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1. Introduction

This paper is concerned with the following initial-boundary problem for a quasi-linear parabolic

equations
9u — aAu—V - {uVx(p)} + f(u), in Qx (0,00),
% =bAp — cp + du, in Q x (0,00), )
g—Z:g—Z:O, in 9Q x (0,00),
u(z,0) = uo, p(x,0) = po, in Q,

where u(z,t) and p(z,t) denote the population density of biological individuals and the concen-
tration of chemical substance at a position x € Q C R? and a time ¢ € [0, 00), respectively. This
problem arises in biology. The mobility of individuals consists of two effects: one is random
walking, and the other is the directed movement in a sense that they have a tendency to move
toward higher concentration of the chemical substance. This is called chemotaxis in biology
[1-4]. @ > 0 and b > 0 are the diffusion rates of u and p, respectively. ¢ > 0 and d > 0 are
the degradation and production rates of p, respectively. x(p) is the sensitivity function due to
chemotaxis. f(u) is a growth term of u.

In order to study aggregating patterns due to chemotaxis and growth, there are several
contributions not only from experiments but also from mathematical analysis. Budrene and Berg

[5] experimentally observed that bacteria called Escherichia coli form complex spatio-temporal
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colony patterns. In order to understand theoretically such chemotactic pattern formation, several
models have been proposed in [6-9]. Among them, Mimura and Tsujikawa [10] presented a model
(1) which is based on the chemotaxis and growth of bacteria. In the absence of the growth term
f(u), (1) reduces to the Keller-Segel equations [11] to explain the initiation of aggregating pattern
of slime mold.

Some authors have already studied the existence of the global attractor for (1) [12-18]. The
global attractor is strictly defined as w-limit set of the ball, which is nonempty, compact, and
invariant under additional assumptions [19,20]. While it is known in certain cases that the set
has a finite Hausdorff dimension, it may be quite complicated topologically and attract solutions
very slowly. The theory of inertial manifolds allows us to reduce the long-time behavior of
PDE to that of a finite-dimensional dynamical system. So inertial manifold has been introduced
by defining as finite-dimensional, positively invariant Lipschitz manifold which exponentially
attracts all trajectories, and thus contains the global attractor. The flow restricted to such a
manifold is equivalend to that of a finite system of ordinary differential equations called an inertial
form. The existence of inertial manifolds has been established for a growing list of dissipative
PDEs modeling physical systems [20,21]. But the theory does not provide inertial manifold in
an explicit form even when its existence can be established. Thus, in order to implement an
inertial form computationally, an approximation is necessary. An approximate inertial manifold
has been introduced, which has been used independent of the existence of an inertial manifold
[20,22-26]. In this paper, the approximate inertial manifolds of such equations are constructed
based on the contraction principle, and the orders of approximations of the manifolds to the
global attractor are derived.

The rest of the paper is organized as follows. In Section 2, we present preliminary results.
In particular, we shall recall the existence of unique global solution and global attractor in the
certain space. In Section 3, we construct two kinds of approximate inertial manifolds for such

equations.

2. Preliminaries

The precise assumptions are the followings. 2 C R? is a bounded domain of C? class. a;b;c
and d are positive constants. x(p) is a real smooth function of p € [0, 00) with uniformly bounded
derivatives up to the third order

i

d
sup | =2 (p)] < o0, i=1,2,3. (2)
p>0 dp

For example, the possible normalized forms of x(p) are p, log(p + 1) and so on. f(u) is a real
smooth function of u € [0, 00) such that f(0) =0 and

f(u) = (—pu + v)u, for sufficiently large u (3)

with g > 0 and —co < v < 00. Let f(u) = f1(w)u. Then fi(u) is a smooth function of u € [0, c0)
such that fi(u) = —pu + v for sufficiently large u. A typical form of f(u) is a function which
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coincides with a cubic function —y(u — &)(u — S)u when u varies in some bounded subinterval
of [0,00), where 0 < a < 8 < 0o and v > 0, and coincides with a quadratic function as (3) for
sufficiently large u. Clearly, derivatives of f(u) are continuous.

