The Stabilization and Idempotent Completion of a Left Triangulated Category

Lin XIN*, Yixin FU

Department of Mathematics, Fujian Normal University, Fujian 350007, P. R. China

Abstract Let $(\mathscr{C}, \Omega, \Delta)$ be a left triangulated category with a fully faithful endofunctor Ω . We show a triangle-equivalence $(S(\overline{\mathscr{C}}), \overline{\Omega}, \overline{\Delta}) \cong (\overline{S(\mathscr{C})}, \overline{\Omega}, \overline{\Delta})$, where $(S(\overline{\mathscr{C}}), \overline{\Omega}, \overline{\Delta})$ denotes the stabilization of the idempotent completion of $(\mathscr{C}, \Omega, \Delta)$ and $(\overline{S(\mathscr{C})}, \overline{\Omega}, \overline{\Delta})$ denotes the idempotent completion of $(\mathscr{C}, \Omega, \Delta)$.

Keywords left triangulated category; idempotent completion; stabilization; triangle-equivalence.

MR(2010) Subject Classification 18E30; 18A35

1. Introduction

Let \mathscr{C} be an additive category. An idempotent morphism e is said to be *split* if there exist morphisms $B \xrightarrow{p} A \xrightarrow{q} B$ with $qp = 1_B$ and pq = e (see [5, Prop.18.15]). The additive category \mathscr{C} is said to be idempotent complete (or idemsplit) provided that every idempotent morphism splits.

For every additive category \mathscr{C} there is a fully faithful embedding $l: \mathscr{C} \to \overline{\mathscr{C}}$ into an idempotent complete additive category. Moreover, the functor l induces an equivalence $\operatorname{Hom}_{add}(\overline{\mathscr{C}}, \mathscr{L}) \cong$ $\operatorname{Hom}_{add}(\mathscr{C}, \mathscr{L})$ for each idempotent complete additive category \mathscr{L} , where Hom_{add} denotes the (large) category of additive functors [7]. Many natural triangulated categories, such as the derived categories of perfect complexes over a quasi-separated, quasi-compact scheme, the bounded derived categories of abelian categories and the triangulated categories satisfying [TR5 \aleph_1], are idempotent complete [4]. But not all the triangulated categories are idempotent complete. Fortunately any additive category can be idempotent completed and the idempotent completion of a triangulated category is still a triangulated category [7]. Recently, Chen and Tang in [6] have shown that the idempotent completion of a right or left recollement of a triangulated category is still a right or left recollement.

Motivated by the idempotent completion of a triangulated category, we study the analogous aspects of the idempotent completion of a one-sided triangulated category. For details and more information on one-sided triangulated categories we refer to [1, 2, 9]. Let \mathscr{C} be an additive

Received June 20, 2010; Accepted September 6, 2011

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant No. 11071040) and the Natural Science Foundation of Fujian Province (Grant No. 2011J01004).

E-mail address: xinlin@fjnu.edu.cn (Lin XIN); lsrjly27@163.com.cn (Yixin FU)

category equipped with an additive endofunctor $\Omega : \mathscr{C} \to \mathscr{C}$. Consider the category $LT(\mathscr{C}, \Omega)$ whose objects are diagrams of the form $\Omega(A) \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A$ where the morphisms are indicated by the following commutative diagram:

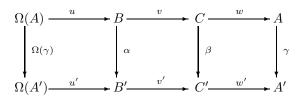


Figure 1 Triangulation Morphism

A left triangulation of the category (\mathscr{C}, Ω) is a full subcategory Δ of $LT(\mathscr{C}, \Omega)$ which satisfies all the axioms of a triangulated category, except that Ω is not necessarily an equivalence. Then the triple $(\mathscr{C}, \Omega, \Delta)$ is called a left triangulated category and the diagrams in Δ are the left triangles. For a left triangulated category $(\mathscr{C}, \Omega, \Delta)$, there exists a triangulated category $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ called the stabilization of \mathscr{C} . The category $S(\mathscr{C})$ is the universal triangulated category for exact functors starting at \mathscr{C} , that is, $S : \mathscr{C} \to S(\mathscr{C})$ is an exact functor such that for any exact functor $F : \mathscr{C} \to \mathscr{D}$ with a triangulated category \mathscr{D} , there is a unique exact functor $F^* : S(\mathscr{C}) \to \mathscr{D}$ such that $F^* \circ S = F$. The existence of $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ can be found in [3].

Throughout this paper, if \mathscr{C} is an additive category and A, B are objects in \mathscr{C} , then the set of morphisms from A to B in \mathscr{C} is denoted by $\mathscr{C}(A, B)$ instead of $\operatorname{Hom}_{\mathscr{C}}(A, B)$, and the set of integers is denoted by \mathbb{Z} .

2. Preliminaries

Before giving the main results we first provide elementary definitions and constructions in this section.

2.1. Stabilization

Let $(\mathscr{C}, \Omega, \Delta)$ be a left triangulated category. Heller in [3] and Beligiannis in [1] constructed a triangulated category $S(\mathscr{C})$ as follows.

