# A Complete Solution to the Chromatic Equivalence Class of Graph $\overline{B_{n-8,1,4}}$

#### Yaping MAO\*, Chengfu YE, Shumin ZHANG

Department of Mathematics, Qinghai Normal University, Qinghai 810008, P. R. China

**Abstract** Two graphs are defined to be adjointly equivalent if and only if their complements are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth character  $R_4(G)$ , the adjoint equivalence class of graph  $B_{n-8,1,4}$  is determined. According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of  $\overline{B_{n-8,1,4}}$  that is the complement of  $B_{n-8,1,4}$ .

**Keywords** chromatic equivalence class; adjoint polynomial; the smallest real root; the fourth character.

MR(2010) Subject Classification 05C15; 05C60; 05C31

# 1. Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the notation of Bondy and Murty [1], unless otherwise stated. For a graph G, let V(G), E(G), p(G), q(G) and  $\overline{G}$  be the set of vertices, the set of edges, the order, the size and the complement of G, respectively.

For a graph G, we denote by  $P(G, \lambda)$  the chromatic polynomial of G. A partition  $\{A_1, A_2, \ldots, A_r\}$  of V(G), where r is a positive integer, is called an r-independent partition of graph G if every  $A_i$  is nonempty independent set of G. We denote by  $\alpha(G, r)$  the number of r-independent partitions of G. Thus the chromatic polynomial G is  $P(G, \lambda) = \sum_{r \geq 1} \alpha(G, r)(\lambda)_r$ , where  $(\lambda)_r = \lambda(\lambda - 1) \cdots (\lambda - r + 1)$  for all  $r \geq 1$ . The readers can turn to [17] for details on chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted by  $G \sim H$ , if  $P(G, \lambda) = P(H, \lambda)$ . By [G] we denote the equivalence class determined by G under " $\sim$ ". It is obvious that " $\sim$ " is an equivalence relation on the family of all graphs. A graph G is called chromatically unique (or simply  $\chi - unique$ ) if  $H \cong G$  whenever  $H \sim G$ . See [4,5] for many results on this field.

Received October 14, 2010; Accepted January 13, 2011

Supported by the National Natural Science Foundation of China (Grant No. 11161037) and the Science Found of Qinghai Province (Grant No. 2011-z-907).

E-mail address: maoyaping@ymail.com (Yaping MAO); yechf@qhnu.edu.cn (Chengfu YE); zhsm@qhnu.edu.cn (Shumin ZHANG)

<sup>\*</sup> Corresponding author

**Definition 1.1** ([7]) Let G be a graph with p vertices. The polynomial

$$h(G, x) = \sum_{i=1}^{p} \alpha(\overline{G}, i) x^{i}$$

is called its adjoint polynomial.

**Definition 1.2** ([7]) Let G be a graph and  $h_1(G,x)$  the polynomial with a nonzero constant term such that  $h(G,x) = x^{\rho(G)}h_1(G,x)$ . If  $h_1(G,x)$  is an irreducible polynomial over the rational number field, then G is called irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by  $G \sim^h H$ , if h(G, x) = h(H, x). Evidently, " $\sim^h$ " is an equivalence relation on the family of all graphs. Let  $[G]_h = \{H|H \sim^h G\}$ . A graph G is said to be adjointly unique (or simply h-unique) if  $G \cong H$  whenever  $G \sim^h H$ .

**Theorem 1.1** ([3]) (1)  $G \sim^h H$  if and only if  $\overline{G} \sim \overline{H}$ ; (2)  $[G]_h = \{H|\overline{H} \in [\overline{G}]\}$ ; (3) G is  $\chi$ -unique if and only if  $\overline{G}$  is h-unique.

The graphs with order n used in this paper are drawn as follows (see Figure 1).

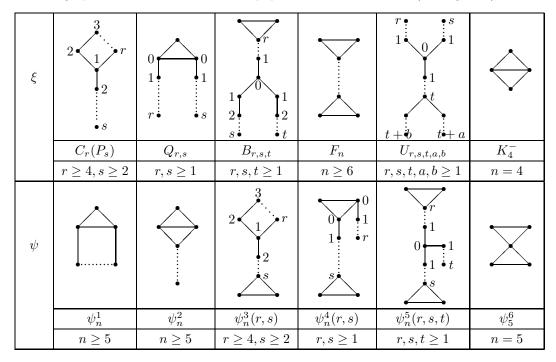


Figure 1 Families of  $\xi$  and  $\psi$ 

Now we define some classes of graphs with order n, which will be used throughout the paper.

- (1)  $C_n(\text{resp.}, P_n)$  denotes the cycle (resp., the path) of order n, and write  $\mathcal{C} = \{C_n | n \geq 3\}$ ,  $\mathcal{P} = \{P_n | n \geq 2\}$  and  $\mathcal{U} = \{U_{1,1,t,1,1} | t \geq 1\}$ .
- (2)  $D_n(n \ge 4)$  denotes the graph obtained from  $C_3$  and  $P_{n-2}$  by identifying a vertex of  $C_3$  with a pendent vertex of  $P_{n-2}$ .