Let L?(Q) denote the L? space of real valued measurable functions in 2, whose norm is
denoted by || - ||, and whose inner product is denoted by (-,-). H*(Q),k = 1;2;..., denotes the
real Sobolev space in Q. HY = {u € Hm|%|ag = 0} denotes the subspace of the Sobolev space
H™. Let H be a Hilbert space and let I be an interval of R. L?(I; H) denotes the space of H
valued L? functions defined in I. H'(I; H) denotes the space of functions in L?(I; H) whose first
derivatives are also in L?(I; H). C(I; H) and C™(I; H),m = 1;2;3;..., denote the space of H
valued continuous functions and that of H valued m-times continuously differentiable functions,
respectively.

For simplicity, we shall use a universal notation M, My, t.,t.. to denote various constants
which are determined in each occurrence by Q;a; b; ¢; d; x(+); f(-) and so on in a specific way.

The existence of unique global solution of chemotaxis-growth system has been established
[13-16,18].

Lemma 1 ([18]) Let 0 <wug € HZ(Q) and 0 < pg € H3 (). Then (1) possesses a unique global
solution such that

0 <wue CH([0,00); L*(2)) N C([0, 00); H (),

0 < p e C1([0,00); H () N C([0, 00); HE ().

Lemma 2 ([14,15,18]) For each bounded ball B, = {ug € L? py € H? : |lug| + ||po|lz2 < 7},
there exist constant My and t, dependent on a,b,c,d, (), B, such that

HU’HH2 < MO? ||pHH'a < M07 t >t

Remark Lemma 2 tells us that chemotaxis-growth system admits a global attractor in the
product space L%(Q) x H ().

We give the functional setting of chemotaxis-growth system. Let Au = —Au + fu,H =
L*(2), D(A) = {u € H*(Q)|§4]o0 = 0}, and J(u, p) = V - {uVx(p)}, Ji(u,p) = V - {uVX'(p)}.
A% (-)(s > 0) denotes fractional power of A, whose norm is denoted by ||A® -||. Chemotaxis and

growth system (1) can be renormalized as the following equation:
G = —adu+ Fu— J(u,p) + f(u),
‘é—g = —bAp + du, 4)
u(x,0) = uo, p(z,0) = po.
Lemma 3 ([14,15,18,20]) Let 0 < wug € H%(2), 0 < pg € H3,(2), and |lug|| < Ro, | Apo|| < Ro.
Then there exist constant My and t. dependent on a,b,c,d, 2, Ry, such that
du 3 1 dp
A —1, [|A2 Az —|| < My. Vt>t,.
lAull, W Il 1A=l 1A% ]l < Mo. ¥t >

Since A is a self-adjoint positive operator whose inverse is compact, it follows that the space

H has a complete orthonormal basis consisting of the eigenfunctions of A, {w;}32,, where w;(z)
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corresponds to the eigenvalue A; for j = 1,2,3,... . Let P = P,, be the orthogonal projection
from H onto Span{wi,ws,...,wn} and Q@ = Q,, = I — P. Since P and @ commute with A and
its powers. We may split (4) as
dul +aAuy — fuy + PJ(u,p) — Pf(u)
d“2 +aAuy — Fus + QJ(u, p) — Qf (u) =
dﬂl +bAp; —duy =0, (5)
dp2 + bApy — duy =0,
ul( ) = Puo, p1(0) = Ppo.
Lemma 4 Let 0 < ug € H3(Q), 0 < po € Hx(Q), and ||uo|| < Ro, ||Apo|| < Ro. Then there
exist constant My and t.. dependent on a,b,c,d, 2, Ry, such that

1dp2
s 142 pall, [ Apsl, || A2

Proof 1) Multiplying the Second equation of (5) by us and integrating the product in €2 gives

0,
0

)

d
2 Vi > b

luall, | A% s, I

m+17

d

(%,uﬁ + a(Aug, ug) — %(UQ,UQ) +(QJ(u, p),uz) — (QF (w), us) =0,
Ld 2 2 ac
2 sl + all Atual” < o142l AR uall + 170 el + 5 (a2 2)

< M| AR ull [ Apll| AR usl] + A2 [ ()] A2 s ]| + ?HquQ

< M Abusl| + TA AT us|? < 5[ AR us |2 + M,

S huall? + @A Jusl? < M.
Applying Gronwall inequality, we have
[ua (D)1 < flua(ta)|[Pe™ 1070 4+ Ma L, ¢ > ¢,
< MZem@dmer (=t Mg L < ML, > L.
Jua(®)l € MAL L, €2 b

