The Stabilization and Idempotent Completion of a Left Triangulated Category

Lin XIN*, Yixin FU
Department of Mathematics, Fujian Normal University, Fujian 350007, P. R. China

Abstract

Let $(\mathscr{C}, \Omega, \Delta)$ be a left triangulated category with a fully faithful endofunctor Ω. We show a triangle-equivalence $(S(\overline{\mathscr{C}}), \widetilde{\bar{\Omega}}, \widetilde{\bar{\Delta}}) \cong(\overline{S(\mathscr{C})}, \overline{\widetilde{\Omega}}, \overline{\widetilde{\Delta}})$, where $(S(\overline{\mathscr{C}}), \tilde{\bar{\Omega}}, \widetilde{\bar{\Delta}})$ denotes the stabilization of the idempotent completion of $(\mathscr{C}, \Omega, \Delta)$ and $(\overline{S(\mathscr{C})}, \overline{\widetilde{\Omega}}, \overline{\widetilde{\Delta}})$ denotes the idempotent completion of the stabilization of $(\mathscr{C}, \Omega, \Delta)$.

Keywords left triangulated category; idempotent completion; stabilization; triangle-equivalence.
MR(2010) Subject Classification 18E30; 18A35

1. Introduction

Let \mathscr{C} be an additive category. An idempotent morphism e is said to be split if there exist morphisms $B \xrightarrow{p} A \xrightarrow{q} B$ with $q p=1_{B}$ and $p q=e$ (see [5, Prop.18.15]). The additive category \mathscr{C} is said to be idempotent complete (or idemsplit) provided that every idempotent morphism splits.

For every additive category \mathscr{C} there is a fully faithful embedding $l: \mathscr{C} \rightarrow \overline{\mathscr{C}}$ into an idempotent complete additive category. Moreover, the functor l induces an equivalence $\operatorname{Hom}_{\text {add }}(\overline{\mathscr{C}}, \mathscr{L}) \cong$ $\operatorname{Hom}_{\text {add }}(\mathscr{C}, \mathscr{L})$ for each idempotent complete additive category \mathscr{L}, where $\operatorname{Hom}_{\text {add }}$ denotes the (large) category of additive functors [7]. Many natural triangulated categories, such as the derived categories of perfect complexes over a quasi-separated, quasi-compact scheme, the bounded derived categories of abelian categories and the triangulated categories satisfying [TR $5 \aleph_{1}$], are idempotent complete [4]. But not all the triangulated categories are idempotent complete. Fortunately any additive category can be idempotent completed and the idempotent completion of a triangulated category is still a triangulated category [7]. Recently, Chen and Tang in [6] have shown that the idempotent completion of a right or left recollement of a triangulated category is still a right or left recollement.

Motivated by the idempotent completion of a triangulated category, we study the analogous aspects of the idempotent completion of a one-sided triangulated category. For details and more information on one-sided triangulated categories we refer to $[1,2,9]$. Let \mathscr{C} be an additive

[^0]category equipped with an additive endofunctor $\Omega: \mathscr{C} \rightarrow \mathscr{C}$. Consider the category $L T(\mathscr{C}, \Omega)$ whose objects are diagrams of the form $\Omega(A) \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A$ where the morphisms are indicated by the following commutative diagram:

Figure 1 Triangulation Morphism

A left triangulation of the category (\mathscr{C}, Ω) is a full subcategory Δ of $\operatorname{LT}(\mathscr{C}, \Omega)$ which satisfies all the axioms of a triangulated category, except that Ω is not necessarily an equivalence. Then the triple $(\mathscr{C}, \Omega, \Delta)$ is called a left triangulated category and the diagrams in Δ are the left triangles. For a left triangulated category $(\mathscr{C}, \Omega, \Delta)$, there exists a triangulated category $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ called the stabilization of \mathscr{C}. The category $S(\mathscr{C})$ is the universal triangulated category for exact functors starting at \mathscr{C}, that is, $S: \mathscr{C} \rightarrow S(\mathscr{C})$ is an exact functor such that for any exact functor $F: \mathscr{C} \rightarrow \mathscr{D}$ with a triangulated category \mathscr{D}, there is a unique exact functor $F^{*}: S(\mathscr{C}) \rightarrow \mathscr{D}$ such that $F^{*} \circ S=F$. The existence of $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ can be found in [3].

Throughout this paper, if \mathscr{C} is an additive category and A, B are objects in \mathscr{C}, then the set of morphisms from A to B in \mathscr{C} is denoted by $\mathscr{C}(A, B)$ instead of $\operatorname{Hom}_{\mathscr{C}}(A, B)$, and the set of integers is denoted by \mathbb{Z}.

2. Preliminaries

Before giving the main results we first provide elementary definitions and constructions in this section.

2.1. Stabilization

Let $(\mathscr{C}, \Omega, \Delta)$ be a left triangulated category. Heller in [3] and Beligiannis in [1] constructed a triangulated category $S(\mathscr{C})$ as follows.