- (3)  $T_{l_1,l_2,l_3}$  is a tree with a vertex v of degree 3 such that  $T_{l_1,l_2,l_3}-v=P_{l_1}\cup P_{l_2}\cup P_{l_3}$  and  $l_3\geq l_2\geq l_1$ , write  $\mathcal{T}_0=\{T_{1,1,l_3}|l_3\geq 1\}$  and  $\mathcal{T}=\{T_{l_1,l_2,l_3}|(l_1,l_2,l_3)\neq (1,1,1)\}$ .
  - (4)  $\vartheta = \{C_n, D_n, K_1, T_{l_1, l_2, l_3} | n \ge 4\}.$
  - (5)  $\xi = \{C_r(P_s), Q(r, s), B_{r,s,t}, F_n, U_{r,s,t,a,b}, K_4^-\}.$
  - (6)  $\psi = \{\psi_n^1, \psi_n^2, \psi_n^3(r, s), \psi_n^4(r, s), \psi_n^5(r, s, t), \psi_5^6\}.$

For convenience, we simply denote h(G,x) by h(G) and  $h_1(G,x)$  by  $h_1(G)$ . By  $\beta(G)$  and  $\gamma(G)$  we denote the smallest real root of h(G), respectively. Let  $d_G(v)$ , simply denoted by d(v), be the degree of vertex v. For two graphs G and H,  $G \cup H$  denotes the disjoint union of G and G, and G, and G and G

It is an important problem to determine [G] for a given graph G. From Theorem 1.1, it is obvious that the goal of determining [G] can be realized by determining  $[\overline{G}]_h$ . Thus, if q(G) is large, it may be easier to study  $[\overline{G}]_h$  rather than [G]. The related topics have been partially discussed in this respect by Dong et al in [3, 14, 15]. In this paper, using the properties of adjoint polynomials, we determine the  $[B_{n-8,1,4}]_h$  of graph  $B_{n-8,1,4}$ , simultaneously,  $[\overline{B}_{n-8,1,4}]$  is also determined, where  $n \geq 7$ .

# 2. Preliminaries

For a polynomial  $f(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \cdots + b_n$ , we define

$$R_1(f(x)) = \begin{cases} -\binom{b_1}{2} + 1, & \text{if } n = 1. \\ b_2 - \binom{b_1 - 1}{2} + 1, & \text{if } n \ge 2. \end{cases}$$

For a graph G, we write  $R_1(G)$  instead of  $R_1(h(G))$ .

**Definition 2.1** ([2,7]) Let G be a graph with q edges.

(1) The first character of a graph G is defined as

$$R_1(G) = \begin{cases} 0, & \text{if } q = 0. \\ b_2(G) - {b_1(G) - 1 \choose 2} + 1, & \text{if } q > 0. \end{cases}$$

(2) The second character of a graph G is defined as

$$R_2(G) = b_3(G) - {b_1(G) \choose 3} - (b_1(G) - 2) \left(b_2(G) - {b_1(G) \choose 2}\right) - b_1(G),$$

where  $b_i(G)$   $(0 \le i \le 3)$  is the first four coefficients of h(G).

**Lemma 2.1** ([2,7]) Let G be a graph with k components of  $G_1, G_2, \ldots, G_k$ . Then  $h(G) = \prod_{i=1}^k h(G_i)$  and  $R_j(G) = \sum_{i=1}^k R_j(G_i)$  for j = 1, 2.

It is obvious that  $R_j(G)$  is an invariant of graphs. So, for any two graphs G and H, we have  $R_j(G) = R_j(H)$  for j = 1, 2 if h(G) = h(H) or  $h_1(G) = h_1(H)$ .

**Lemma 2.2** ([7,8]) Let G be a graph with p vertices and q edges. Denote by M the set of the triangles in G and by M(i) the number of triangles which cover the vertex i in G. If the degree sequence of G is  $(d_1, d_2, \ldots, d_p)$ , then the first four coefficients of h(G) are, respectively,

- (1)  $b_0(G) = 1, b_1(G) = q$ .
- (2)  $b_2(G) = {q+1 \choose 2} \frac{1}{2} \sum_{i=1}^p d_i^2 + n_G(K_3).$
- (3)  $b_3(G) = \frac{q}{6}(q^2 + 3q + 4) \frac{q+2}{2}\sum_{i=1}^p d_i^2 + \frac{1}{3}\sum_{i=1}^p d_i^3 \sum_{ij \in E(G)} d_i d_j \sum_{i \in M} M(i) d_i + \frac{1}{2}\sum_{i=1}^p d_i^3 \sum_{ij \in E(G)} d_i d_j \sum_{ij \in M} M(i) d_i + \frac{1}{2}\sum_{i=1}^p d_i^3 \sum_{ij \in E(G)} d_i d_j \sum_{ij \in E(G)} d_i d_i \sum_{ij \in E(G)} d_i \sum_{ij \in E(G)} d_i d_i \sum_{ij \in E(G)} d_i \sum_{ij$  $(q+2)n_G(K_3) + n_G(K_4)$ , where  $b_i(G) = \alpha(\overline{G}, p-i)$  (i=0,1,2,3).