Objects of $S(\mathscr{C})$ are pairs (A, n) where A is an object of \mathscr{C} and $n \in \mathbb{Z}$. If $n, m \in \mathbb{Z}$, we consider the directed set $I_{n,m} = \{k \in \mathbb{Z} | k \geq n, k \geq m\}$. The set of morphisms between $(A, n), (B, m) \in S(\mathscr{C})$ is defined by $S(\mathscr{C})((A, n), (B, m)) = \lim_{\longrightarrow k \in I_{n,m}} \mathscr{C}(\Omega^{k-n}(A), \Omega^{k-m}(B))$. Then $S(\mathscr{C})$ is an additive category and there exists an equivalence $\widetilde{\Omega} : S(\mathscr{C}) \to S(\mathscr{C})$ defined as follows. $(A, n) \in S(\mathscr{C}), \widetilde{\Omega}(A, n) = (A, n - 1)$ and if $\alpha : (A, n) \to (B, m)$, then $\widetilde{\Omega}(\alpha) = i_{(k-1:A, n-1;B, m-1)}(\alpha_{k-1})$, where $i_{(k,A,n;B,m)} : \mathscr{C}(\Omega^{k-n}(A), \Omega^{k-m}(B)) \to S(\mathscr{C})((A, n), (B, m))$ is the canonical morphism and $\alpha_k : \Omega^{k-n}(A) \to \Omega^{k-m}(B)$ is representative such that $i_{(k,A,n;B,m)}(\alpha_k) = \alpha$ for some $k \in I_{n,m}$. Moreover, $\alpha_{k-1} = \alpha_k : \Omega^{(k-1)-(n-1)}(A) \to \Omega^{(k-1)-(m-1)}(B)$. The inverse of $\widetilde{\Omega}$ is defined by $\widetilde{\Omega}^{-1}(A, n) = (A, n + 1), \ \widetilde{\Omega}^{-1}(\alpha) = i_{(k+1:A, n+1;B, m+1)}(\alpha_{k+1})$. For $l \geq k$, let $f_{kl} =$ $\Omega^{l-k}(-) : \mathscr{C}(\Omega^{k-n}(A), \Omega^{k-m}(B)) \to \mathscr{C}(\Omega^{l-n}(A), \Omega^{l-m}(B))$ be the canonical morphism such that $i_{(k:A,n;B,m)} = i_{(l:A,n;B,m)} \cdot f_{kl}$. If $\alpha_k : \Omega^{k-n}(A) \to \Omega^{k-m}(B)$ and $\beta_k : \Omega^{k-m}(B) \to \Omega^{k-l}(C)$, then

$$i_{(k:A,n;C,l)}(\beta_k \alpha_k) = i_{(k:B,m;C,l)}(\beta_k)i_{(k:A,n;B,m)}(\alpha_k)$$

For brevity we also write $i_k = i_{(k:-,-;-,-)}$.

There also exists a natural additive functor $S : \mathscr{C} \to S(\mathscr{C})$ defined as follows. S(A) = (A, 0)and if $\alpha : A \to B$ is a morphism in \mathscr{C} , then $S(\alpha) = i_0(\alpha) : (A, 0) \to (B, 0)$. Thus we have a natural isomorphism $\theta : \widetilde{\Omega}S(A) = (A, -1) \xrightarrow{i_0(1_{\Omega(A)})} (\Omega(A), 0) = S\Omega(A)$. So $\widetilde{\Omega}i_0(\alpha) \cong S\Omega(\alpha) = i_0\Omega(\alpha)$, for every morphism $\alpha : A \to B$ in \mathscr{C} .

Using the functor $S: \mathscr{C} \to S(\mathscr{C})$ and the left triangulation Δ of \mathscr{C} , we define a triangulation $\widetilde{\Delta}$ of the pair $(S(\mathscr{C}), \widetilde{\Omega})$ as follows. A diagram

$$\widetilde{\Omega}(C,l) \xrightarrow{\alpha} (A,n) \xrightarrow{\beta} (B,m) \xrightarrow{\gamma} (C,l)$$

belongs to $\widetilde{\Delta}$ if there exists $k \in 2\mathbb{Z}, k \geq \max\{l, n, m\}$ and a triangle of representatives

$$\Omega(\Omega^{k-l}(C)) \xrightarrow{\alpha_k} \Omega^{k-n}(A) \xrightarrow{\beta_k} \Omega^{k-m}(B) \xrightarrow{\gamma_k} \Omega^{k-l}(C)$$

in \mathscr{C} where $\alpha = i_k(\alpha_k), \beta = i_k(\beta_k), \gamma = i_k(\gamma_k)$. Then the triple $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ is a triangulated category and $S : \mathscr{C} \to S(\mathscr{C})$ is the stabilization of \mathscr{C} in the sense of [1] or [3, Th.9.2].

2.2. Idempotent completion

Let \mathscr{C} be an additive category. Balmer and Schlichting in [7] constructed an idempotent completion $\overline{\mathscr{C}}$ of \mathscr{C} as follows.