Objects of $S(\mathscr{C})$ are pairs (A, n) where A is an object of \mathscr{C} and $n \in \mathbb{Z}$. If $n, m \in \mathbb{Z}$, we consider the directed set $I_{n, m}=\{k \in \mathbb{Z} \mid k \geq n, k \geq m\}$. The set of morphisms between $(A, n),(B, m) \in$ $S(\mathscr{C})$ is defined by $S(\mathscr{C})((A, n),(B, m))=\lim _{k \in I_{n, m}} \mathscr{C}\left(\Omega^{k-n}(A), \Omega^{k-m}(B)\right)$. Then $S(\mathscr{C})$ is an additive category and there exists an equivalence $\widetilde{\Omega}: S(\mathscr{C}) \rightarrow S(\mathscr{C})$ defined as follows. $(A, n) \in$ $S(\mathscr{C}), \widetilde{\Omega}(A, n)=(A, n-1)$ and if $\alpha:(A, n) \rightarrow(B, m)$, then $\widetilde{\Omega}(\alpha)=i_{(k-1: A, n-1 ; B, m-1)}\left(\alpha_{k-1}\right)$, where $i_{(k, A, n ; B, m)}: \mathscr{C}\left(\Omega^{k-n}(A), \Omega^{k-m}(B)\right) \rightarrow S(\mathscr{C})((A, n),(B, m))$ is the canonical morphism and $\alpha_{k}: \Omega^{k-n}(A) \rightarrow \Omega^{k-m}(B)$ is representative such that $i_{(k, A, n ; B, m)}\left(\alpha_{k}\right)=\alpha$ for some $k \in I_{n, m}$. Moreover, $\alpha_{k-1}=\alpha_{k}: \Omega^{(k-1)-(n-1)}(A) \rightarrow \Omega^{(k-1)-(m-1)}(B)$. The inverse of $\widetilde{\Omega}$ is defined by $\widetilde{\Omega}^{-1}(A, n)=(A, n+1), \widetilde{\Omega}^{-1}(\alpha)=i_{(k+1: A, n+1 ; B, m+1)}\left(\alpha_{k+1}\right)$. For $l \geq k$, let $f_{k l}=$ $\Omega^{l-k}(-): \mathscr{C}\left(\Omega^{k-n}(A), \Omega^{k-m}(B)\right) \rightarrow \mathscr{C}\left(\Omega^{l-n}(A), \Omega^{l-m}(B)\right)$ be the canonical morphism such
that $i_{(k: A, n ; B, m)}=i_{(l: A, n ; B, m)} \cdot f_{k l}$. If $\alpha_{k}: \Omega^{k-n}(A) \rightarrow \Omega^{k-m}(B)$ and $\beta_{k}: \Omega^{k-m}(B) \rightarrow \Omega^{k-l}(C)$, then

$$
i_{(k: A, n ; C, l)}\left(\beta_{k} \alpha_{k}\right)=i_{(k: B, m ; C, l)}\left(\beta_{k}\right) i_{(k: A, n ; B, m)}\left(\alpha_{k}\right)
$$

For brevity we also write $i_{k}=i_{(k:-,-;-,-)}$.
There also exists a natural additive functor $S: \mathscr{C} \rightarrow S(\mathscr{C})$ defined as follows. $S(A)=(A, 0)$ and if $\alpha: A \rightarrow B$ is a morphism in \mathscr{C}, then $S(\alpha)=i_{0}(\alpha):(A, 0) \rightarrow(B, 0)$. Thus we have a natural isomorphism $\theta: \widetilde{\Omega} S(A)=(A,-1) \xrightarrow{\left.i_{0(1} \Omega(A)\right)}(\Omega(A), 0)=S \Omega(A)$. So $\widetilde{\Omega} i_{0}(\alpha) \cong S \Omega(\alpha)=i_{0} \Omega(\alpha)$, for every morphism $\alpha: A \rightarrow B$ in \mathscr{C}.

Using the functor $S: \mathscr{C} \rightarrow S(\mathscr{C})$ and the left triangulation Δ of \mathscr{C}, we define a triangulation $\widetilde{\Delta}$ of the pair $(S(\mathscr{C}), \widetilde{\Omega})$ as follows. A diagram

$$
\widetilde{\Omega}(C, l) \xrightarrow{\alpha}(A, n) \xrightarrow{\beta}(B, m) \xrightarrow{\gamma}(C, l)
$$

belongs to $\widetilde{\Delta}$ if there exists $k \in 2 \mathbb{Z}, k \geq \max \{l, n, m\}$ and a triangle of representatives

$$
\Omega\left(\Omega^{k-l}(C)\right) \xrightarrow{\alpha_{k}} \Omega^{k-n}(A) \xrightarrow{\beta_{k}} \Omega^{k-m}(B) \xrightarrow{\gamma_{k}} \Omega^{k-l}(C)
$$

in \mathscr{C} where $\alpha=i_{k}\left(\alpha_{k}\right), \beta=i_{k}\left(\beta_{k}\right), \gamma=i_{k}\left(\gamma_{k}\right)$. Then the triple $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ is a triangulated category and $S: \mathscr{C} \rightarrow S(\mathscr{C})$ is the stabilization of \mathscr{C} in the sense of [1] or [3, Th.9.2].

2.2. Idempotent completion

Let \mathscr{C} be an additive category. Balmer and Schlichting in [7] constructed an idempotent completion $\overline{\mathscr{C}}$ of \mathscr{C} as follows.

Objects of $\overline{\mathscr{C}}$ are pairs (A, e) where A is an object of \mathscr{C} and $e: A \rightarrow A$ is an idempotent morphism in \mathscr{C}. A morphism in $\overline{\mathscr{C}}$ from $\left(A_{1}, e_{1}\right)$ to $\left(A_{2}, e_{2}\right)$ is a morphism $\alpha: A_{1} \rightarrow A_{2}$ in \mathscr{C} with $\alpha e_{1}=e_{2} \alpha=\alpha$. So $\overline{\mathscr{C}}\left(\left(A_{1}, e_{1}\right),\left(A_{2}, e_{2}\right)\right)=e_{2} \circ \mathscr{C}(\mathscr{A}, \mathscr{A}) \circ e_{1}$.

The assignment $A \mapsto\left(A, 1_{A}\right)$ defines a fully faithful functor l from \mathscr{C} to $\overline{\mathscr{C}}$. So we can think of \mathscr{C} as a full subcategory of $\overline{\mathscr{C}}$. If $(\mathscr{C}, \Omega, \Delta)$ is a triangulated category, define $\bar{\Omega}: \overline{\mathscr{C}} \rightarrow$ $\overline{\mathscr{C}}$ by $\bar{\Omega}(A, e)=(\Omega(A), \Omega(e))$. For every morphism $\alpha:\left(A_{1}, e_{1}\right) \rightarrow\left(A_{2}, e_{2}\right)$ in $\overline{\mathscr{C}}, \bar{\Omega}(\alpha)=$ $\Omega(\alpha)$. So $\bar{\Omega} \circ l=l \circ \Omega$. We define a triangulation $\bar{\Delta}$ of the pair $(\overline{\mathscr{C}}, \bar{\Omega})$ as follows. A diagram $\bar{\Omega}\left(A_{1}, e_{1}\right) \xrightarrow{\alpha}\left(A_{2}, e_{2}\right) \xrightarrow{\beta}\left(A_{3}, e_{3}\right) \xrightarrow{\gamma}\left(A_{1}, e_{1}\right)$ belongs to $\bar{\Delta}$ if it is a direct factor of a triangle of \mathscr{C}, that is, if there is a diagram $\bar{\Omega}\left(B_{1}, d_{1}\right) \xrightarrow{u}\left(B_{2}, d_{2}\right) \xrightarrow{v}\left(B_{3}, d_{3}\right) \xrightarrow{w}\left(B_{1}, d_{1}\right)$ such that $\bar{\Omega}\left(\left(A_{1}, e_{1}\right) \oplus\left(B_{1}, d_{1}\right)\right) \xrightarrow{\alpha \oplus u}\left(A_{2}, e_{2}\right) \oplus\left(B_{2}, d_{2}\right) \xrightarrow{\beta \oplus v}\left(A_{3}, e_{3}\right) \oplus\left(B_{3}, d_{3}\right) \xrightarrow{\gamma \oplus w}\left(A_{1}, e_{1}\right) \oplus\left(B_{1}, d_{1}\right)$ is isomorphic to a triangle in \mathscr{C}. Balmer and Schlichting in [7, Th.1.12] proved the triple $(\overline{\mathscr{C}}, \bar{\Omega}, \bar{\Delta})$ is a triangulated category.