For an edge  $e = v_1 v_2$  of a graph G, the graph G \* e is defined as follows: the vertex set of G \* eis  $(V(G) - \{v_1, v_2\}) \bigcup \{v\} (v \notin G)$ , and the edge set of G \* e is  $\{e' | e' \in E(G), e' \text{ is not incident } \}$ with  $v_1$  or  $v_2 \} \cup \{uv | u \in N_G(v_1) \cap N_G(v_2)\}$ , where  $N_G(v)$  is the set of vertices of G which are adjacent to v.

**Lemma 2.3** ([7]) Let G be a graph with  $e \in E(G)$ . Then

$$h(G,x) = h(G - e, x) + h(G * e, x),$$

where G - e denotes the graph obtained by deleting the edge e from G.

**Lemma 2.4** ([7]) (1) For  $n \ge 2$ ,  $h(P_n) = \sum_{k \le n} {k \choose n-k} x^k$ .

- (2) For  $n \ge 4$ ,  $h(D_n) = \sum_{k \le n} \left( \frac{n}{k} {k \choose n-k} + {k-2 \choose n-k-3} \right) x^k$ . (3) For  $n \ge 4$ ,  $m \ge 6$ ,  $h(P_n) = x(h(P_{n-1}) + h(P_{n-2}))$ ,  $h(D_m) = x(h(D_{m-1}) + h(D_{m-2}))$ .

**Lemma 2.5** ([18]) Let  $\{g_i(x)\}$ , simply denoted by  $\{g_i\}$ , be a polynomial sequence with integer coefficients and  $g_n(x) = x(g_{n-1}(x) + g_{n-2}(x))$ . Then

- (1)  $g_n(x) = h(P_k)g_{n-k}(x) + xh(P_{k-1})g_{n-k-1}(x)$ .
- (2)  $h_1(P_n)|g_{k(n+1)+i}(x)$  if and only if  $h_1(P_n)|g_i(x)$ , where  $0 \le i \le n, n \ge 2$  and  $k \ge 1$ .

**Lemma 2.6** ([6,10]) Let G be a nontrivial connected graph with n vertices. Then

- (1)  $R_1(G) \leq 1$ , and the equality holds if and only if  $G \cong P_n(n \geq 2)$  or  $G \cong K_3$ .
- (2)  $R_1(G) = 0$  if and only if  $G \in \vartheta$ .
- (3)  $R_1(G) = -1$  if and only if  $G \in \xi$ , especially, q(G) = p(G) + 1 if and only if  $G \in \{F_n | n \ge 1\}$  $6\} \cup \{K_{4}^{-}\}.$ 
  - (4)  $R_1(G) = -2$  if and only if  $G \in \psi$  for q(G) = p(G) + 1 and  $G \cong K_4$  for q(G) = p(G) + 2.

**Lemma 2.7** ([11]) Let G be a connected graph. Then

- (1) If  $R_1(G) = 0, -1, -2$ , then  $q(G) p(G) \le |R_1(G)|$ ;
- (2) If  $R_1(G) = -3$ , then  $q(G) p(G) \le |R_1(G) + 1|$ .

**Lemma 2.8** ([18]) Let G be a connected graph and H be a proper subgraph of G. Then

$$\beta(G) < \beta(H)$$
.

**Lemma 2.9** ([18]) Let G be a connected graph. Then

(1)  $\beta(G) = -4$  if and only if

$$G \in \{T(1,2,5), T(2,2,2), T(1,3,3), K_{1,4}, C_4(P_2), Q(1,1), K_4^-, D_8\} \cup \mathcal{U}.$$

(2)  $\beta(G) > -4$  if and only if

$$G \in \{K_1, T(1, 2, i)(2 \le i \le 4), D_i(4 \le i \le 7)\} \cup \mathcal{P} \cup \mathcal{C} \cup \mathcal{T}_{\ell}.$$

**Lemma 2.10** ([18]) Let G be a connected graph. Then  $-(2+\sqrt{5}) \le \beta(G) < -4$  if and only if G is one of the following graphs:

- (1)  $T_{l_1,l_2,l_3}$  for  $l_1=1,l_2=2,l_3>5$  or  $l_1=1,l_2>2,l_3>3$  or  $l_1=l_2=2,l_3>2$  or  $l_1 = 2, l_2 = l_3 = 3.$
- (2)  $U_{r,s,t,a,b}$  for  $r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,3), (3,7,3), (3,8,4)\}, \text{ or } r=a=1, (r,s,t) \in \{(1,1,2), (2,4,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5,2), (2,5$  $1, s \ge 1, t \ge t^*(s, b), b \ge 1, \text{ where } (s, b) \ne (1, 1) \text{ and }$

$$t^* = \begin{cases} s + b + 2, & \text{if } s \ge 3; \\ b + 3, & \text{if } s = 2; \\ b, & \text{if } s = 1. \end{cases}$$

- (3)  $D_n$  for  $n \geq 9$ .
- (4)  $C_n(P_2)$  for  $n \ge 5$ .
- (5)  $F_n$  for  $n \geq 9$ .
- (6)  $B_{r,s,t}$  for r = 5, s = 1 and t = 3, or  $r \ge 1, s = 1$  if t = 1, or  $r \ge 4, s = 1$  if t = 2, or  $b \ge c + 3, s = 1 \text{ if } t \ge 3.$ 
  - (7)  $G \cong C_4(P_3)$  or  $G \cong Q(1,2)$ .

