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C1 Solutions of the Iterative Equation
G(x, f(x), . . . , fn(x)) = F (x)
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Abstract In this paper we consider the iterative equation G(x, f(x), . . . , fn(x)) = F (x) on R,

and give the existence of C1 solutions near the fixed point of F , which generalize some results

on the leading coefficient problem from the form of the polynomial-like iterative equations to the

general form.
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1. Introduction

Iterative equations, a class of functional equations involving iteration of the unknown func-

tion, attract extensive interests [1, 2, 4, 12]. The problem of iterative roots [4] is to find the

unknown function f such that fn(x) = F (x) and the well-known Feigenbaum equation f(x) =

− 1
λ
f(f(−λx)) are both iterative equations [8]. The general form of iterative equation can be

represented as

G(x, f(x), f2(x), . . . , fn(x)) = 0,

where fn denotes the nth iterate of f , defined by fn(x) := f(fn−1(x)) and f0(x) = x inductively.

A special form of iterative equation is the polynomial-like iterative equation

λnfn(x) + λn−1f
n−1(x) + . . . + λ1f(x) = F (x), x ∈ D ⊂ X , (1)

where X is a Banach space over R, F : D → D is a given mapping, λj ’s are real constants and

f : D → D is the unknown mapping. For X = R and D being a compact interval, the existence

and uniqueness of continuous solutions of this equation were discussed in [16] in 1987. Later, C1

and Cr smoothness of those solutions and some generalizations to high dimensional cases and to

the general form

G(x, f(x), f2(x), . . . , fn(x)) = F (x), ∈ D ⊂ X , (2)
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where G is a given multivariate function, were given in [5–7, 9–11, 13, 17]. Although those results

were given globally, a requirement that λ1 > 0 or that

n∑

i=1

αi|yi − ỹi| ≤ |G(x, y1, . . . , yn) − G(x, ỹ1, . . . , ỹn)| ≤

n∑

i=1

βi|yi − ỹi|,

where βi ≥ αi ≥ 0 for all i and α1 > 0, was imposed. The nonzero constant λ1 or α1 prevents

the equation from including the problem of iterative roots. The most natural way is to impose

such a nonzero assumption to the coefficient of the highest order term, i.e., λn > 0 or αn > 0.

This leads the so-called “leading coefficient problem” as mentioned in [15, 19].

The first answer to the leading coefficient problem of equation (1) with X = R was given in

[18], where locally expansive C1 solutions were obtained for locally expansive F . Some construc-

tive results on continuous solutions were given in [14]. Following [18], more cases were discussed

for C1 solutions in [3].

In this paper we generalize some results on the leading coefficient problem from equation

(1) to Eq. (2). We give locally contractive C1 solutions for Eq. (2) near the fixed point of F in

increasing and decreasing cases separately for locally contractive or expansive F on R.

2. Main results

Let C1(R, R) denote the set of all continuously differentiable self-mappings on R. For conve-

nience we let X denote (x0, x1, . . . , xn) and O denote (0, 0, . . . , 0) for short. Let G′
i(X) denote

the partial derivative ∂G/∂xi simply, i = 0, 1, . . . , n. A main result is the following:

Theorem 1 Let F ∈ C1(R, R) satisfy F (0) = 0 and G : R
n+1 → R be continuously differentiable

such that G(O) = 0. Suppose that

(H+
F ) F ′ is locally Lipschitzian and F ′(x) ≥ F ′(0) > 0 in a neighborhood of 0,

(H+
G ) 0 ≤ G′

i(X) ≤ G′
i(O) for all i = 0, 1, . . . , n in a neighborhood of O in R

n+1 and

|G′
i(x0, x1, . . . , xn) − G′

i(y0, y1, . . . , yn)| ≤
n∑

j=0

Lij |xj − yj|

for (x0, x1, . . . , xn) and (y0, y1, . . . , yn) in a neighborhood of O, where Lijs (i, j = 0, 1, . . . , n) are

nonnegative constants.

(H) |G′
0(O)| < |F ′(0)| <

∑n
i=0 |G

′
i(O)|.

Then Eq. (2) has a locally contractive increasing C1 solution near 0.

In this theorem, instead of hypothesis |G′
1(O) ≥ l > 0| (see [11, 13]) we assume that |G′

i(O) ≥

0|, i = 1, 2, . . . , n, which means the equation in our theorem includes the iterative root problem

as a special case.