Objects of $\overline{\mathscr{C}}$ are pairs (A, e) where A is an object of \mathscr{C} and $e : A \to A$ is an idempotent morphism in \mathscr{C} . A morphism in $\overline{\mathscr{C}}$ from (A_1, e_1) to (A_2, e_2) is a morphism $\alpha : A_1 \to A_2$ in \mathscr{C} with $\alpha e_1 = e_2 \alpha = \alpha$. So $\overline{\mathscr{C}}((A_1, e_1), (A_2, e_2)) = e_2 \circ \mathscr{C}(\mathscr{A}, \mathscr{A}) \circ e_1$.

The assignment $A \mapsto (A, 1_A)$ defines a fully faithful functor l from \mathscr{C} to $\overline{\mathscr{C}}$. So we can think of \mathscr{C} as a full subcategory of $\overline{\mathscr{C}}$. If $(\mathscr{C}, \Omega, \Delta)$ is a triangulated category, define $\overline{\Omega} : \overline{\mathscr{C}} \to \overline{\mathscr{C}}$ by $\overline{\Omega}(A, e) = (\Omega(A), \Omega(e))$. For every morphism $\alpha : (A_1, e_1) \to (A_2, e_2)$ in $\overline{\mathscr{C}}, \overline{\Omega}(\alpha) = \Omega(\alpha)$. So $\overline{\Omega} \circ l = l \circ \Omega$. We define a triangulation $\overline{\Delta}$ of the pair $(\overline{\mathscr{C}}, \overline{\Omega})$ as follows. A diagram $\overline{\Omega}(A_1, e_1) \xrightarrow{\alpha} (A_2, e_2) \xrightarrow{\beta} (A_3, e_3) \xrightarrow{\gamma} (A_1, e_1)$ belongs to $\overline{\Delta}$ if it is a direct factor of a triangle of \mathscr{C} , that is, if there is a diagram $\overline{\Omega}(B_1, d_1) \xrightarrow{u} (B_2, d_2) \xrightarrow{v} (B_3, d_3) \xrightarrow{w} (B_1, d_1)$ such that $\overline{\Omega}((A_1, e_1) \oplus (B_1, d_1)) \xrightarrow{\alpha \oplus u} (A_2, e_2) \oplus (B_2, d_2) \xrightarrow{\beta \oplus v} (A_3, e_3) \oplus (B_3, d_3) \xrightarrow{\gamma \oplus w} (A_1, e_1) \oplus (B_1, d_1)$ is isomorphic to a triangle in \mathscr{C} . Balmer and Schlichting in [7, Th.1.12] proved the triple $(\overline{\mathscr{C}}, \overline{\Omega}, \overline{\Delta})$ is a triangulated category.

3. Main theorem

In this section we assume that $(\mathscr{C}, \Omega, \Delta)$ is a left triangulated category with a fully faithful endofunctor Ω . We denote its idempotent completion by $(\overline{\mathscr{C}}, \overline{\Omega}, \overline{\Delta})$ and its stabilization by $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$. Note that the proof of [7, Th.1.12] can be transferred to the case of a left triangulated category. Thus we have the following theorem.

Theorem 3.1 $(\overline{\mathscr{C}}, \overline{\Omega}, \overline{\Delta})$ is a left triangulated category.

Denote the stabilization of $(\overline{\mathscr{C}}, \overline{\Omega}, \overline{\Delta})$ by $(S(\overline{\mathscr{C}}), \overline{\Omega}, \overline{\Delta})$ and the idempotent completion of $(S(\mathscr{C}), \widetilde{\Omega}, \widetilde{\Delta})$ by $(\overline{S(\mathscr{C})}, \overline{\widetilde{\Omega}}, \overline{\widetilde{\Delta}})$. Our main theorem is

Theorem 3.2 There is a triangle-equivalence $(S(\overline{\mathscr{C}}), \widetilde{\overline{\Omega}}, \widetilde{\overline{\Delta}}) \cong (\overline{S(\mathscr{C})}, \overline{\widetilde{\Omega}}, \overline{\widetilde{\Delta}})$.

Before proving the theorem, we need some preparations.

An object of $S(\overline{\mathscr{C}})$ is ((A, e), n) where $A \in \mathscr{C}, e^2 = e : A \to A$ and $n \in \mathbb{Z}$. For brevity, let (A, e, n) denote ((A, e), n). For $(A_1, e_1, n_1), (A_2, e_2, n_2) \in S(\overline{\mathscr{C}})$,

$$S(\overline{\mathscr{C}})((A_1, e_1, n_1), (A_2, e_2, n_2)) = \lim_{k \in \overrightarrow{I_{n_1, n_2}}} \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2)).$$

Denote by $j_k : \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2)) \to S(\overline{\mathscr{C}})((A_1, e_1, n_1), (A_2, e_2, n_2))$ the canonical morphism and

$$g_{kl} = \overline{\Omega}^{l-k}(-) : \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2)) \to \overline{\mathscr{C}}(\overline{\Omega}^{l-n_1}(A_1, e_1), \overline{\Omega}^{l-n_2}(A_2, e_2))$$

such that $j_k = j_l g_{kl}$ whenever $l \ge k$. If $\alpha : (A_1, e_1, n_1) \to (A_2, e_2, n_2)$ is a morphism in $S(\overline{\mathscr{C}})$, by the definition of direct limit, there exists an integer $k \in I_{n_1,n_2}$ and a morphism $\alpha_k : \overline{\Omega}^{k-n_1}(A_1, e_1) \to \overline{\Omega}^{k-n_2}(A_2, e_2)$ in $\overline{\mathscr{C}}$ such that $j_k(\alpha_k) = \alpha$. Thus $\alpha_k : \Omega^{k-n_1}(A_1) \to \Omega^{k-n_2}(A_2)$ in \mathscr{C} and $\alpha_k \Omega^{k-n_1}(e_1) = \Omega^{k-n_2}(e_2)\alpha_k = \alpha_k$.