Corollary 2.1 ([14]) If graph G satisfies  $R_1(G) \leq -2$ , then  $\beta(G) < -2 - \sqrt{5}$ .

# 3. The algebraic properties of adjoint polynomials

# 3.1. The divisibility of adjoint polynomials and the fourth characters of graphs

**Lemma 3.1** ([18]) For  $n, m \ge 2$ ,  $h(P_n) \mid h(P_m)$  if and only if  $(n+1) \mid (m+1)$ .

Theorem 3.1 (1) For  $n \geq 9$ ,  $\rho(B_{n-8,1,4}) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even;} \\ \frac{n-1}{2}, & \text{otherwise.} \end{cases}$ (2) For  $n \geq 9$ ,  $\partial(B_{n-8,1,4}) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even;} \\ \frac{n+1}{2}, & \text{otherwise.} \end{cases}$ 

- (3) For  $n \ge 9$ ,  $h(B_{n-8,1,4}) = x(h(B_{n-9,1,4}) + h(B_{n-10,1,4}))$ .

**Proof** (1) Choosing a pendent edge  $e = uv \in E(B_{n-8,1,4})$  whose deletion brings about a single vertex and a proper subgraph  $D_{n-1}$  of  $B_{n-8,1,4}$ , and by Lemma 2.3, we have  $h(B_{n-8,1,4}) =$  $xh(D_{n-1}) + xh(P_4)h(D_{n-6})$ . It follows, from Lemma 2.4, that

$$\rho(K_1 \cup D_{n-1}) = 1 + \lfloor \frac{n-1}{2} \rfloor \text{ and } \rho(K_1 \cup P_4 \cup D_{n-6}) = 3 + \lfloor \frac{n-6}{2} \rfloor.$$

If n is even, then  $\rho(K_1 \cup D_{n-1}) = \rho(K_1 \cup P_4 \cup D_{n-6}) = \frac{n}{2}$ , which implies that  $\rho(B_{n-8,1,4}) = \frac{n}{2}$ . If n is odd, then we arrive at  $\rho(K_1 \cup D_{n-1}) = \frac{n+1}{2} > \frac{n-1}{2} = \rho(K_1 \cup P_4 \cup D_{n-6})$ , which implies that  $\rho(B_{n-8,1,4}) = \frac{n-1}{2}$ .

- (2) It obviously follows from (1).
- (3) Choosing a pendent edge  $e = uv \in E(B_{n-8,1,4})$  whose deletion brings about a single

vertex and a proper subgraph  $D_{n-1}$  of  $B_{n-8,1,4}$ . By Lemma 2.4, We have

$$\begin{split} h(B_{n-8,1,4}) &= xh(D_{n-1}) + xh(P_4)h(D_{n-6}) \\ &= x(xh(D_{n-2}) + xh(D_{n-3})) + xh(P_4)(xh(D_{n-7}) + xh(D_{n-8})) \\ &= x(xh(D_{n-2}) + xh(P_4)h(D_{n-7})) + x(xh(D_{n-3}) + xh(P_4)h(D_{n-8})) \\ &= x(h(B_{n-9,1,4}) + h(B_{n-10,1,4})). \end{split}$$

**Theorem 3.2** For  $n \ge 2$ ,  $m \ge 9$ ,  $h(P_n) \mid h(B_{m-8,1,4})$  if and only if n = 4 and m = 5k + 4 for k > 1.

**Proof** Let  $g_0(x) = -x^6 - 10x^5 - 37x^4 - 63x^3 - 50x^2 - 18x - 2$ ,  $g_1(x) = x^6 + 9x^5 + 29x^4 + 41x^3 + 25x^2 + 8x + 1$  and  $g_m(x) = x(g_{m-1}(x) + g_{m-2}(x))$ . We can deduce that

$$g_{0}(x) = -x^{6} - 10x^{5} - 37x^{4} - 63x^{3} - 50x^{2} - 18x - 2,$$

$$g_{1}(x) = x^{6} + 9x^{5} + 29x^{4} + 41x^{3} + 25x^{2} + 8x + 1,$$

$$g_{2}(x) = -x^{6} - 8x^{5} - 22x^{4} - 25x^{3} - 10x^{2} - x,$$

$$g_{3}(x) = x^{6} + 7x^{5} + 16x^{4} + 15x^{3} + 7x^{2} + x,$$

$$g_{4}(x) = -x^{6} - 6x^{5} - 10x^{4} - 3x^{3},$$

$$g_{5}(x) = x^{6} + 6x^{5} + 12x^{4} + 7x^{3} + x^{2},$$

$$g_{6}(x) = 2x^{5} + 4x^{4} + x^{3},$$

$$g_{7}(x) = x^{7} + 8x^{6} + 16x^{5} + 8x^{4} + x^{3},$$

$$g_{8}(x) = x^{8} + 8x^{7} + 18x^{6} + 12x^{5} + 2x^{4},$$

$$g_{m}(x) = h(B_{m-8,1,4}), \text{ if } m \geq 9.$$

Let m = (n+1)k + i, where  $0 \le i \le n$ . It is obvious that  $h_1(P_n)|h(B_{m-8,1,4})$  if and only if  $h_1(P_n)|g_m(x)$ . From Lemma 2.5, it follows that  $h_1(P_n)|g_m(x)$  if and only if  $h_1(P_n)|g_i(x)$ , where  $0 \le i \le n$ . We consider the following two cases:

#### Case 1 n > 9.

If  $0 \le i \le 8$ , from (3.1), it is not difficult to verify that  $h_1(P_n) \nmid g_i(x)$ . If  $i \ge 9$ , from  $i \le n$ , Lemma 2.4 and Theorem 3.1, we have that

$$\partial(h_1(P_n)) = \lfloor \frac{n}{2} \rfloor \text{ and } \partial(h_1(B_{i-8,1,4})) = \lfloor \frac{i+1}{2} \rfloor.$$
 (3.2)

The following cases are taken into account:

#### Subcase 1.1 i = n.

It follows from (3.2) that  $\partial(h_1(B_{i-8,1,4})) = \partial(h_1(P_n)) = \lfloor \frac{n}{2} \rfloor$  if n is even and  $\partial(h_1(B_{i-8,1,4})) = \partial(h_1(P_n)) + 1 = \lfloor \frac{n+1}{2} \rfloor$  if n is odd.

**Subcase 1.1.1**  $\partial(h_1(B_{i-8,1,4})) = \partial(h_1(P_n)).$ 

Suppose that  $h_1(P_n)|h_1(B_{i-8,1,4})$ , we have  $h_1(P_n)=h_1(B_{i-8,1,4})$ , which implies  $R_1(P_n)=R_1(B_{i-8,1,4})$ . By Lemma 2.6, we know it is impossible. Hence  $h_1(P_n) \nmid h_1(B_{i-8,1,4})$ , together

with  $(h_1(P_n), x^{\alpha(B_{i-8,1,4})}) = 1$ , we have  $h_1(P_n) \nmid h(B_{i-8,1,4})$ .

Subcase 1.1.2  $\partial(h_1(B_{i-8,1,4})) = \partial(h_1(P_n)) + 1$ .

Assume that  $h_1(P_n)|h_1(B_{i-8,1,4})$ , it follows that  $h_1(B_{i-8,1,4}) = (x+a)h_1(P_n)$ . Note that  $R_1(B_{i-8,1,4}) = -1$  and  $R_1(P_n) = 1$ , so  $R_1(x+a) = -2$ , which brings about a = 4. This implies that  $\beta(B_{i-8,1,4}) = -4$ , which contradicts (6) of Lemma 2.10. Hence  $h_1(P_n) \nmid h_1(B_{i-8,1,4})$ , together with  $(h_1(P_n), x^{\alpha(B_{i-8,1,4})}) = 1$ , we have  $h_1(P_n) \nmid h(B_{i-8,1,4})$ .

Subcase 1.2  $i \le n - 1$ .

It follows by (3.2) that  $\partial(h_1(B_{i-8,1,4})) \leq \partial(h_1(P_n))$ . Assume that  $h_1(P_n)|h_1(B_{i-8,1,4})$ , we have that  $\partial(h_1(B_{i-8,1,4})) = \partial(h_1(P_n))$  and  $h_1(P_n) = h_1(B_{i-8,1,4})$ . So we can turn to Subcase 1.1.1 for the same contradiction.

Case 2  $2 \le n \le 8$ .

From (1) of Lemma 2.4 and (3.1), we can verify that  $h_1(P_n) = g_i(x)$  if and only if n=4 and i=4 for  $0 \le i \le n \le 8$ . From Lemma 2.5, we have that  $h_1(P_n)|h(B_{i-8,1,4})$  if and only if n=4 and m=5k+4. From  $\rho(P_4)=1$  and  $\rho(B_{m-8,1,4})=\lfloor \frac{m}{2}\rfloor \ge 4$  for  $m\ge 8$ , we obtain that the result holds.

**Theorem 3.3** For  $m \ge 9$ ,  $h^2(P_4) \nmid h(B_{m-8,1,4})$ .

**Proof** Suppose  $h^2(P_4) \mid h(B_{m-8,1,4})$ . From Theorem 3.2, we have that m = 5k + 4, where  $k \geq 1$ . Let  $g_m(x) = h(B_{m-8,1,4})$  for  $m \geq 9$ . By (3) of Theorem 3.1, (1) of Lemma 2.5, it follows that

$$\begin{split} g_m(x) = & h(P_4)g_{m-4}(x) + xh(P_3)g_{m-5}(x) \\ = & h^2(P_4)g_{m-8}(x) + 2xh(P_3)h(P_4)g_{m-9}(x) + (xh(P_3))^2g_{m-10}(x) \\ = & h^2(P_4)(g_{m-8}(x) + 2xh(P_3)g_{m-13}(x)) + 3(xh(P_3))^2h(P_4)g_{m-14}(x) + (xh(P_3))^3g_{m-15}(x) \\ = & h^2(P_4)(g_{m-8}(x) + 2xh(P_3)g_{m-13}(x) + 3(xh(P_3))^2g_{m-18}(x)) + \\ & 4(xh(P_3))^3h(P_4)g_{m-19}(x) + (xh(P_3))^4g_{m-20}(x) \\ = & \cdots \\ = & h^2(P_4)\sum_{s=1}^{k-2}s(xh(P_3))^{s-1}g_{m-5s-3}(x) + (k-1)(xh(P_3))^{k-2}h(P_4)g_{m+1-(5k-1)}(x) + \\ & (xh(P_3))^{k-1}h(P_4)g_{m-(5k-1)}(x). \end{split}$$