3. Main theorem

In this section we assume that $(\mathscr{C}, \Omega, \Delta)$ is a left triangulated category with a fully faithful endofunctor Ω. We denote its idempotent completion by ($\overline{\mathscr{C}}, \bar{\Omega}, \bar{\Delta}$) and its stabilization by $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$.

Note that the proof of [7, Th.1.12] can be transferred to the case of a left triangulated category. Thus we have the following theorem.

Theorem $3.1(\overline{\mathscr{C}}, \bar{\Omega}, \bar{\Delta})$ is a left triangulated category.
Denote the stabilization of $(\overline{\mathscr{C}}, \bar{\Omega}, \bar{\Delta})$ by $(S(\overline{\mathscr{C}}), \widetilde{\bar{\Omega}}, \widetilde{\bar{\Delta}})$ and the idempotent completion of $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ by $(\overline{S(\mathscr{C})}, \widetilde{\Omega}, \overline{\widetilde{\Delta}})$. Our main theorem is
Theorem 3.2 There is a triangle-equivalence $(S(\overline{\mathscr{C}}), \widetilde{\bar{\Omega}}, \widetilde{\bar{\Delta}}) \cong(\overline{S(\mathscr{C})}, \overline{\widetilde{\Omega}}, \overline{\widetilde{\Delta}})$.
Before proving the theorem, we need some preparations.
An object of $S(\overline{\mathscr{C}})$ is $((A, e), n)$ where $A \in \mathscr{C}, e^{2}=e: A \rightarrow A$ and $n \in \mathbb{Z}$. For brevity, let (A, e, n) denote $((A, e), n)$. For $\left(A_{1}, e_{1}, n_{1}\right),\left(A_{2}, e_{2}, n_{2}\right) \in S(\overline{\mathscr{C}})$,

$$
S(\overline{\mathscr{C}})\left(\left(A_{1}, e_{1}, n_{1}\right),\left(A_{2}, e_{2}, n_{2}\right)\right)=\lim _{k \in \overrightarrow{I_{n_{1}}, n_{2}}} \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right)
$$

Denote by $j_{k}: \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right) \rightarrow S(\overline{\mathscr{C}})\left(\left(A_{1}, e_{1}, n_{1}\right),\left(A_{2}, e_{2}, n_{2}\right)\right)$ the canonical morphism and

$$
g_{k l}=\bar{\Omega}^{l-k}(-): \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right) \rightarrow \overline{\mathscr{C}}\left(\bar{\Omega}^{l-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{l-n_{2}}\left(A_{2}, e_{2}\right)\right)
$$

such that $j_{k}=j_{l} g_{k l}$ whenever $l \geq k$. If $\alpha:\left(A_{1}, e_{1}, n_{1}\right) \rightarrow\left(A_{2}, e_{2}, n_{2}\right)$ is a morphism in $S(\overline{\mathscr{C}})$, by the definition of direct limit, there exists an integer $k \in I_{n_{1}, n_{2}}$ and a morphism α_{k} : $\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right) \rightarrow \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)$ in $\overline{\mathscr{C}}$ such that $j_{k}\left(\alpha_{k}\right)=\alpha$. Thus $\alpha_{k}: \Omega^{k-n_{1}}\left(A_{1}\right) \rightarrow \Omega^{k-n_{2}}\left(A_{2}\right)$ in \mathscr{C} and $\alpha_{k} \Omega^{k-n_{1}}\left(e_{1}\right)=\Omega^{k-n_{2}}\left(e_{2}\right) \alpha_{k}=\alpha_{k}$.

For the canonical morphism

$$
i_{k}=i_{(k: A, n ; B, m)}: \mathscr{C}\left(\Omega^{k-n}(A), \Omega^{k-m}(B)\right) \rightarrow S(\mathscr{C})((A, n),(B, m))
$$

we have
Lemma 3.3 Let $(A, e, n) \in S(\overline{\mathscr{C}})$ and $i_{n}=i_{(n: A, n ; A, n)}$. Then
(i) $e^{\prime}=i_{n}(e)$ is idempotent.
(ii) If $k \geq n$ and $e_{k}=\Omega^{k-n}(e): \Omega^{k-n}(A) \rightarrow \Omega^{k-n}(A)$, then $i_{k}\left(e_{k}\right)=e^{\prime}$.

Proof (i) Since that $e: A \rightarrow A$ is idempotent, $e^{\prime} e^{\prime}=i_{n}(e) i_{n}(e)=i_{n}(e)=e^{\prime}$.
(ii) For $k \geq n, i_{k}\left(e_{k}\right)=i_{k} \Omega^{k-n}(e)=i_{n}(e)=e^{\prime}$.

Lemma 3.4 If $\left(A, n, e^{\prime}\right) \in \overline{S(\mathscr{C})}$, then there exists a unique idempotent morphism $e \in \mathscr{C}(A, A)$ such that $i_{n}(e)=e^{\prime}$ and for $k \geq n, i_{k}\left(\Omega^{k-n}(e)\right)=e^{\prime}$.