For the canonical morphism

$$i_k = i_{(k:A,n;B,m)} : \mathscr{C}(\Omega^{k-n}(A), \Omega^{k-m}(B)) \to S(\mathscr{C})((A,n), (B,m))$$

we have

Lemma 3.3 Let $(A, e, n) \in S(\overline{\mathscr{C}})$ and $i_n = i_{(n:A,n;A,n)}$. Then

- (i) $e' = i_n(e)$ is idempotent.
- (ii) If $k \ge n$ and $e_k = \Omega^{k-n}(e) : \Omega^{k-n}(A) \to \Omega^{k-n}(A)$, then $i_k(e_k) = e'$.

Proof (i) Since that $e: A \to A$ is idempotent, $e'e' = i_n(e)i_n(e) = i_n(e) = e'$. (ii) For $k \ge n, i_k(e_k) = i_k\Omega^{k-n}(e) = i_n(e) = e'$. \Box

Lemma 3.4 If $(A, n, e') \in \overline{S(\mathscr{C})}$, then there exists a unique idempotent morphism $e \in \mathscr{C}(A, A)$ such that $i_n(e) = e'$ and for $k \ge n$, $i_k(\Omega^{k-n}(e)) = e'$.

Proof Since $e' : (A, n) \to (A, n)$ is idempotent, there exists an integer $t \ge n$ and $e_t \in \mathscr{C}(\Omega^{t-n}(A), \Omega^{t-n}(A))$ such that $i_t(e_t) = e'$. So $i_t(e_t^2) = i_t(e_t)$. By [8, Prop.24.3(1)], $(\Omega^{k-t}(e_t))^2 = \Omega^{k-t}(e_t)$ for some integer $k \ge t$. Thus $e_k = \Omega^{k-t}(e_t) : \Omega^{k-n}(A) \to \Omega^{k-n}(A)$ is idempotent and $i_k(e_k) = i_t(e_t) = e'$. Since endofunctor Ω is fully faithful, it follows that there exists a unique idempotent morphism $e : A \to A$ such that $e_k = \Omega^{k-n}(e)$. So $i_n(e) = i_k \Omega^{k-n}(e) = i_k(e_k) = e'$. \Box

Lemma 3.5 $i_k(1_{\Omega^{k-n}(A)}) = 1_{(A,n)}$.

Proof Let $\alpha_k = 1_{\Omega^{k-n}(A)}$ and $\alpha = i_k(\alpha_k)$. For any morphism $\beta : (A, n) \to (B, m)$ in $S(\mathscr{C})$, we have $\beta_t : \Omega^{t-n}(A) \to \Omega^{t-m}(B)$ for some $t \in I_{n,m}$ such that $\beta = i_t(\beta_t)$. Without loss of generality, we can assume $k \ge t$. So $\beta \alpha = i_t(\beta_t)i_k(\alpha_k) = i_k(\Omega^{k-t}(\beta_t)) \cdot i_k(\alpha_k) = i_k(\cdot\Omega^{k-t}(\beta_t)(\alpha_k)) = i_k(\Omega^{k-t}(\beta_t)) = i_t(\beta_t) = \beta$. Similarly, we have $\alpha\gamma = \gamma$ for each γ in $S(\mathscr{C})((\mathscr{C},), (\mathscr{A},))$. So $i_k(1_{\Omega^{k-n}(A)}) = 1_{(A,n)}$. \Box

For any object (A, e, n) in $S(\overline{\mathscr{C}})$, $\overline{\Omega}(A, e, n) = (A, e, n-1)$. For any morphism $\alpha : (A_1, e_1, n_1) \to (A_2, e_2, n_2)$ in $S(\overline{\mathscr{C}})$, there exists an integer $k \in I_{n_1, n_2}$ and $\alpha_k \in \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2))$ such that $j_k(\alpha_k) = \alpha$. So $\alpha_{k-1} = \alpha_k : \overline{\Omega}^{(k-1)-(n_1-1)}(A_1, e_1) \to \overline{\Omega}^{(k-1)-(n_2-1)}(A_2, e_2)$, $\overline{\Omega}(\alpha) = i_{k-1}(\alpha_{k-1})$. A diagram

$$\widetilde{\overline{\Omega}}(A_1, e_1, n_1) \xrightarrow{\alpha} (A_2, e_2, n_2) \xrightarrow{\beta} (A_3, e_3, n_3) \xrightarrow{\gamma} (A_1, e_1, n_1)$$