According to the assumption and m = 5k + 4, we arrive at, by (3.1), that

$$h^{2}(P_{4}) \mid (k-1)(xh(P_{3}))^{k-2}h(P_{4})g_{10}(x) + (xh(P_{3}))^{k-1}h(P_{4})g_{9}(x)$$

that is

$$h(P_4) \mid (k-1)g_{10}(x) + x^3h(P_3)(x^3 + 6x^2 + 7x + 1).$$

By direct calculation, we obtain that k = 0, which contradicts  $k \ge 1$ .

**Definition 3.1** ([14]) Let G be a graph with p vertex and q edges. The fourth character of a

graph G is defined as follows:

$$R_4(G) = R_2(G) + p - q.$$

From Lemmas 2.1 and 2.2, we obtain the following two lemmas:

**Lemma 3.2** ([14]) Let graph G have k components  $G_1, G_2, \ldots, G_k$ . Then

$$R_4(G) = \sum_{i=1}^k R_4(G_k).$$

**Lemma 3.3** ([14]) Let graph G and H satisfy that h(G) = h(H) or  $h_1(G) = h_1(H)$ . Then

$$R_4(G) = R_4(H).$$

From Definitions 3.1 and 2.1, we have the following lemmas:

**Lemma 3.4** ([14]) (1)  $R_4(C_n) = 0$  for  $n \ge 4$ ;  $R_4(C_3) = -2$ ;  $R_4(K_1) = 1$ .

- (2)  $R_4(B_{r,1,1}) = 3$  for  $r \ge 1$ ;  $R_4(B_{r,1,t}) = 4$  for r, t > 1.
- (3)  $R_4(F_6) = 4$ ;  $R_4(F_n) = 3$  for  $n \ge 7$ ;  $R_4(K_4^-) = 2$ .
- (4)  $R_4(D_4) = 0$ ;  $R_4(D_n) = 1$  for  $n \ge 5$ ;  $R_4(T_{1,1,1}) = 0$ .
- (5)  $R_4(T_{1,1,l_3}) = 1$ ,  $R_4(T_{1,l_2,l_3}) = 2$ ;  $R_4(T_{l_1,l_2,l_3}) = 3$  for  $l_3 \ge l_2 \ge l_1 \ge 2$ .
- (6)  $R_4(C_r(P_2)) = 3$  for  $r \ge 4$ ;  $R_4(C_4(P_3)) = R_4(Q_{1,2}) = 4$ .
- (7)  $R_4(P_2) = 0$ ;  $R_4(P_n) = -1$  for  $n \ge 3$ .

**Lemma 3.5** ([12]) Let graph  $G \in \xi \setminus \{F_n, U_{r,s,t,a,b}, K_4^-\}$ . Then

- (1)  $R_4(G) = 3$  if and only if  $G \in \{C_{n-1}(P_2) | n \ge 5\} \cup \{Q_{1,1}\} \cup \{B_{n-5,1,1} | n \ge 7\}$ .
- (2)  $R_4(G) = 4$  if and only if  $G \in \{C_r(P_s) | r \ge 4, s \ge 3\} \cup \{Q_{1,n-4} | n \ge 6\} \cup \{B_{r,1,t}, B_{1,1,1} | r, t \ge 2\}$ .
  - (3)  $R_4(G) = 5$  if and only if  $G \in \{Q_{r,s}|r,s \ge 2\} \cup \{B_{1,1,t},B_{r,s,t}|r,s,t \ge 2\}$ .
  - (4)  $R_4(G) = 6$  if and only if  $G \in \{B_{1,s,t} | s, t \ge 2\}$ .

Corollary 3.1 Let graph  $G \in \xi \setminus \{F_n, U_{r,s,t,a,b}, K_4^-\}$ . Then  $R_4(G) \geq 3$ .

#### 3.2 The smallest real roots of adjoint polynomials of graphs

An internal  $x_1x_k$ -path of a graph G is path  $x_1x_2x_3\cdots x_k$  (possibly  $x_1=x_k$ ) of G such that  $d(x_1)$  and  $d(x_k)$  are at least 3 and  $d(x_2)=d(x_3)=\cdots=d(x_{k-1})=2$  (unless k=2).

**Lemma 3.6** ([18]) Let T be a tree. If uv is an internal path of T and  $T \ncong U(1,1,t,1,1)$  for  $t \ge 1$ , then  $\beta(T) < \beta(T_{xy})$ , where  $\beta(T_{xy})$  is the graph obtained from T by inserting a new vertex on the edge xy of T.

**Lemma 3.7** ([14, 15, 18]) (1) For  $n \ge 5$ ,  $m \ge 4$ ,  $\beta(C_n(P_2)) < \beta(C_{n-1}(P_2)) \le \beta(D_m) \le \beta(C_m)$ .