Proof Since $e^{\prime}:(A, n) \rightarrow(A, n)$ is idempotent, there exists an integer $t \geq n$ and $e_{t} \in$ $\mathscr{C}\left(\Omega^{t-n}(A), \Omega^{t-n}(A)\right)$ such that $i_{t}\left(e_{t}\right)=e^{\prime}$. So $i_{t}\left(e_{t}^{2}\right)=i_{t}\left(e_{t}\right)$. By [8, Prop.24.3(1)], $\left(\Omega^{k-t}\left(e_{t}\right)\right)^{2}=$ $\Omega^{k-t}\left(e_{t}\right)$ for some integer $k \geq t$. Thus $e_{k}=\Omega^{k-t}\left(e_{t}\right): \Omega^{k-n}(A) \rightarrow \Omega^{k-n}(A)$ is idempotent and $i_{k}\left(e_{k}\right)=i_{t}\left(e_{t}\right)=e^{\prime}$. Since endofunctor Ω is fully faithful, it follows that there exists a unique idempotent morphism $e: A \rightarrow A$ such that $e_{k}=\Omega^{k-n}(e)$. So $i_{n}(e)=i_{k} \Omega^{k-n}(e)=i_{k}\left(e_{k}\right)=e^{\prime}$.

Lemma $3.5 i_{k}\left(1_{\Omega^{k-n}(A)}\right)=1_{(A, n)}$.
Proof Let $\alpha_{k}=1_{\Omega^{k-n}(A)}$ and $\alpha=i_{k}\left(\alpha_{k}\right)$. For any morphism $\beta:(A, n) \rightarrow(B, m)$ in $S(\mathscr{C})$, we have $\beta_{t}: \Omega^{t-n}(A) \rightarrow \Omega^{t-m}(B)$ for some $t \in I_{n, m}$ such that $\beta=i_{t}\left(\beta_{t}\right)$. Without loss of generality, we can assume $k \geq t$. So $\beta \alpha=i_{t}\left(\beta_{t}\right) i_{k}\left(\alpha_{k}\right)=i_{k}\left(\Omega^{k-t}\left(\beta_{t}\right)\right) \cdot i_{k}\left(\alpha_{k}\right)=i_{k}\left(\cdot \Omega^{k-t}\left(\beta_{t}\right)\left(\alpha_{k}\right)\right)=$ $i_{k}\left(\Omega^{k-t}\left(\beta_{t}\right)\right)=i_{t}\left(\beta_{t}\right)=\beta$. Similarly, we have $\alpha \gamma=\gamma$ for each γ in $S(\mathscr{C})((\mathscr{C}),,(\mathscr{A})$,$) . So$ $i_{k}\left(1_{\Omega^{k-n}(A)}\right)=1_{(A, n)}$.

For any object (A, e, n) in $S(\overline{\mathscr{C}}), \widetilde{\bar{\Omega}}(A, e, n)=(A, e, n-1)$. For any morphism $\alpha:\left(A_{1}, e_{1}, n_{1}\right) \rightarrow$ $\left(A_{2}, e_{2}, n_{2}\right)$ in $S(\overline{\mathscr{C}})$, there exists an integer $k \in I_{n_{1}, n_{2}}$ and $\alpha_{k} \in \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right)$ such that $j_{k}\left(\alpha_{k}\right)=\alpha . \quad$ So $\alpha_{k-1}=\alpha_{k}: \bar{\Omega}^{(k-1)-\left(n_{1}-1\right)}\left(A_{1}, e_{1}\right) \rightarrow \bar{\Omega}^{(k-1)-\left(n_{2}-1\right)}\left(A_{2}, e_{2}\right)$, $\widetilde{\bar{\Omega}}(\alpha)=i_{k-1}\left(\alpha_{k-1}\right)$. A diagram

$$
\widetilde{\bar{\Omega}}\left(A_{1}, e_{1}, n_{1}\right) \xrightarrow{\alpha}\left(A_{2}, e_{2}, n_{2}\right) \xrightarrow{\beta}\left(A_{3}, e_{3}, n_{3}\right) \xrightarrow{\gamma}\left(A_{1}, e_{1}, n_{1}\right)
$$

belongs to $\widetilde{\bar{\Delta}}$ if there exists $k \in 2 \mathbb{Z}, k \geq \max \left\{n_{1}, n_{2}, n_{3}\right\}$ and a left triangle of representatives $(*)$

$$
\bar{\Omega}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right)\right) \xrightarrow{\alpha_{k}} \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right) \xrightarrow{\beta_{k}} \bar{\Omega}^{k-n_{3}}\left(A_{3}, e_{3}\right) \xrightarrow{\gamma_{k}} \bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right)
$$

in $\overline{\mathscr{C}}$ with $\alpha=j_{k}\left(\alpha_{k}\right), \beta=j_{k}\left(\beta_{k}\right), \gamma=j_{k}\left(\gamma_{k}\right)$. Thus $(*)$ is a direct factor of a triangle of \mathscr{C}. Objects of $\overline{S(\mathscr{C})}$ are $\left((A, n), e^{\prime}\right)$ where $A \in \mathscr{C}, n \in \mathbb{Z}, e^{\prime}:(A, n) \rightarrow(A, n)$ is an idempotent morphism. For brevity, let $\left(A, n, e^{\prime}\right)$ denote $\left((A, n), e^{\prime}\right)$. A morphism $\alpha^{\prime}:\left(A_{1}, n_{1}, e_{1}^{\prime}\right) \rightarrow\left(A_{2}, n_{2}, e_{2}^{\prime}\right)$ in $\overline{S(\mathscr{C})}$ is a morphism $\alpha^{\prime}:\left(A_{1}, n_{1}\right) \rightarrow\left(A_{2}, n_{2}\right)$ in $S(\mathscr{C})$ with $\alpha^{\prime} e_{1}^{\prime}=e_{2}^{\prime} \alpha^{\prime}=\alpha^{\prime}$. There exist $\alpha_{k}: \Omega^{k-n_{1}}\left(A_{1}\right) \rightarrow \Omega^{k-n_{2}}\left(A_{2}\right)$ in \mathscr{C} such that $i_{k}\left(\alpha_{k}\right)=\alpha^{\prime}$ and idempotent morphisms $e_{t k}: \Omega^{k-n_{t}}\left(A_{t}\right) \rightarrow \Omega^{k-n_{t}}\left(A_{t}\right)$ such that $i_{k}\left(e_{t k}\right)=e_{t}^{\prime}$ for some integer $k \in I_{n_{1}, n_{2}}, t=1,2$. By Lemma 3.4, there exist unique idempotent morphisms $e_{1}: A_{1} \rightarrow A_{1}$ and $e_{2}: A_{2} \rightarrow A_{2}$ such that $e_{1 k}=\Omega^{k-n_{1}}\left(e_{1}\right)$ and $e_{2 k}=\Omega^{k-n_{2}}\left(e_{2}\right)$. So $i_{k}\left(\Omega^{k-n_{t}}\left(e_{t}\right)\right)=e_{t}^{\prime}$ and $\widetilde{\Omega}\left(e_{t}^{\prime}\right)=\widetilde{\Omega}\left(i_{k}\left(\Omega^{k-n_{t}}\left(e_{t}\right)\right)\right)=$ $i_{k-1}\left(\Omega^{(k-1)-\left(n_{t}-1\right)}\left(e_{t}\right)\right)$, for $t=1,2$.