In order to prove Theorem 1, we apply the Schröder transformation f(x) = φ(cφ−1(x)) to

change Eq. (2) into the auxiliary equation

G(φ(s), φ(cs), φ(c2s), . . . , φ(cns)) = F (φ(s)). (3)

Lemma 1 Under the conditions of Theorem 1, there exist constants 0 < c < 1 and σ > 0 such
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that for arbitrarily given 0 < τ < 1/|F ′(0)|, Eq. (3) with such a constant c has a C1 solution φ

on [−σ, σ] with φ(0) = 0 and φ′(0) = τ .

Proof Differentiate Eq. (2) at x = 0. We see that if Eq. (2) has a C1 solution f near 0, then

f ′(0) must be a real root of polynomial

P (µ) := G′
n(O)µn + G′

n−1(O)µn−1 + · · · + G′
1(O)µ + G′

0(O) − F ′(0).

The hypotheses (H), (H+
F ) and the signs of G′

i(O), i = 0, 1, . . . , n imply P (0) < 0 and P (1) > 0.

By the continuity P (µ) has a root 0 < c < 1. Consider Eq. (3) with such a constant c. From

hypothesis (H) we note |G′
0(O)| < |F ′(0)|, then we can choose a k satisfying 0 ≤ k < 1 such that

|G′
0(O)| = k|F ′(0)|. If |G′

0(O)| = 0 we take k = 0. By (H+
F ), (H+

G ) and the continuity of F ′, we

choose suitable positive constants σ1, K1 and M ∈ (|F ′(0)|, |F ′(0)|/((1 − |c|)k + |c|)) such that

0 < |F ′(x)| ≤ M and |F ′(x) − F ′(y)| ≤ K1|x − y| for all x, y ∈ [−σ1, σ1]. We further choose a

σ ∈ (0, σ1) such that [−σ, σ] ⊂ F ([−σ1, σ1]). Then F−1 is well defined in [−σ, σ]. For arbitrary

given τ ∈ (0, 1/|F ′(0)|], let

K :=
K1τ

2|F ′(0)| + Mτ2
∑n

i=0

∑n
j=0 Lij |c

i+j |

|F ′(0)|(|F ′(0)| − M((1 − |c|)k + |c|)
.

Define a subset of C1[−σ, σ] by

A :={φ ∈ C1[−σ, σ] : φ(0) = 0, φ′(0) = τ, 0 ≤ φ′(x) ≤ φ′(0) = τ, and

|φ′(x) − φ′(y)| ≤ K|x − y|, ∀x, y ∈ I}.

Using Ascoli-Arzela Lemma, we can verify that A is uniformly bounded and equi-continuous.

Hence A is a convex compact subset of C1[−σ, σ], a Banach space endowed with the norm ‖ · ‖1,

defined by ‖φ‖1 := max{‖φ‖, ‖φ′‖} and ‖φ‖ := sup{|φ(x)| : x ∈ [−σ, σ]} for φ ∈ C1[−σ, σ].

Define a mapping G : A → C1[−σ, σ] by

Gφ(s) := G(φ(s), φ(cs), . . . , φ(cns)), ∀φ ∈ A.

We calculate that

0 ≤ |
d

ds
Gφ(s)| = |

n∑

i=0

G′
i(φ(s), φ(cs), . . . , φ(cns))ciφ′(cis)| ≤ |

n∑

i=0

G′
i(O)ciφ′(0)| ≤ 1,

which means the range of Gφ is included in [−σ, σ].

For convenience, in what follows let Φ(s) denote the vector (φ(s), φ(cs), . . . , φ(cns)). Define

a map T : A → C1[−σ, σ] by

T φ := F−1 ◦ Gφ, ∀φ ∈ A.

We can check that T φ(0) = 0 and

0 ≤
d

ds
T φ(s) =

∑n

i=0 G′
i(Φ(s))ciφ′(cis)

F ′(F−1 ◦ Gφ(s))
≤

∑n

i=0 G′
i(O)ciφ′(0)

F ′(0)
= φ′(0) = τ.

In order to prove T is a self-mapping on the set A, for all x, y ∈ [−σ, σ] and i = 0, 1, . . . , n
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we give following inequalities

|G′
i(Φ(x)) − G′

i(Φ(y))| ≤

n∑

j=0

Lij |φ(cjx) − φ(cjy)| ≤ (τ

n∑

j=0

Lij |c
j |)|x − y|.