2) Multiplying the second equation of (5) by Aus and integrating the product in  yields

du ac

( 2 Aug) + a(Aug, Aug) — 3 — (ug, Aug) + (QJ (u, p), Auz) — (Qf (u), Auz) =
1d 2 2 ac 1 9
2dt||A2u2H +aflAuz|” < | Aul[ Ax(o) [ Auz ]| + ILf (w)l[| Auz] + 5=l A2u2]%,

1 ac ., _
< [ Aul (X" (P)1A2 ol + X (o)1 ApID I Aual| + | f @)l Ausll + 22000 [| Aua
ac | _
< M Aus|| + 200 [ Aus 1%,

a
< 5 llAuzl? + 0,
d, 1 2 2
g4z u2ll” + af Aus|” < M,

d
Gl Az ual® +adm|[Azus|* < M.
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Applying Gronwall inequality, we find that
142 ua(t)]* < A2 un(t)|Pe A1) 4 Madly, bt

< ML

< M2e—0Amta(t—t )—|-Ma/\m+1 m+1s

[
|ARus(t)] < MAE, £t

3) Differentiate the second equation of (5) with respect to t. Let ua; denote 9%2. We have

du ’
% + aAug — Tu% + QJ(ug, p) + QJ1(u, p)ps — Qf (u)us = 0,

Multiply the above equation by wg; and integrate the product in Q. It follows that

du ac
(—dtzt ; u2t)+a(Au2t7u2t)_?(u2t7u2t)+(QJ(Ut, ), u2t)+(QJ1 (u, p)pt, uar)—(QF (u)ug, ugg) = 0,
1d 1
5 aplledl® + all At
ac
< QT (ut, p), uae| + [(QJ1 (w, p)pe, uze)| + [(QF (w)ug, uar)| + |7(U2tau2t)|
ac
< (I (ut, p)s wae| + (1 (w, p)pe, war)| + |(f (w)ue, uae)| + 7||U2t||2
1 1 1 ac
< e A2 x () || A2 uze]| + [[wAz x(0)pell | A wael| + || (F (w)ase]|[|wze]| + 7||Uzt||2

1 1 1 1 ac
< uex' () A2 pll| A2 uae|| + lux'(p) A2 ppe|[| A2 wae || + | (f (w)ue|||uze ]| + 7||U2t||2

< M A3 ug| + MAE A4Sl + MATL, | A e
< M Abuz]| + MAS [ A%
< 5l A% uxl” + 01,

d 1
@”“%HQ + allAZuy > < M,

d
alletIIQ + adm [luz|* < M.
Applying Gronwall inequality, we find that
luge(O]? < [fuze(t) 2™ X100 4 Mad, Ly, ¢ > ¢,

<M2 —aAm41(t—ts )_|_Ma/\ < MM~ ! t 2> tix,

m—+1 m-+17
||u2t( )” < M)\m-l-l? t 2> s

4) Multiplying the forth equation of (5) by Aps and integrating the product in Q gives

d
(gu Apz) + b(Ap2, Ap2) — d(uz, Ap2) =0

S 1AL pall? 4 bl Aps” < d (i, Aps)

< dffuzll[[Ap2] < §||Apz>||2 + M|l f?,
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5 =143 pall? 4 bl Apal? < Mifu”,

1 1
Ellz‘lzpzll2 + b |AZp2 ]| < MALL.
Applying Gronwall inequality, we find that
Az py(t)||? < || A% pa(t,)||Pe O m 10—t L MIAS2 Dt >t
P P m+1

< M2emPmnnlt=t) L MAZ2 < MASE | >

m—+1 m—+1»
| A2 pa(t)]] < MALY, < MALE,, ¢t
5) Multiplying the forth equation of (5) by A%py and integrating the product in § gives

d
(S22, A%py) + b(Apa, A%p2) — d(uz, A%ps) = 0,

dt’
1d 9 3 9 1 3
5&”1‘1/)2” + b[| A2 po|® < d[(AZuz, A2 pa)
1 3 b, .3 o 19
< d[|Azug||[|AZ p2|| < §||A2P2|| + M| Az us|7,

d 3 1
EHAPzH2 +0]|A2 po||* < M| Az uy?,

d _
3142l + A | Apa|* < MXLL.
Applying Gronwall inequality, we find that

| Ap2(8)]12 < [Apa(to)|Pe e 0=t L A2 > ¢,

< MPemPmet (o) L MALE S MARL > e,

[Apa(t)]] < MALE,, 12 .