- (2) For  $n \ge 6$ ,  $m \ge 6$ ,  $\beta(F_n) = \beta(B_{m-5,1,1})$  if and only if n = 2k + 1 and m = k + 2.
- (3) For  $n \ge 4$ ,  $m \ge 6$ ,  $\beta(F_m) < \beta(F_{m-1}) < \beta(D_n)$  and  $\beta(B_{m-5,1,1}) < \beta(B_{m-4,1,1}) < \beta(D_n)$ .
- (4) For  $n \ge 7$ ,  $m \ge 6$ ,  $\beta(B_{n-6,1,2}) = \beta(F_m)$  if and only if m = n 1.
- (5) For  $n \ge 7$ ,  $m \ge 6$ ,  $\beta(B_{n-6,1,2}) < \beta(D_m)$ ;  $\beta(B_{n-7,1,3}) < \beta(D_m)$ .

(6) For  $n \ge 8$ ,  $\beta(B_{n-7,1,3}) = \beta(Q_{1,2}) = \beta(C_4(P_3))$  if and only if n = 13.

**Lemma 3.8** ([13,14]) (1)  $\beta(B_{1,1,4}) = \beta(C_8(P_2)), \beta(B_{1,1,4}) = \beta(\psi_5^1), \beta(B_{1,1,4}) = \beta(\psi_5^2).$ 

- (2)  $\beta(B_{8,1,4}) = \beta(Q_{2,4}), \ \beta(B_{1,1,4}) = \beta(Q(1,2)) = \beta(C_4(P_3)).$
- (3) For  $r, t \ge 1$ ,  $\beta(B_{r,1,t}) < \beta(B_{r+1,1,t})$ .
- (4)  $\beta(T_{1,3,6}) = \beta(C_5(P_2)), \beta(T_{1,3,11}) = \beta(B_{8,1,2}).$
- (5) For  $r, t \ge 1$ ,  $\beta(U_{1,2,r,1,t}) = \beta(B_{r,1,t})$  and  $\beta(B_{t,1,2}) = \beta(F_{t+5})$ .

**Theorem 3.4** (1) For  $m \geq 11$ ,  $n \geq 19$ ,  $\beta(B_{1,1,4}) < \beta(B_{2,1,4}) < \beta(B_{3,1,4}) < \beta(B_{4,1,4}) < \beta(B_{5,1,4}) < \beta(B_{6,1,4}) < \beta(C_m(P_2)) < \beta(B_{7,1,4}) < \beta(C_{10}(P_2)) < \beta(C_9(P_2)) < \beta(C_8(P_2)) = \beta(B_{8,1,4}) = \beta(B_{6,1,3}) < \beta(B_{9,1,4}) < \beta(B_{10,1,4}) < \beta(C_7(P_2)) < \beta(B_{11,1,4}) < \beta(C_6(P_2)) < \beta(B_{n-8,1,4}) < \beta(C_5(P_2)) < \beta(C_4(P_2)).$ 

- (2)  $m \ge 11$ ,  $n \ge 19$ ,  $\beta(B_{1,1,4}) < \beta(B_{2,1,4}) = \beta(F_6) < \beta(B_{3,1,4}) < \beta(F_7) < \beta(B_{4,1,4}) < \beta(B_{5,1,4}) < \beta(F_8) < \beta(B_{6,1,4}) < \beta(B_{7,1,4}) < \beta(F_9) = \beta(B_{8,1,4}) < \beta(B_{9,1,4}) < \beta(B_{10,1,4}) < \beta(B_{11,1,4}) < \beta(B_{n-8,1,4}) < \beta(F_{m-1}) = \beta(B_{m-6,1,2}).$ 
  - (3) For  $n \ge m$ ,  $t \ge 4$ ,  $\beta(B_{m-t-4,1,t}) < \beta(B_{n-8,1,4})$ .
  - (4) For  $n \geq 9$ ,  $m \geq 4$ ,  $\beta(B_{n-8,1,4}) < \beta(D_m)$ .
  - (5) For  $n \ge 9$ ,  $\beta(Q(1,2)) = \beta(C_4(P_3)) = \beta(B_{n-8,1,4})$  if and only if n = 12.
  - (6) For  $n \ge 9$ ,  $m \ge 6$ ,  $\beta(B_{n-8,1,4}) = \beta(B_{m-5,1,1})$  if and only if m = 6, n = 16.
- (7) For  $n \ge 9$ ,  $m \ge 7$ ,  $\beta(B_{m-6,1,2}) = \beta(B_{n-8,1,4})$  if and only if m = 7, n = 10 or m = 10, n = 16.
  - (8) For  $n \ge 9$ ,  $m \ge 8$ ,  $\beta(B_{m-7,1,3}) = \beta(B_{m-8,1,4})$  if and only if m = 13, n = 16.
- **Proof** (1) For  $n \ge 19$ , it is obvious that  $T_{1,3,6}$  is a proper subgraph of  $B_{n-8,1,4}$ . From Lemma 2.8 and (4) of Lemma 3.8, it follows that  $\beta(B_{n-8,1,4}) < \beta(T_{1,3,6}) = \beta(C_5(P_2))$ . By (1) of Lemma 3.8 and (1) of Lemma 3.7, the result holds.
  - (2) Using software Mathematica and by calculation, we have that