Therefore, we have

|G′
i(Φ(x)))φ′(cix) − G′

i(Φ(y)))φ′(ciy)|

≤ |Gi
′(Φ(x))||φ′(cix) − φ′(ciy)| + |φ′(ciy)||Gi

′(Φ(x)) − Gi
′(Φ(y))|

≤ (K|Gi
′(O)ci| + τ2

n∑

j=0

Lij |c
j |))|x − y|. (4)

By the C1 continuity of G and the Lipschtiz constant K1 of F ′,

|F ′(F−1 ◦ G(Φ(x))) − F ′(F−1 ◦ G(Φ(y)))|

≤ K1|F
−1(Φ(x)) − F−1(Φ(y))| ≤

K1

|F ′(0)|
|G(Φ(x)) − G(Φ(y))|

≤
K1

|F ′(0)|
τ

n∑

i=0

|G′
i(O)ci||x − y| = K1τ |x − y|. (5)

Inequalities (4) and (5) imply that

|(T φ)′(x) − (T φ)′(y)|

= |
1

F ′(F−1 ◦ G(Φ(x)))F ′(F−1 ◦ G(Φ(y)))
|·

|F ′(F−1 ◦ G(Φ(y)))

n∑

i=0

ciG′
i(Φ(x))φ′(cix) − F ′(F−1 ◦ G(Φ(x)))

n∑

i=0

ciG′
i(Φ(y))φ′(ciy)|

≤
1

|F ′(0)|2
{|F ′(F−1◦G(Φ(y))| · |

n∑

i=0

ci{G′
i(Φ(x))φ′(cix) − G′

i(Φ(y))ciφ′(ciy)}|+

|

n∑

i=0

G′
i(Φ(y))ciφ′(ciy)| · |F ′(F−1◦G(Φ(y)) − F ′(F−1◦G(Φ(x))|}

≤
1

|F ′(0)|2
{M |

n∑

i=0

ci(G′
i(O)Kci + τ2

n∑

j=0

Lijc
j)| + K1τ

2
n∑

i=0

|ciG′
i(O)|}|x − y|

=
1

|F ′(0)|2
{MK

n∑

i=0

|c2iG′
i(O)| + Mτ2

n∑

i=0

n∑

j=0

Lij |c
i+j | + K1τ

2|F ′(0)|}|x − y|

=
M

|F ′(0)|
·
(1 − |c|)|G′

0(O)| + (|cG′
0(O)| +

∑n
i=1 |c

2iG′
i(O)|)

|F ′(0)|
· K|x − y|+

1

|F ′(0)|2
{K1τ

2|F ′(0)| + Mτ2
n∑

i=0

n∑

j=0

Lij |c
i+j |}|x − y|

≤
M

|F ′(0)|
·
(1 − |c|)k|F ′(0)| + |c|(

∑n

i=0 |c
iG′

i(O)|)

|F ′(0)|
· K|x − y|+

1

|F ′(0)|2
{K1τ

2|F ′(0)| + Mτ2
n∑

i=0

n∑

j=0

Lij |c
i+j |}|x − y|
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=
M

|F ′(0)|
·
(1 − |c|)k|F ′(0)| + |cF ′(0)|

|F ′(0)|
· K|x − y|+

1

|F ′(0)|2
{K1τ

2|F ′(0)| + Mτ2
n∑

i=0

n∑

j=0

Lij |c
i+j |}|x − y|

= K|x − y|,

which implies T (A) ⊂ A. Considering φ1, φ2 ∈ A, we have

‖T φ1 − T φ2‖ = max
x∈[−σ,σ]

|F−1 ◦ Gφ1(x) − F−1 ◦ Gφ2(x)|

≤ max
x∈[−σ,σ]

|G(φ1(x), φ1(cx), . . . , φ1(c
nx)) − G(φ2(x), φ2(cx), . . . , φ2(c

nx))|

|F ′(0)|

≤

∑n

i=0 |G
′
i(O)|

|F ′(0)|
‖φ1 − φ2‖

and

‖
d

ds
T φ1 −

d

ds
T φ2‖

= max
x∈[−σ,σ]

|

∑n

i=0 G′
i(Φ1(x))ciφ′

1(c
ix)

F ′(F−1 ◦ Gφ1(x))
−

∑n

i=0 G′
i(Φ2(x))ciφ′

2(c
ix)

F ′(F−1 ◦ Gφ2(x))
|

≤ max
x∈[−σ,σ]