6) Differentiate the last equation of (5) with respect to ¢. Let pg¢ denote dﬂ We have
dPQt
bApa: — dug = 0.
a + bApar — duzg

Multiply the above equation by Apg; and integrate the product in €. It follows that

d
(<2 p” , Apay) + b(Apar, Apay) — d(uze, Apa) = 0,

2 dt ||A2P2t||2 + bl Apae||* < d|(uae, Apar)|

< dffugel[[[ Ap2ll < §||Ap2t||2 + M||uz?,

d _
A2 o2l + DA [ AR pae|* < Mfuze]|* < MAZY
Applying Gronwall inequality, we find that
|A2 oy (1)][? < (A% poy(t)[|2e™Pr e =) MACR L > 8,

< MZe~PAmlt=t) L prp=2 < M>\m2+17 t> b,
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1
1A% par (1)) < MALEL, 2

The proof of Lemma 4 is completed. O

3 Main results

In this section we show that every orbit for chemotaxis-growth system eventually enters
a thin neighborhood of the linear manifold PH. This implies that in particular the global
attractor lies within this neighborhood. In the following theorems we estimate the thickness of
this neighborhood and the rate of its exponential attraction.

3.1. Firstly, we construct the approximate solution (ul,A% p1) € PH x PH by nonlinear
Galerkin method, which satisfies

4 g Auy — Ly + P (u1, pr) + PJ(u1, ) + PJ(p1, p1) — Pf(ur) =
@A% — 51+ QJ(ur, p1) — Qf(ur) =0,

41 4 bApy — dug =0,

bA<P2 —dpy =0,

(6)

where 1,2 € QH. The above equation defines a nonlinear mapping F: PH xPH — QH xQH
satisfying F(u1, p1) = (1, p2) for V(u1, AZp;) € PH x PH. ¥y = Graph(F) is an approximate

inertial manifold.

Theorem 1 Let 0 < ug € H%(Q), 0 < pg € H3(Q), and |Juo|| < Ro, || Apol| < Ro. Then there

exist constants mg, My and t, dependent on a,b,c,d, 2, Ry, such that
distHxH((u,A%p)7 ) < M)\erl, m > mg, t >ty

where u, p are the solutions of the equation (1).

Proof From (5) and (6), we have

@Alpr — ) = o1 — ) + QU(us,p1) — QI p) — Qf ur) +Qf () — 22 =0,
aA(‘Pl_U2)_%(<P1—U2)+QJ(U17pl)—QJ(u,pl)—i-QJ(u,p1) QJ (u, p)+Q f (u1)+Qf (u)— d(;z -0,
all Ao = uz)l| <IA* s A3 x ()} + | AF (AR x(o) = x(pOlH] + 17 () — )+

dUQ ac
2+ 5 ller —ua|

152
§||A2U2A2 (pnn + llus Ax (o) + [ A3 A% [x(p) — x(p1)]l| + AL (p) — x(p0)]lI+
(@ >||\u2|\+|| 2+ = ller — sl

LAY LAY+ Wl 1A + Gl Al
A @IAL e+ Tl 1441+ LS DAL el + 1 G4zl +
ac
7/ @lusl + 120+ 5 s el

ac
<M A2 us|| + M [uzl| + M| AZ pa| + M| Aps|| + || || + 7 ler — a2l
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ac

_1 B
S‘Z\4)‘7n?|-1 + b )‘m]:i-l”A(le - u2)||7

ac . _ _1
(@ = A5 Al — )|l < MA,Z,

_3
llpr = ual| < MA,Z4-

From (5) and (6), we have
: d
DA (2 = p2) = dA* (1 — u2) = A% =0,
d _ _1
DA% (2 = p2)ll < dI| A% (01 — u2) | + |3 A2 pall < AMALy + MAL,

bl A% (03 — p2)| < MALL,
1A% (2 — po)l| < MALE,.
Thus
dist a1 (u, A ), 1) < [lor — ual| + A% (92 — po)ll < MALZ,, m>mg, t 2t O

3.2.  Secondly, we adopt another method to introduce approximate inertial manifold for

chemotaxis-growth system. Let
By = {u1 € PH : || A% us|| < 2M,},
Om ={A%p1 € PH : | Apa|| < 2Mo},
By, = {9 € QH : | Ag| < 2Mo},
O = {A*h € QH : || Ah|| < 2My}.