Proof of Theorem 3.2 Using the notations as above, we define $F: S(\overline{\mathscr{C}}) \rightarrow \overline{S(\mathscr{C})}$ as follows. For any object $(A, e, n) \in S(\overline{\mathscr{C}}), F(A, e, n)=\left(A, n, e^{\prime}\right)$, where $e^{\prime}=i_{(n: A, n ; A, n)}(e)$. For any morphism $\alpha:\left(A_{1}, e_{1}, n_{1}\right) \rightarrow\left(A_{2}, e_{2}, n_{2}\right)$, there exists an integer $k \geq n_{1}, n_{2}$ and a morphism α_{k} : $\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right) \rightarrow \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)$ in $\overline{\mathscr{C}}$ such that $j_{k}\left(\alpha_{k}\right)=\alpha$. So $\alpha_{k}: \Omega^{k-n_{1}}\left(A_{1}\right) \rightarrow \Omega^{k-n_{2}}\left(A_{2}\right)$ is a morphism in \mathscr{C} and $\alpha_{k} \Omega^{k-n_{1}}\left(e_{1}\right)=\Omega^{k-n_{2}}\left(e_{2}\right) \alpha_{k}=\alpha_{k}$. Let $e_{1}^{\prime}=i_{\left(n_{1}: A_{1}, n_{1} ; A_{1}, n_{1}\right)}\left(e_{1}\right)$ and $e_{2}^{\prime}=i_{\left(n_{2}: A_{2}, n_{2} ; A_{2}, n_{2}\right)}\left(e_{2}\right)$. Then for the canonical morphism

$$
i_{k}=i_{\left(k: A_{1}, n_{1} ; A_{2}, n_{2}\right)}: \mathscr{C}\left(\Omega^{k-n_{1}}\left(A_{1}\right), \Omega^{k-n_{2}}\left(A_{2}\right)\right) \rightarrow S(\mathscr{C})\left(\left(A_{1}, n_{1}\right),\left(A_{2}, n_{2}\right)\right)
$$

we have $i_{k}\left(\alpha_{k}\right)=\alpha^{\prime}:\left(A_{1}, n_{1}\right) \rightarrow\left(A_{2}, n_{2}\right), \alpha^{\prime} e_{1}^{\prime}=e_{2}^{\prime} \alpha^{\prime}=\alpha^{\prime}$. Thus $\alpha^{\prime} \in \overline{S(\mathscr{C})}\left(\left(A_{1}, n_{1}, e_{1}^{\prime}\right)\right.$, $\left.\left(A_{2}, n_{2}, e_{2}^{\prime}\right)\right)$, we define $F(\alpha)=\alpha^{\prime}$.

Assume that $F(\alpha)=\alpha^{\prime}$, where $\alpha=j_{k}\left(\alpha_{k}\right)=j_{t}\left(\alpha_{t}\right), \alpha^{\prime}=i_{k}\left(\alpha_{k}\right)$ for some $k, t \in I_{n_{1}, n_{2}}$. It is clear that we can assume that $k \geq t$. Thus $j_{t}=j_{k} \cdot g_{t k}, j_{k}\left(\alpha_{k}\right)=\alpha=j_{t}\left(\alpha_{t}\right)=j_{k} g_{t k}\left(\alpha_{t}\right)=$ $j_{k}\left(\bar{\Omega}^{k-t}\left(\alpha_{t}\right)\right)=j_{k}\left(\Omega^{k-t}\left(\alpha_{t}\right)\right)$. So $j_{k}\left(\alpha_{k}-\Omega^{k-t}\left(\alpha_{t}\right)\right)=0$. Thus there exists an integer $l \geq k$ such that $g_{k l}\left(\alpha_{k}-\Omega^{k-t}\left(\alpha_{t}\right)\right)=0$ (see [8, Prop.24.3]). That is, $\bar{\Omega}^{l-k}\left(\alpha_{k}-\Omega^{k-t}\left(\alpha_{t}\right)\right)=0$ and then $\Omega^{l-k}\left(\alpha_{k}\right)=\Omega^{l-t}\left(\alpha_{t}\right)$ which implies that $i_{k}\left(\alpha_{k}\right)=i_{l}\left(\Omega^{l-k}\left(\alpha_{k}\right)\right)=i_{l}\left(\Omega^{l-t}\left(\alpha_{t}\right)\right)=i_{t}\left(\alpha_{t}\right)$.

Let $\alpha:\left(A_{1}, e_{1}, n_{1}\right) \rightarrow\left(A_{2}, e_{2}, n_{2}\right)$ and $\beta:\left(A_{2}, e_{2}, n_{2}\right) \rightarrow\left(A_{3}, e_{3}, n_{3}\right)$. Then there exist an integer $k \geq \max \left\{n_{1}, n_{2}, n_{3}\right\}, \alpha_{k} \in \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right)$ and $\beta_{k} \in \overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right.$, $\left.\bar{\Omega}^{k-n_{3}}\left(A_{3}, e_{3}\right)\right)$ with $\alpha=j_{k}\left(\alpha_{k}\right)$ and $\beta=j_{k}\left(\beta_{k}\right)$. Thus $F(\beta) F(\alpha)=i_{k}\left(\beta_{k}\right) i_{k}\left(\alpha_{k}\right)=i_{k}\left(\beta_{k} \alpha_{k}\right)=$ $F\left(j_{k}\left(\beta_{k} \alpha_{k}\right)\right)=F\left(j_{k}\left(\beta_{k}\right) j_{k}\left(\alpha_{k}\right)\right)=F(\beta \alpha)$.