1

|F ′(F−1 ◦ Gφ1(x))F ′(F−1 ◦ Gφ2(x))|
·

{|F ′(F−1 ◦ Gφ2(x))|

n∑

i=0

|ci||G′
i(Φ1(x))φ′

1(c
ix) − G′

i(Φ2(x))φ′
2(c

ix)|+

|F ′(F−1 ◦ Gφ2(x)) − F ′(F−1 ◦ Gφ1(x))|
n∑

i=0

|ci||G′
i(Φ2(x))φ′

2(c
ix)|}

≤
1

|F ′(0)|2
{M max

x∈[−σ,σ]

n∑

i=0

|ci||G′
i(Φ1(x))φ′

1(c
ix) − G′

i(Φ2(x))φ′
1(c

ix)+

G′
i(Φ2(x))φ′

1(c
ix) − G′

i(Φ2(x))φ′
2(c

ix)|+

K1τ

n∑

i=0

|G′
i(O)ci| max

x∈[−σ,σ]
|F−1 ◦ Gφ1(x) − F−1 ◦ Gφ2(x)|}

≤
1

|F ′(0)|2
{Mτ

n∑

i=0

|ci| max
x∈[−σ,σ]

|G′
i(Φi(x)) − G′

i(Φ2(x))|+

M

n∑

i=0

|G′
i(O)ci|‖φ1 − φ2‖1 + K1τ

n∑

i=0

|G′
i(O)|‖φ1 − φ2‖}

≤
1

|F ′(0)|2
{Mτ

n∑

i=0

n∑

j=0

Lij |c
i| + M

n∑

i=0

|G′
i(O)ci|+

K1τ

n∑

i=0

|G′
i(O)|}‖φ1 − φ2‖1.
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Hence

‖T φ1 − T φ2‖ ≤max{

∑n

i=0 |G
′
i(O)|

|F ′(0)|
,

1

|F ′(0)|2
(Mτ

n∑

i=0

n∑

j=0

Lij |c
i| + M

n∑

i=0

|G′
i(O)ci|+

K1τ
n∑

i=0

|G′
i(O)|)}‖φ1 − φ2‖1.

This proves that T maps the convex compact subset A continuously into itself. By Schauder’s

fixed point theorem, there exists a function φ ∈ A such that T φ = φ, which means φ is a solution

of equation (3) with derivative τ at 0. This completes the proof. 2

Proof of Theorem 1 Choose c, σ, τ , φ as in Lemma 1. Because of the continuity of φ′, we

choose a small closed subset I of [−σ, σ], a neighborhood of 0, such that φ−1 exists and is C1 on I.

Moreover, ciφ−1(x) ∈ [−σ, σ] for i = 1, 2, . . . , n since 0 < c < 1. Let f(x) := φ(cφ−1(x)) for x ∈ I.

Obviously, f is C1 and invertible on I and satisfies f(0) = 0 and f ′(0) = φ′(0)c(φ−1)′(0) = c.

One can check that

G(x, f(x), f2(x), . . . , fn(x)) =G(φ(φ−1(x)), φ(cφ−1(x)), φ(c2φ−1(x)), . . . , φ(cnφ−1(x)))

=F (φ(φ−1(x))) = F (x), ∀x ∈ I,

implying that f is a solution of Eq. (2) near 0. The proof is completed. 2

Theorem 1 gives a local contractive increasing solution for increasing F . The following theo-

rems give locally contractive decreasing solutions for decreasing F and increasing F , respectively.

Theorem 2 Suppose that n is odd, F ∈ C1(R, R) satisfies F (0) = 0 and G : R
n+1 → R is

continuously differentiable such that G(O) = 0 and (H) holds. Suppose that

[(H−
F )] F ′ is locally Lipschitzian and F ′(x) ≤ F ′(0) < 0 in a neighborhood of 0, and

[(H±
G )] 0 ≤ G′

i(X) ≤ G′
i(O) for odd i and G′

i(O) ≤ G′
i(X) ≤ 0 for even i, i = 0, 1, . . . , n in a

neighborhood of O in R
n+1 and

|G′
i(x0, x1, . . . , xn) − G′

i(y0, y1, . . . , yn)| ≤

n∑

j=0

Lij |xj − yj|

for (x0, x1, . . . , xn) and (y0, y1, . . . , yn) in a neighborhood of O, where Lijs (i, j = 0, 1, . . . , n) are

nonnegative constants.

Then Eq. (2) has a locally contractive decreasing C1 solution near 0.

Theorem 3 Suppose that n is even. Let F ∈ C1(R, R) satisfy F (0) = 0 and F ′ satisfy (H+
F ).