Define a mapping G : B, x O, — B;= x O:: such that G(uy,p1) = (g, h) for each (uq,p1) €
By, X On,, where (g, h) satisfies

aAg— g+ QJ(ur+g.p1+h) = Qf (ur +9) =0, (™)
bAh — dg = 0. (8)

Lemma 5 Let 0 < ug € H(Q), 0 < po € Hx(Q), and |lug|| < Ro,||Apo|| < Ro. Then there
exists constant mg dependent on a, b, c,d,Q, Ry, such that the equations (7),(8) have a unique

solution (g, h) € B;~ x Ok for V(uy, p1) € By x Oy, when m > my.

Proof Let (u1,p1) € By X Op,. Define a mapping G: B x Ok — QumH x QH such that
(9,h) = G(g1, ), for (g1, h1) € B: x O, by the following equations
GAQ—%Q‘FQJ(M + 91,01+ M) = Qf(u1 +g1) =0, (9)
bAh — dg, = 0. (10)
1) G maps B x OL to itself. From (9), we have

1 1 ac
allAgll < [[A% {(u1 + g1) A2 x(p1 + k)] + [1£ (w1 + g0)l| + - llg]
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ac
< 1A + g0l Ax(pr + ha)ll + —-llgll + M

1A (1 + g0)lI(X" (o1 + hOIIAZ (o1 + ha) |1 + X (o1 + k)l | A (o1 + )]+
ac | _
5 AmillAgll + M

CLC

IN

A llAgll + M,

ac

(a = Ak ) Agll < M,
|AZg|| < MA2 . (11)

From (10), we have
bAZh — dA2 g =0,

bl A%h|| < d||A2g,| < M,
I AR]| < MALE . (12)
By (11) and (12), it is true that there exists mgo such that (g, h) € B;: x O;5 when m > my.
2) G is contraction mapping in B x O:.
Let (g1,h1), (g2, h2) € B x OL. From (9), we have
aAg(g1, h1) —aAg(gs, ha) —— lg(g1,h1) — 9(g2, h2)] + QT (ur +g1, pr+h1) — QJ (ur + g2, p1 +ha)+
Qlf (w1 +g1) — flur + g2)] =0,
aAg(gl,hl)—aAg(gzvhz)—%[ (91, h1) = g(g2, h2)| + QJ (u1 + g1, pr+h1) = QJ (ur + g2, p1+h1)+
QJ(u1 + g2, p1 + h1) — QJ (w1 + g2, p1 + h2) — Q[f(u1 + g1) — f(u1 + g2)] =0,
allAglgr, hn) = Ag(g2, ha)l| < 1A% {(91 = 92)AZx(pr + h) |1+
A3 {(ur+92) A3 [x(p1 1)} =x(pr +h) |+ 1 (w1 +90) = £ (w1 +g2) [+ -l (91 ) =g g2, o)
< [l(gr — g2)Ax(p1 + ha)|| + [ A% (g1 — g2) A% x (pl + ha)ll+
1A% (us + g2) X DIIAZ (hy — h2)l| + [/ @lllgn — g2l + ||9(g1,h1) 9(g2, ha)|
< g1 — aalll Ax(ps + h)]| + A% (g1 — 92)||||A§ (o1 + I+

1A% w4+ gl @AY (b = Bl + £ @) g2 = gell + G llg(gr. 1) = glg2. o)
< Millgr = gal + Mal| A% (91 — g2)| + Mal| A (1 = ha) | + T 9 91, 1) = (g2, ho)|
< M3 1A% (91— go)lI+Ma | A3 (g1 =g2) 142, 3y [ A —ha) [+ 5EA0 L Al (91, ) =g g2, Bl
(a = SENA )1 49(91, ) = Aglga, ha)ll < Mal| A (g1 = go)]| + Mo, 2, [ Ay = o)