belongs to $\overline{\Delta}$ if there exists $k \in 2\mathbb{Z}$, $k \geq \max\{n_1, n_2, n_3\}$ and a left triangle of representatives (*)

$$\overline{\Omega}(\overline{\Omega}^{k-n_1}(A_1, e_1)) \xrightarrow{\alpha_k} \overline{\Omega}^{k-n_2}(A_2, e_2) \xrightarrow{\beta_k} \overline{\Omega}^{k-n_3}(A_3, e_3) \xrightarrow{\gamma_k} \overline{\Omega}^{k-n_1}(A_1, e_1)$$

in $\overline{\mathscr{C}}$ with $\alpha = j_k(\alpha_k), \beta = j_k(\beta_k), \gamma = j_k(\gamma_k)$. Thus (*) is a direct factor of a triangle of \mathscr{C} . Objects of $\overline{S(\mathscr{C})}$ are ((A, n), e') where $A \in \mathscr{C}, n \in \mathbb{Z}, e' : (A, n) \to (A, n)$ is an idempotent morphism. For brevity, let (A, n, e') denote ((A, n), e'). A morphism $\alpha' : (A_1, n_1, e'_1) \to (A_2, n_2, e'_2)$ in $\overline{S(\mathscr{C})}$ is a morphism $\alpha' : (A_1, n_1) \to (A_2, n_2)$ in $S(\mathscr{C})$ with $\alpha' e'_1 = e'_2 \alpha' = \alpha'$. There exist $\alpha_k : \Omega^{k-n_1}(A_1) \to \Omega^{k-n_2}(A_2)$ in \mathscr{C} such that $i_k(\alpha_k) = \alpha'$ and idempotent morphisms $e_{tk} : \Omega^{k-n_t}(A_t) \to \Omega^{k-n_t}(A_t)$ such that $i_k(e_{tk}) = e'_t$ for some integer $k \in I_{n_1,n_2}, t = 1, 2$. By Lemma 3.4, there exist unique idempotent morphisms $e_1 : A_1 \to A_1$ and $e_2 : A_2 \to A_2$ such that $e_{1k} = \Omega^{k-n_1}(e_1)$ and $e_{2k} = \Omega^{k-n_2}(e_2)$. So $i_k(\Omega^{k-n_t}(e_t)) = e'_t$ and $\widetilde{\Omega}(e'_t) = \widetilde{\Omega}(i_k(\Omega^{k-n_t}(e_t))) = i_{k-1}(\Omega^{(k-1)-(n_t-1)}(e_t))$, for t = 1, 2.

Proof of Theorem 3.2 Using the notations as above, we define $F: S(\overline{\mathscr{C}}) \to \overline{S(\mathscr{C})}$ as follows. For any object $(A, e, n) \in S(\overline{\mathscr{C}})$, F(A, e, n) = (A, n, e'), where $e' = i_{(n:A,n;A,n)}(e)$. For any morphism $\alpha : (A_1, e_1, n_1) \to (A_2, e_2, n_2)$, there exists an integer $k \ge n_1, n_2$ and a morphism $\alpha_k : \overline{\Omega}^{k-n_1}(A_1, e_1) \to \overline{\Omega}^{k-n_2}(A_2, e_2)$ in $\overline{\mathscr{C}}$ such that $j_k(\alpha_k) = \alpha$. So $\alpha_k : \Omega^{k-n_1}(A_1) \to \Omega^{k-n_2}(A_2)$ is a morphism in \mathscr{C} and $\alpha_k \Omega^{k-n_1}(e_1) = \Omega^{k-n_2}(e_2)\alpha_k = \alpha_k$. Let $e'_1 = i_{(n_1:A_1,n_1;A_1,n_1)}(e_1)$ and $e'_2 = i_{(n_2:A_2,n_2;A_2,n_2)}(e_2)$. Then for the canonical morphism

$$i_k = i_{(k:A_1,n_1;A_2,n_2)} : \mathscr{C}(\Omega^{k-n_1}(A_1), \Omega^{k-n_2}(A_2)) \to S(\mathscr{C})((A_1,n_1), (A_2,n_2))$$

we have $i_k(\alpha_k) = \alpha' : (A_1, n_1) \to (A_2, n_2), \ \alpha' e'_1 = e'_2 \alpha' = \alpha'$. Thus $\alpha' \in \overline{S(\mathscr{C})}((A_1, n_1, e'_1), (A_2, n_2, e'_2))$, we define $F(\alpha) = \alpha'$.