For each $(A, e, n) \in S(\overline{\mathscr{C}})$ and $\beta^{\prime} \in \overline{S(\mathscr{C})}\left(\left(A, n, e^{\prime}\right),\left(B, m, e_{1}^{\prime}\right)\right)$, then $\beta^{\prime} \in S(\mathscr{C})((A, n)$, $(B, m))$ and $\beta^{\prime} e^{\prime}=e_{1}^{\prime} \beta^{\prime}=\beta^{\prime}$. Hence there exists an integer $k \geq n, m$ and $\beta_{k} \in \mathscr{C}\left(\Omega^{k-n}(A)\right.$, $\left.\Omega^{k-m}(B)\right)$ such that $\beta^{\prime}=i_{k}\left(\beta_{k}\right)$. Thus $j_{k}\left(\beta_{k}\right)=\beta \in S(\overline{\mathscr{C}})\left((A, e, n),\left(B, e_{1}, m\right)\right)$ with $F(\beta)=$ β^{\prime}. Hence we have $\beta^{\prime} F\left(1_{(A, e, n)}\right)=F(\beta) F\left(1_{(A, e, n)}\right)=F\left(\beta 1_{(A, e, n)}\right)=F(\beta)=\beta^{\prime}$. Similarly, we have $F\left(1_{(A, e, n)}\right) \gamma^{\prime}=F\left(1_{(A, e, n)}\right) F(\gamma)=F\left(1_{(A, e, n)} \gamma\right)=F(\gamma)=\gamma^{\prime}$ for each $\gamma^{\prime} \in$ $\overline{S(\mathscr{C})}\left(\left(C, l, e_{2}^{\prime}\right),\left(A, n, e^{\prime}\right)\right)$. So $F\left(1_{(A, e, n)}\right)=1_{F(A, e, n)}$.

It remains to show that F is a triangle-equivalence.
It is clear that F is dense from Lemma 3.4 and full. To show that F is faithful, we let two morphisms $\alpha, \beta \in S(\overline{\mathscr{C}})\left(\left(A_{1}, e_{1}, n_{1}\right),\left(A_{2}, e_{2}, n_{2}\right)\right)$ with $F(\alpha)=\alpha^{\prime}=F(\beta)$. So there exist $\alpha_{k} \in$ $\overline{\mathscr{C}}\left(\bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right)\right)$ and $\beta_{t} \in \overline{\mathscr{C}}\left(\bar{\Omega}^{t-n_{1}}\left(A_{1}, e_{1}\right), \bar{\Omega}^{t-n_{2}}\left(A_{2}, e_{2}\right)\right)$ for some $k, t \in I_{n_{1}, n_{2}}$, such that $j_{k}\left(\alpha_{k}\right)=\alpha, j_{t}\left(\beta_{t}\right)=\beta, i_{k}\left(\alpha_{k}\right)=i_{t}\left(\beta_{t}\right)=\alpha^{\prime}$. Without loss of generality, suppose $k \geq t$, clearly, $i_{t}\left(\beta_{t}\right)=i_{k} \Omega^{k-t}\left(\beta_{t}\right)$. Then there exists an integer $l \geq k$ such that $\Omega^{l-k}\left(\alpha_{k}-\Omega^{k-t}\left(\beta_{t}\right)\right)=0$, i.e., $\Omega^{l-k}\left(\alpha_{k}\right)=\Omega^{l-t}\left(\beta_{t}\right)$. Therefore, $\alpha=j_{k}\left(\alpha_{k}\right)=j_{l} \Omega^{l-k}\left(\alpha_{k}\right)=j_{l} \Omega^{l-t}\left(\beta_{t}\right)=j_{t}\left(\beta_{t}\right)=\beta$. Finally, we will show that F is exact.

For any object $(A, e, n) \in S(\overline{\mathscr{C}}), F \tilde{\bar{\Omega}}(A, e, n)=F(A, e, n-1)=\left(A, n-1, e^{\prime}\right)$, where $e^{\prime}=i_{(n-1: A, n-1 ; A, n-1)}(e) . \widetilde{\widetilde{\Omega}} F(A, e, n)=\overline{\widetilde{\Omega}}\left(A, n, e^{\prime \prime}\right)=\left(\widetilde{\Omega}(A, n), \widetilde{\Omega}\left(e^{\prime \prime}\right)\right)=\left(A, n-1, e^{\prime}\right)$, where $e^{\prime \prime}=i_{(n: A, n ; A, n)}(e)$. For any $\alpha \in S(\overline{\mathscr{C}})\left(\left(A_{1}, e_{1}, n\right),\left(A_{2}, e_{2}, n_{2}\right)\right), \overline{\widetilde{\Omega}} F(\alpha)=\overline{\widetilde{\Omega}}\left(\alpha^{\prime}\right)=\widetilde{\Omega}\left(\alpha^{\prime}\right)$ where $j_{k}\left(\alpha_{k}\right)=\alpha, i_{k}\left(\alpha_{k}\right)=\alpha^{\prime}$. So $\widetilde{\Omega}\left(\alpha^{\prime}\right)=i_{k-1}\left(\alpha_{k-1}\right)$ and $j_{k-1}\left(\alpha_{k-1}\right)=\widetilde{\bar{\Omega}}(\alpha)$ implies $F \widetilde{\bar{\Omega}}(\alpha)=i_{k-1}\left(\alpha_{k-1}\right)=\overline{\widetilde{\Omega}} F(\alpha)$. Hence $F \widetilde{\bar{\Omega}}=\overline{\widetilde{\Omega}} F$.