G : R
n+1 → R be continuously differentiable such that G(O) = 0 and (H) holds. Suppose that

[(H∓
G )] G′

i(O) ≤ G′
i(X) ≤ 0 for odd i and 0 ≤ G′

i(X) ≤ G′
i(O) for even i, i = 0, 1, . . . , n in a

neighborhood of O in R
n+1 and

|G′
i(x0, x1, . . . , xn) − G′

i(y0, y1, . . . , yn)| ≤

n∑

j=0

Lij |xj − yj|

for (x0, x1, . . . , xn) and (y0, y1, . . . , yn) in a neighborhood of O, where Lijs (i, j = 0, 1, . . . , n) are

nonnegative constants.
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Then Eq. (2) has a locally contractive decreasing C1 solution near 0.

In order to prove Theorem 2 (resp., Theorem 3), we first notice that P (−1) < 0 (resp.,

P (−1) > 0) and P (0) > 0 (resp., P (0) < 0), which implies that P has a root −1 < c < 0 by

the continuity. Then we consider Eq. (3) with this constant c. The rest of proof for Theorem 2

(resp., Theorem 3) is similar to that of Theorem 1.

Remark that we do not consider the increasing solution for decreasing F throughout our

paper. If the characteristic polynomial P has a positive real root, we have the fact that at least

one of G′
i(O), i = 0, 1, . . . , n must be negative since F ′(0) < 0. By this method we cannot come

to analogous conclusion as above.

3. Examples

Example 1 The equation sin(A0x(1 + x2)−
1

2 + A1f
2(x)) + sin(A2f

3(x)) = a2x5 + A3x, where

x is in a neighborhood of 0, and Ai, i = 0, 1, 2, 3, are nonnegative constants and Ai s satisfy

A0 < A3 < A0 + A1 + A2. In this equation, G(x0, x1, x2, x3) = G(X) = sin(A0x0(1 + x2
0)

− 1

2 +

A1x2)+ sin(A2x3), and we calculate that G′
0(X) = A0 cos(A0x0(1+x2

0)
− 1

2 +A1x2)((1+x2)−
1

2 −

x2(1+x2)−
3

2 ), and G′
2(X) = A1 cos(A0x0(1+x2

0)
− 1

2 +A1x2), G′
3(X) = A2 cos(A2x3). It is easy to

verify that G(O) = 0, and 0 ≤ G′
i(X) ≤ G′

i(O) for i = 0, 1, 2, 3. The rest hypotheses of Theorem

1 can be verified similarly. So this equation has a locally invertible contractive increasing C1

solution in a neighborhood of x = 0.

Example 2 The equation sin(A0x + A1f
4(x)) + A2 arctan(f5(x)) = A3x(1 − x2)−

1

2 , where x

is in a neighborhood of 0, and Ai, i = 0, 1, 2, 3, are real constants. Ais satisfy A0 ≤ 0, A1 ≤

0, A2 ≥ 0, A3 < 0 and |A0| < |A3| < |A0| + |A1| + |A2|. It is easy to verify that G(x0, x1, x2,

x3, x4, x5) = G(X) = sin(A0x0 + A1x4) + A2 arctanx5, and G′
0(X) = A0 cos(A0x0 + A1x4),

G′
4(X) = A1 cos(A0x0 + A1x4), G′

5(X) = A2(1 + x2
5)

−1. Simultaneously, we notice that F (x) =

A3x(1 − x2)−
1

2 , and F ′(x) = A3((1 − x2)−
1

2 + x2(1 − x2)−
3

2 ). Then this equation satisfies the

hypotheses of Theorem 2. It has a locally invertible contractive decreasing C1 solution in a

neighborhood of x = 0.

Example 3 The equation sin(A0 ln(x+(1+x2)−
1

2 )+A1f
2(x))+A2f

4(x) = A3

2 ln 1+x
1−x

, where x is

in a neighborhood of 0, Ai, i = 0, 1, 2, are nonnegative constants, and Ai s satisfy A0 < A3 < A0+

A1+A2. In this equation, G(x0, x1, x2, x3, x4)= G(X) = sin(A0 ln(x0+(1+x2
0)

− 1

2 )+A1x2)+A2x4,

and G′
0(X) = A0 cos(A0 ln(x0 + (1 + x2

0)
− 1

2 + A1x2)(1 + x2
0)

− 1

2 , G′
2(X) = A1 cos(A0 ln(x0 + (1 +

x2
0)

− 1

2 + A1x2), G′
4(X) = A2. F (x) = A3

2 ln 1+x
1−x

, and F ′(x) = A3

1−x2 . By Theorem 3 it has a

locally invertible contractive decreasing C1 solution in a neighborhood of x = 0.
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