Assume that $F(\alpha) = \alpha'$, where $\alpha = j_k(\alpha_k) = j_t(\alpha_t)$, $\alpha' = i_k(\alpha_k)$ for some $k, t \in I_{n_1,n_2}$. It is clear that we can assume that $k \ge t$. Thus $j_t = j_k \cdot g_{tk}$, $j_k(\alpha_k) = \alpha = j_t(\alpha_t) = j_k g_{tk}(\alpha_t) = j_k(\overline{\Omega}^{k-t}(\alpha_t)) = j_k(\Omega^{k-t}(\alpha_t))$. So $j_k(\alpha_k - \Omega^{k-t}(\alpha_t)) = 0$. Thus there exists an integer $l \ge k$ such that $g_{kl}(\alpha_k - \Omega^{k-t}(\alpha_t)) = 0$ (see [8, Prop.24.3]). That is, $\overline{\Omega}^{l-k}(\alpha_k - \Omega^{k-t}(\alpha_t)) = 0$ and then $\Omega^{l-k}(\alpha_k) = \Omega^{l-t}(\alpha_t)$ which implies that $i_k(\alpha_k) = i_l(\Omega^{l-k}(\alpha_k)) = i_l(\Omega^{l-t}(\alpha_t)) = i_t(\alpha_t)$. Let $\alpha : (A_1, e_1, n_1) \to (A_2, e_2, n_2)$ and $\beta : (A_2, e_2, n_2) \to (A_3, e_3, n_3)$. Then there exist an integer $k \ge \max\{n_1, n_2, n_3\}$, $\alpha_k \in \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2))$ and $\beta_k \in \overline{\mathscr{C}}(\overline{\Omega}^{k-n_2}(A_2, e_2))$, $\overline{\Omega}^{k-n_3}(A_3, e_3)$) with $\alpha = j_k(\alpha_k)$ and $\beta = j_k(\beta_k)$. Thus $F(\beta)F(\alpha) = i_k(\beta_k)i_k(\alpha_k) = i_k(\beta_k\alpha_k) = F(j_k(\beta_k\alpha_k)) = F(j_k(\beta_k)j_k(\alpha_k)) = F(\beta\alpha)$.

For each $(A, e, n) \in S(\overline{\mathscr{C}})$ and $\beta' \in \overline{S(\mathscr{C})}((A, n, e'), (B, m, e'_1))$, then $\beta' \in S(\mathscr{C})((A, n), (B, m))$ and $\beta'e' = e'_1\beta' = \beta'$. Hence there exists an integer $k \ge n, m$ and $\beta_k \in \mathscr{C}(\Omega^{k-n}(A), \Omega^{k-m}(B))$ such that $\beta' = i_k(\beta_k)$. Thus $j_k(\beta_k) = \beta \in S(\overline{\mathscr{C}})((A, e, n), (B, e_1, m))$ with $F(\beta) = \beta'$. Hence we have $\beta'F(1_{(A,e,n)}) = F(\beta)F(1_{(A,e,n)}) = F(\beta)1_{(A,e,n)} = F(\beta) = \beta'$. Similarly, we have $F(1_{(A,e,n)})\gamma' = F(1_{(A,e,n)})F(\gamma) = F(1_{(A,e,n)}\gamma) = F(\gamma) = \gamma'$ for each $\gamma' \in \overline{S(\mathscr{C})}((C, l, e'_2), (A, n, e'))$. So $F(1_{(A,e,n)}) = 1_{F(A,e,n)}$.

It remains to show that F is a triangle-equivalence.

It is clear that F is dense from Lemma 3.4 and full. To show that F is faithful, we let two morphisms $\alpha, \beta \in S(\overline{\mathscr{C}})((A_1, e_1, n_1), (A_2, e_2, n_2))$ with $F(\alpha) = \alpha' = F(\beta)$. So there exist $\alpha_k \in \overline{\mathscr{C}}(\overline{\Omega}^{k-n_1}(A_1, e_1), \overline{\Omega}^{k-n_2}(A_2, e_2))$ for some $k, t \in I_{n_1, n_2}$, such that $j_k(\alpha_k) = \alpha, j_t(\beta_t) = \beta, i_k(\alpha_k) = i_t(\beta_t) = \alpha'$. Without loss of generality, suppose $k \ge t$, clearly, $i_t(\beta_t) = i_k \Omega^{k-t}(\beta_t)$. Then there exists an integer $l \ge k$ such that $\Omega^{l-k}(\alpha_k - \Omega^{k-t}(\beta_t)) = 0$, i.e., $\Omega^{l-k}(\alpha_k) = \Omega^{l-t}(\beta_t)$. Therefore, $\alpha = j_k(\alpha_k) = j_l \Omega^{l-k}(\alpha_k) = j_l \Omega^{l-t}(\beta_t) = j_t(\beta_t) = \beta$. Finally, we will show that F is exact.

For any object $(A, e, n) \in S(\overline{\mathscr{C}})$, $F\overline{\Omega}(A, e, n) = F(A, e, n-1) = (A, n-1, e')$, where $e' = i_{(n-1:A,n-1;A,n-1)}(e)$. $\overline{\Omega}F(A, e, n) = \overline{\Omega}(A, n, e'') = (\overline{\Omega}(A, n), \overline{\Omega}(e'')) = (A, n-1, e')$, where $e'' = i_{(n:A,n;A,n)}(e)$. For any $\alpha \in S(\overline{\mathscr{C}})((A_1, e_1, n), (A_2, e_2, n_2))$, $\overline{\Omega}F(\alpha) = \overline{\Omega}(\alpha') = \overline{\Omega}(\alpha')$ where $j_k(\alpha_k) = \alpha$, $i_k(\alpha_k) = \alpha'$. So $\overline{\Omega}(\alpha') = i_{k-1}(\alpha_{k-1})$ and $j_{k-1}(\alpha_{k-1}) = \overline{\Omega}(\alpha)$ implies $F\overline{\Omega}(\alpha) = i_{k-1}(\alpha_{k-1}) = \overline{\Omega}F(\alpha)$. Hence $F\overline{\Omega} = \overline{\Omega}F$.