Suppose that

$$
\begin{equation*}
\tilde{\bar{\Omega}}\left(A_{3}, e_{3}, n_{3}\right) \xrightarrow{\alpha}\left(A_{1}, e_{1}, n_{1}\right) \xrightarrow{\beta}\left(A_{2}, e_{2}, n_{2}\right) \xrightarrow{\gamma}\left(A_{3}, e_{3}, n_{3}\right) \tag{1}
\end{equation*}
$$

is a triangle in $S(\overline{\mathscr{C}})$, applying the functor F yields a diagram in $\overline{S(\mathscr{C})}$

$$
\begin{equation*}
\overline{\widetilde{\Omega}}\left(A_{3}, n_{3}, e_{3}^{\prime}\right) \xrightarrow{\alpha^{\prime}}\left(A_{1}, n_{1}, e_{1}^{\prime}\right) \xrightarrow{\beta^{\prime}}\left(A_{2}, n_{2}, e_{2}^{\prime}\right) \xrightarrow{\gamma^{\prime}}\left(A_{3}, n_{3}, e_{3}^{\prime}\right) . \tag{2}
\end{equation*}
$$

It follows from (1) that there exists a left triangle in $\overline{\mathscr{C}}$

$$
\begin{equation*}
\bar{\Omega}\left(\bar{\Omega}^{k-n_{3}}\left(A_{3}, e_{3}\right)\right) \xrightarrow{\alpha_{k}} \bar{\Omega}^{k-n_{1}}\left(A_{1}, e_{1}\right) \xrightarrow{\beta_{k}} \bar{\Omega}^{k-n_{2}}\left(A_{2}, e_{2}\right) \xrightarrow{\gamma_{k}} \bar{\Omega}^{k-n_{3}}\left(A_{3}, e_{3}\right) \tag{3}
\end{equation*}
$$

for some $k \in 2 \mathbb{Z}, k \geq \max \left\{n_{1}, n_{2}, n_{3}\right\}$, where $\alpha=j_{k}\left(\alpha_{k}\right), \beta=j_{k}\left(\beta_{k}\right), \gamma=j_{k}\left(\gamma_{k}\right)$. We let $d_{i}=1_{A_{i}}-e_{i}, i=1,2,3$. Since there is $\left(A_{i}, e_{i}\right) \oplus\left(A_{i}, 1-e_{i}\right) \cong\left(A_{i}, 1_{A_{i}}\right)$ in $\overline{\mathscr{C}}$ for $i=1,2,3$ by [6, Lemma 12], there is a diagram in $\overline{\mathscr{C}}$

$$
\begin{equation*}
\bar{\Omega}\left(\bar{\Omega}^{k-n_{3}}\left(A_{3}, d_{3}\right)\right) \xrightarrow{u_{k}} \bar{\Omega}^{k-n_{1}}\left(A_{1}, d_{1}\right) \xrightarrow{v_{k}} \bar{\Omega}^{k-n_{2}}\left(A_{2}, d_{2}\right) \xrightarrow{w_{k}} \bar{\Omega}^{k-n_{3}}\left(C_{3}, d_{3}\right) \tag{4}
\end{equation*}
$$

such that the direct sum of (3) and (4) is isomorphic to a left triangle in \mathscr{C}

$$
\begin{equation*}
\Omega^{k+1-n_{3}}\left(A_{3}\right) \xrightarrow{\xi_{k}} \Omega^{k-n_{1}}\left(A_{1}\right) \xrightarrow{\eta_{k}} \Omega^{k-n_{2}}\left(A_{2}\right) \xrightarrow{\zeta_{k}} \Omega^{k-n_{3}}\left(A_{3}\right) \tag{5}
\end{equation*}
$$

where $\xi_{k} \cong\left(\begin{array}{cc}\alpha_{k} & 0 \\ 0 & u_{k}\end{array}\right), \eta_{k} \cong\left(\begin{array}{cc}\beta_{k} & 0 \\ 0 & v_{k}\end{array}\right), \zeta_{k} \cong\left(\begin{array}{cc}\gamma_{k} & 0 \\ 0 & w_{k}\end{array}\right)$. Then we have a triangle in $S(\mathscr{C})$

$$
\begin{equation*}
\widetilde{\Omega}\left(A_{3}, n_{3}\right) \xrightarrow{\xi}\left(A_{1}, n_{1}\right) \xrightarrow{\eta}\left(A_{2}, n_{2}\right) \xrightarrow{\zeta}\left(A_{3}, n_{3}\right) \tag{6}
\end{equation*}
$$

where $\xi=i_{k}\left(\xi_{k}\right), \eta=i_{k}\left(\eta_{k}\right), \zeta=i_{k}\left(\zeta_{k}\right)$. On the other hand, we can get a diagram in \mathscr{C} from

$$
\begin{equation*}
\Omega^{k+1-n_{3}}\left(A_{3}\right) \xrightarrow{u_{k}} \Omega^{k-n_{1}}\left(A_{1}\right) \xrightarrow{v_{k}} \Omega^{k-n_{2}}\left(A_{2}\right) \xrightarrow{w_{k}} \Omega^{k-n_{3}}\left(A_{3}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{gathered}
u_{k}\left(\Omega^{k+1-n_{3}}\left(d_{3}\right)\right)=\left(\Omega^{k-n_{1}}\left(d_{1}\right)\right) u_{k}=u_{k}, v_{k}\left(\Omega^{k-n_{1}}\left(d_{1}\right)\right)=\left(\Omega^{k-n_{2}}\left(d_{2}\right)\right) v_{k}=v_{k} \\
w_{k}\left(\Omega^{k-n_{2}}\left(d_{2}\right)\right)=\left(\Omega^{k-n_{3}}\left(d_{3}\right)\right) w_{k}=w_{k}
\end{gathered}
$$

which implies a diagram in $S(\mathscr{C})$

$$
\begin{equation*}
\widetilde{\Omega}\left(A_{3}, n_{3}\right) \xrightarrow{u}\left(A_{1}, n_{1}\right) \xrightarrow{v}\left(A_{2}, n_{2}\right) \xrightarrow{w}\left(A_{3}, n_{3}\right) \tag{8}
\end{equation*}
$$

where $u=i_{\left(k: A_{3}, n_{3}-1, A_{1}, n_{1}\right)}\left(u_{k}\right), v=i_{\left(k: A_{1}, n_{1}, A_{2}, n_{2}\right)}\left(v_{k}\right), w=i_{\left(k: A_{2}, n_{2}, A_{3}, n_{3}\right)}\left(w_{k}\right)$. Let $d_{3}^{\prime}=$ $i_{\left(n_{3}: A_{3}, n_{3}, A_{3}, n_{3}\right)}\left(d_{3}\right), d_{1}^{\prime}=i_{\left(n_{1}: A_{1}, n_{1}, A_{1}, n_{1}\right)}\left(d_{1}\right), d_{2}^{\prime}=i_{\left(n_{2}: A_{2}, n_{2}, A_{2}, n_{2}\right)}\left(d_{2}\right)$. So