142 [g(g1, 1) — g(ga, ha)]|l < Mad, 2 | A% (g1 — go)[| + MaA, L [ A(hy — ho)|. (13)
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From (10), we have
blAZh(g1, h1) — A2 h(ga, ha)] — dA% (g1 — go) = 0,
b|A%h(gy, ha) — A2 h(ga, ha)|| < d||A2 (g1 — o),
1A[R(g1. hr) = h(ga, Ba)]ll < X, 24 1A% (g1 — g2)l|. (14)
From (13) and (14), it follows that

14%[g(g1, h1) — glg2, ha)]| + [|Al(g1, h1) = B(ga, ha)]|
< MsA, 21 (142 (g1 — g)ll + Mol A(hs = ho)|.

By contraction principle, it is true that G has a unique fixed point and the equations (7),(8)
have a unique solution (g, h) € Bz x O for ¥(u1, p1) € By, X Oy, when m > myg. O

Clearly, Xo=Graph(G) is an approximate inertial manifold of the equations.

Theorem 2 Let 0 < ug € H%(Q), 0 < pg € H3(Q), and |Juo|| < Ro, || Apol| < Ro. Then there

exist constants mg, M and t, dependent on a,b,c,d, 2, Ry, such that
distng((u,A% ) 22) < M)\m+1, m Z mo, t 2 t*,
where u, p are the solution of the equation (1).

Proof From (7) and (5), we have

@Ay — ) = g —u) + Qs + 9,1 + 1) = QI p) — QF () + Qf (n + ) — 2 =0,
aA(g — ) = (g~ uz) + QI (wr g, pr+h) = QI (. pr + 1) + QT pr + h) — QI (. p)
~Qf() + Qf(ur +9) - 2 =0,
al|A(g — us)|| < [[ A% {(u1 + g) A% x(p1 + h)} — A2 {ud?x(p1 + W)}|+
1A% {ud2x(p1 + h)} — A2 {uAZx(p)}| + | f(u) - <u1+g>||+||d“2||+—||g—u2||
< A3 {(g—u2) AT x(pr+h) |+ A% {uA? [x(pr+h) = x(p)] I+ f ()~ <u1+gl>||+|| 2+ lg—usl

< [|A% (g — w)ll|AZx(p1 + W) + llg — uall[| Ax(p1 + h)[| + IIAEUIIIIAf[x(m +h) = x(p)lll+
lullll ADc(pr + ) = x ()]l + 1 (w) = f(ur + g)I| + || 2+ T llg - ual
< (4% (g — u)lI1X (D)1 A% (o1 + D) + llg — w2 [[[X" [ A% (o1 + h>||2 + X A1 + B+
LAz ull[x' [ A2 (b = po)ll + Il [[xX"1([| A% (o1 + h> + A7 ||| A% (h = p2) )] + [[ull X/ [[| AR — p2) |+

' (u )IHg—U2II+|I ||+—||g—uz||

d’LLQ

1 ac
< M| A2 (g — uz)|| + Mllg — ual| + M| A2 (h = p2)|| + M| A(h p)l + =7 I+ - llg = wel|
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< MNEAlg — wo)|| + M2, AR (h = po)]| + ||d“2 |+ Akl Al w2l
I A(g — uz)|| < MM, 21 A(g — uz)|| + MA, 2| A2 (h— po)]| + ||d“2 I (15)
From (8) and (5), we have
bA2(h — p2) — dA% (g — us) — gAépz =0,
b A% (h — po)| < dl| A% (g —u2>||+|| A2p2||
< N1l AG - u) | + 5 A % o),
JA%(h = p2)ll < MG — o) + )15 Azmn. (16)
From (15) and (16), it follows that
1A(g — ua2)ll + A2 (h — p2)]|
< MAEL AT (= p)ll 4 MALE LAl — )+ |2 4+ | S A

d’LLQ

(1= M2 )1 Alg — u2)l| + | A% (h — p)) < M= I+ 1l A2p2||<M)\m+1

There exists mg such that when m > my, it follows that
|A(g — w2)| + A% (h = po)l| < MALE,,
lg = sl + 143 (h = pa) | < MALE,.
Thus

distrrsrr ((u, A% p), £2) < lu — (w1 + g)| + |A%[p — (p1 + h)]]|
< luz — gl + 1A% (p2 = Bl < MALL,, m >mo, t >t O
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