Suppose that

$$\frac{\widetilde{\overline{\Omega}}}{\overline{\Omega}}(A_3, e_3, n_3) \xrightarrow{\alpha} (A_1, e_1, n_1) \xrightarrow{\beta} (A_2, e_2, n_2) \xrightarrow{\gamma} (A_3, e_3, n_3)$$
(1)

is a triangle in $S(\overline{\mathscr{C}})$, applying the functor F yields a diagram in $\overline{S(\mathscr{C})}$

$$\overline{\widetilde{\Omega}}(A_3, n_3, e'_3) \xrightarrow{\alpha'} (A_1, n_1, e'_1) \xrightarrow{\beta'} (A_2, n_2, e'_2) \xrightarrow{\gamma'} (A_3, n_3, e'_3).$$
(2)

It follows from (1) that there exists a left triangle in $\overline{\mathscr{C}}$

$$\overline{\Omega}(\overline{\Omega}^{k-n_3}(A_3, e_3)) \xrightarrow{\alpha_k} \overline{\Omega}^{k-n_1}(A_1, e_1) \xrightarrow{\beta_k} \overline{\Omega}^{k-n_2}(A_2, e_2) \xrightarrow{\gamma_k} \overline{\Omega}^{k-n_3}(A_3, e_3)$$
(3)

for some $k \in 2\mathbb{Z}$, $k \geq \max\{n_1, n_2, n_3\}$, where $\alpha = j_k(\alpha_k)$, $\beta = j_k(\beta_k)$, $\gamma = j_k(\gamma_k)$. We let $d_i = 1_{A_i} - e_i$, i = 1, 2, 3. Since there is $(A_i, e_i) \oplus (A_i, 1 - e_i) \cong (A_i, 1_{A_i})$ in $\overline{\mathscr{C}}$ for i = 1, 2, 3 by [6, Lemma 12], there is a diagram in $\overline{\mathscr{C}}$

$$\overline{\Omega}(\overline{\Omega}^{k-n_3}(A_3, d_3)) \xrightarrow{u_k} \overline{\Omega}^{k-n_1}(A_1, d_1) \xrightarrow{v_k} \overline{\Omega}^{k-n_2}(A_2, d_2) \xrightarrow{w_k} \overline{\Omega}^{k-n_3}(C_3, d_3)$$
(4)

such that the direct sum of (3) and (4) is isomorphic to a left triangle in \mathscr{C}

$$\Omega^{k+1-n_3}(A_3) \xrightarrow{\xi_k} \Omega^{k-n_1}(A_1) \xrightarrow{\eta_k} \Omega^{k-n_2}(A_2) \xrightarrow{\zeta_k} \Omega^{k-n_3}(A_3)$$
(5)

The stabilization and idempotent completion of a left triangulated category

where
$$\xi_k \cong \begin{pmatrix} \alpha_k & 0 \\ 0 & u_k \end{pmatrix}, \eta_k \cong \begin{pmatrix} \beta_k & 0 \\ 0 & v_k \end{pmatrix}, \zeta_k \cong \begin{pmatrix} \gamma_k & 0 \\ 0 & w_k \end{pmatrix}$$
. Then we have a triangle in $S(\mathscr{C})$
 $\widetilde{\Omega}(A_2, n_2) \xrightarrow{\xi} (A_1, n_1) \xrightarrow{\eta} (A_2, n_2) \xrightarrow{\zeta} (A_2, n_2)$ (6)

$$\Omega(A_3, n_3) \xrightarrow{\varsigma} (A_1, n_1) \xrightarrow{\eta} (A_2, n_2) \xrightarrow{\varsigma} (A_3, n_3) \tag{6}$$

where $\xi = i_k(\xi_k), \eta = i_k(\eta_k), \zeta = i_k(\zeta_k)$. On the other hand, we can get a diagram in \mathscr{C} from (4)

$$\Omega^{k+1-n_3}(A_3) \xrightarrow{u_k} \Omega^{k-n_1}(A_1) \xrightarrow{v_k} \Omega^{k-n_2}(A_2) \xrightarrow{w_k} \Omega^{k-n_3}(A_3)$$
(7)

and

$$u_k(\Omega^{k+1-n_3}(d_3)) = (\Omega^{k-n_1}(d_1))u_k = u_k, \ v_k(\Omega^{k-n_1}(d_1)) = (\Omega^{k-n_2}(d_2))v_k = v_k,$$
$$w_k(\Omega^{k-n_2}(d_2)) = (\Omega^{k-n_3}(d_3))w_k = w_k,$$

which implies a diagram in $S(\mathscr{C})$

$$\widetilde{\Omega}(A_3, n_3) \xrightarrow{u} (A_1, n_1) \xrightarrow{v} (A_2, n_2) \xrightarrow{w} (A_3, n_3)$$
(8)