$$
\begin{aligned}
u\left(\widetilde{\Omega}\left(d_{3}{ }^{\prime}\right)\right) & =i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(u_{k}\right) \cdot i_{\left(n_{3}-1: A_{3}, n_{3}-1 ; A_{3}, n_{3}-1\right)}\left(d_{3}\right) \\
& =i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(u_{k}\right) \cdot i_{\left(k: A_{3}, n_{3}-1 ; A_{3}, n_{3}-1\right)} \Omega^{k-n_{3}+1}\left(d_{3}\right) \\
& =i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(u_{k} \cdot \Omega^{k-n_{3}+1}\left(d_{3}\right)\right) \\
& =i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(\left(\Omega^{k-n_{1}}\left(d_{1}\right)\right) u_{k}\right) \\
& =i_{\left(k: A_{1}, n_{1} ; A_{1}, n_{1}\right)}\left(\Omega^{k-n_{1}}\left(d_{1}\right)\right) \cdot i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(u_{k}\right) \\
& =i_{\left(n_{1}: A_{1}, n_{1} ; A_{1}, n_{1}\right)}\left(d_{1}\right) \cdot i_{\left(k: A_{3}, n_{3}-1 ; A_{1}, n_{1}\right)}\left(u_{k}\right) \\
& =d_{1}^{\prime} \cdot u=u .
\end{aligned}
$$

Similarly, we have $v \cdot d_{1}^{\prime}=d_{2}^{\prime} \cdot v=v, w \cdot d_{2}^{\prime}=d_{3}^{\prime} \cdot w=w$. Thus we have a diagram in $\overline{S(\mathscr{C})}$

$$
\begin{equation*}
\overline{\widetilde{\Omega}}\left(A_{3}, n_{3}, d_{3}^{\prime}\right) \xrightarrow{u}\left(A_{1}, n_{1}, d_{1}^{\prime}\right) \xrightarrow{v}\left(A_{2}, n_{2}, d_{2}^{\prime}\right) \xrightarrow{w}\left(A_{3}, n_{3}, d_{3}^{\prime}\right) . \tag{9}
\end{equation*}
$$

Now $e_{3}^{\prime} \oplus d_{3}^{\prime}=i_{\left(n_{3}: A_{3}, n_{3} ; A_{3}, n_{3}\right)}\left(e_{3}\right) \cdot i_{\left(n_{3}: A_{3}, n_{3} ; A_{3}, n_{3}\right)}\left(d_{3}\right)=i_{\left(n_{3}: A_{3}, n_{3} ; A_{3}, n_{3}\right)}\left(1_{A_{3}}\right)=1_{\left(A_{3}, n_{3}\right)}$ by Lemma 3.5. Similarly, there are $e_{1}^{\prime} \oplus d_{1}^{\prime}=1_{\left(B_{1}, n_{1}\right)}$ and $e_{2}^{\prime} \oplus d_{2}^{\prime}=1_{\left(B_{2}, n_{2}\right)}$. So the direct sum of (2) and (9) is isomorphic to the diagram in $S(\mathscr{C})$

$$
\begin{equation*}
\widetilde{\Omega}\left(A_{3}, n_{3}\right) \xrightarrow{\xi^{\prime}}\left(A_{1}, n_{1}\right) \xrightarrow{\eta^{\prime}}\left(A_{2}, n_{2}\right) \xrightarrow{\zeta^{\prime}}\left(A_{3}, n_{3}\right) \tag{10}
\end{equation*}
$$

where $\xi^{\prime} \cong\left(\begin{array}{cc}\alpha^{\prime} & 0 \\ 0 & u\end{array}\right), \eta^{\prime} \cong\left(\begin{array}{cc}\beta^{\prime} & 0 \\ 0 & v\end{array}\right), \zeta^{\prime} \cong\left(\begin{array}{cc}\gamma^{\prime} & 0 \\ 0 & w\end{array}\right)$. Thus

$$
\xi^{\prime} \cong\left(\begin{array}{cc}
\alpha^{\prime} & 0 \\
0 & u
\end{array}\right)=\left(\begin{array}{cc}
i_{k}\left(\alpha_{k}\right) & 0 \\
0 & i_{k}\left(u_{k}\right)
\end{array}\right)=i_{k}\left(\begin{array}{cc}
\alpha_{k} & 0 \\
0 & u_{k}
\end{array}\right) \cong i_{k}\left(\xi_{k}\right)=\xi
$$

Similarly, $\eta^{\prime} \cong \eta, \zeta^{\prime} \cong \zeta$. It follows that $(10) \cong(6)$. So (10) is a triangle in $S(\mathscr{C})$, and then (2) is a triangle in $\overline{S(\mathscr{C})}$. This completes the proof.

References

[1] A. BELIGIANNIS. The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization. Comm. Algebra, 2000, 28(10): 4547-4596.
[2] A. BELIGIANNIS, N. MARMARIDIS. Left triangulated categories arising from contravariantly finite subcategories. Comm. Algebra, 1994, 22(12): 5021-5036.
[3] A. HELLER. Stable homotopy categories. Bull. Amer. Math. Soc., 1968, 74: 28-63.
[4] A. NEEMAN. Triangulated Categories. Princeton University Press, Princeton, NJ, 2001.
[5] C. FAITH. Algebra II Ring Theory. Springer-Verlag, Berlin-New York, 1976.
[6] Qinghua CHEN, Lidan TANG. Recollements, idempotent completions and t-structures of triangulated categories. J. Algebra, 2008, 319(7): 3053-3061.
[7] P. BALMER, M. SCHLICHTING. Idempotent completion triangulated categories. J. Algebra, 2001, 236(2): 819-834.
[8] R. WISBAUER. Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[9] Lin XIN, Ya'nan LIN. One-sided torsion pair. Sci. China Ser. A, 2007, 50(1): 13-26.

[^0]: Received June 20, 2010; Accepted September 6, 2011
 Supported by the National Natural Science Foundation of China (Grant No. 11071040) and the Natural Science Foundation of Fujian Province (Grant No. 2011J01004).

 * Corresponding author

 E-mail address: xinlin@fjnu.edu.cn (Lin XIN); lsrjly27@163.com.cn (Yixin FU)

