this equation, G(zg, &1, 22, 23, 14)= G(X) = sin(Ag In(zo+(1+22) 2 )+Ay29)+ Ay,
and G} (X) = Ag cos(Ag In(zo + (1 +22) "2 4+ Ayzy) (1 +22) "2, GH(X) = A cos(Ag In(zg + (1 +
23)77 4 Ajxg), GY(X) = Ay F(z) = Aaln 2 and F'(z) = 122;. By Theorem 3 it has a
locally invertible contractive decreasing C! solution in a neighborhood of z = 0.
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