where $u = i_{(k:A_3,n_3-1,A_1,n_1)}(u_k), v = i_{(k:A_1,n_1,A_2,n_2)}(v_k), w = i_{(k:A_2,n_2,A_3,n_3)}(w_k)$. Let $d'_3 = i_{(n_3:A_3,n_3,A_3,n_3)}(d_3), d'_1 = i_{(n_1:A_1,n_1,A_1,n_1)}(d_1), d'_2 = i_{(n_2:A_2,n_2,A_2,n_2)}(d_2)$. So

$$\begin{split} u(\Omega(d_3')) &= i_{(k:A_3,n_3-1;A_1,n_1)}(u_k) \cdot i_{(n_3-1:A_3,n_3-1;A_3,n_3-1)}(d_3) \\ &= i_{(k:A_3,n_3-1;A_1,n_1)}(u_k) \cdot i_{(k:A_3,n_3-1;A_3,n_3-1)}\Omega^{k-n_3+1}(d_3) \\ &= i_{(k:A_3,n_3-1;A_1,n_1)}(u_k \cdot \Omega^{k-n_3+1}(d_3)) \\ &= i_{(k:A_3,n_3-1;A_1,n_1)}((\Omega^{k-n_1}(d_1))u_k) \\ &= i_{(k:A_1,n_1;A_1,n_1)}(\Omega^{k-n_1}(d_1)) \cdot i_{(k:A_3,n_3-1;A_1,n_1)}(u_k) \\ &= i_{(n_1:A_1,n_1;A_1,n_1)}(d_1) \cdot i_{(k:A_3,n_3-1;A_1,n_1)}(u_k) \\ &= d_1' \cdot u = u. \end{split}$$

Similarly, we have $v \cdot d'_1 = d'_2 \cdot v = v$, $w \cdot d'_2 = d'_3 \cdot w = w$. Thus we have a diagram in $\overline{S(\mathscr{C})}$

$$\overline{\widetilde{\Omega}}(A_3, n_3, d'_3) \xrightarrow{u} (A_1, n_1, d'_1) \xrightarrow{v} (A_2, n_2, d'_2) \xrightarrow{w} (A_3, n_3, d'_3).$$
(9)

Now $e'_3 \oplus d'_3 = i_{(n_3:A_3,n_3;A_3,n_3)}(e_3) \cdot i_{(n_3:A_3,n_3;A_3,n_3)}(d_3) = i_{(n_3:A_3,n_3;A_3,n_3)}(1_{A_3}) = 1_{(A_3,n_3)}$ by Lemma 3.5. Similarly, there are $e'_1 \oplus d'_1 = 1_{(B_1,n_1)}$ and $e'_2 \oplus d'_2 = 1_{(B_2,n_2)}$. So the direct sum of (2) and (9) is isomorphic to the diagram in $S(\mathscr{C})$

$$\widetilde{\Omega}(A_3, n_3) \xrightarrow{\xi'} (A_1, n_1) \xrightarrow{\eta'} (A_2, n_2) \xrightarrow{\zeta'} (A_3, n_3)$$
(10)

where $\xi' \cong \begin{pmatrix} \alpha' & 0 \\ 0 & u \end{pmatrix}$, $\eta' \cong \begin{pmatrix} \beta' & 0 \\ 0 & v \end{pmatrix}$, $\zeta' \cong \begin{pmatrix} \gamma' & 0 \\ 0 & w \end{pmatrix}$. Thus

$$\xi' \cong \begin{pmatrix} \alpha' & 0 \\ 0 & u \end{pmatrix} = \begin{pmatrix} i_k(\alpha_k) & 0 \\ 0 & i_k(u_k) \end{pmatrix} = i_k \begin{pmatrix} \alpha_k & 0 \\ 0 & u_k \end{pmatrix} \cong i_k(\xi_k) = \xi$$

Similarly, $\eta' \cong \eta$, $\zeta' \cong \zeta$. It follows that (10) \cong (6). So (10) is a triangle in $S(\mathscr{C})$, and then (2) is a triangle in $\overline{S(\mathscr{C})}$. This completes the proof. \Box

References

- A. BELIGIANNIS. The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization. Comm. Algebra, 2000, 28(10): 4547–4596.
- [2] A. BELIGIANNIS, N. MARMARIDIS. Left triangulated categories arising from contravariantly finite subcategories. Comm. Algebra, 1994, 22(12): 5021–5036.
- [3] A. HELLER. Stable homotopy categories. Bull. Amer. Math. Soc., 1968, 74: 28-63.
- [4] A. NEEMAN. Triangulated Categories. Princeton University Press, Princeton, NJ, 2001.
- [5] C. FAITH. Algebra II Ring Theory. Springer-Verlag, Berlin-New York, 1976.
- [6] Qinghua CHEN, Lidan TANG. Recollements, idempotent completions and t-structures of triangulated categories. J. Algebra, 2008, **319**(7): 3053–3061.
- [7] P. BALMER, M. SCHLICHTING. Idempotent completion triangulated categories. J. Algebra, 2001, 236(2): 819–834.
- [8] R. WISBAUER. Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [9] Lin XIN, Ya'nan LIN. One-sided torsion pair. Sci. China Ser. A, 2007, 50(1): 13–26.