 $\beta(B_{1,1,4}) = -4.49086 < \beta(B_{2,1,4}) = \beta(B_{1,1,2}) = \beta(F_6) = -4.39026 < \beta(B_{3,1,4}) = -4.32931 < \beta(F_7) = -4.30278 < \beta(B_{4,1,4}) = -4.28896 < \beta(B_{5,1,4}) = -4.26076 < \beta(F_8) = \beta(B_{3,1,2}) = -4.24978 < \beta(B_{6,1,4}) = -4.24039 < \beta(B_{7,1,4}) = -4.22541 < \beta(F_9) = \beta(B_{8,1,4}) = \beta(B_{4,1,2}) = \beta(B_{6,1,3}) = -4.21432 < \beta(B_{9,1,4}) = -4.20612 < \beta(B_{10,1,4}) = -4.2001 < \beta(B_{11,1,4}) = -4.19576 < \beta(B_{n-8,1,4}) < \beta(F_{m-1}) = \beta(B_{m-6,1,2}).$  For  $n \geq 22$ , it follows, from Lemma 2.8 and (4) of Lemma 3.8, that  $\beta(B_{n-8,1,4}) < \beta(T_{1,3,11}) = \beta(B_{8,1,2}).$  From (5) of Lemma 3.8 and (4) of Lemma 3.7, the result holds.

- (3) Since  $n \ge m$  and  $t \ge 4$ , from (3) of Lemma 3.8 and Lemma 2.8, we have that  $\beta(B_{m-t-4,1,t}) < \beta(B_{n-t-4,1,t}) < \beta(B_{n-8,1,t}) < \beta(B_{n-8,1,4})$ .
  - (4) From (2) of the theorem and (3) of Lemma 3.7, the result evidently holds.
  - (5) Applying (2) of Lemma 3.8, we can get the result.
  - (6) From (2) of Lemma 3.7 and (2) of the theorem, the result evidently holds.
  - (7) Using (4) of Lemma 3.7 and (2) of the theorem easily yields the result.
  - (8) By (6) of Lemma 3.7 and (5) of the theorem, the result evidently holds.

# 4. The chromaticity of graph $\overline{B_{n-8,1,4}}$

Corollary 4.1 ([16]) For  $n \geq 4$ ,  $D_n$  is adjointly unique if and only if  $n \neq 4, 8$ .

**Theorem 4.1** Let G be a graph such that  $G \sim^h B_{n-8,1,4}$ , where  $n \geq 9$ . Then G contains at most one component whose first character is 1, furthermore, it is  $P_4$  or  $C_3$ .

**Proof** Let  $G_1$  be one of the components of G such that  $R_1(G) = 1$ . From Lemma 2.6 and Theorem 3.3, it follows that  $h(G_1)|h(B_{n-8,1,4})$  if and only if  $G_1 \cong P_4$  and n = 5k + 4. According to (1) of Lemma 2.5, we obtain the following equality:

$$h(B_{5k+4,1,4}) = h(P_5)h(B_{5(k-1)+4,1,4}) + xh(P_4)h(B_{5(k-1)+3,1,4}).$$

Note that  $h(P_4) \mid h(B_{5(k-1)+4,1,4})$  implies that  $h(P_4) \mid h(B_{5k+12,1,4})$ . From this together with Theorem 3.3, the theorem holds.

**Lemma 4.2** Let G be a graph such that  $G \sim^h B_{n-8,1,4}$ , where  $n \geq 9$ . Then G does not contain  $K_4$  as one of its components.

**Proof** Suppose that  $h(K_4^-)|h(B_{n-8,1,4})$ , from Lemma 2.3, we know that  $h(K_4^-) = x^2(x+1)(x+4)$ , which implies that  $h_1(P_2)|h(B_{n-8,1,4})$ . It contradicts to Theorem 3.2.

**Theorem 4.2** Let G be a graph such that  $G \sim^h B_{n-8,1,4}$ , where  $n \geq 9$ . Then

- (1) If n = 9, then  $[G]_h = \{Q(2,4), B_{1,1,4}, P_4 \cup \psi_5^1, P_4 \cup \psi_5^2\};$
- (2) If n = 16, then  $[G]_h = \{C_8(P_2) \cup D_7, Q(1,2) \cup C_6, C_4(P_3) \cup C_6\}$ ;
- (3) If  $n \neq 9, 16$ , then  $[G]_h = \{B_{n-8,1,4}\}.$

**Proof** (1) When n = 9, let graph G satisfy  $h(G) = h(B_{1,1,4})$ . From Lemmas 2.1, 2.2 and 2.6, we obtain that p(G) = q(G) = 9 and  $R_1(G) = -1$ . By direct calculation, we arrive at  $h(G) = h(B_{1,1,4}) = x^4(x^5 + 9x^4 + 26x^3 + 28x^2 + 10x + 1)$ . We consider the following cases:

Case 1 G is a connected graph.

From  $R_4(G) = R_4(B_{1,1,4}) = 5$  and (3) of Lemma 3.5, it follows that  $G \in \{Q(2,4), Q(3,3), B_{1,1,4}, B_{2,2,2}\}$ . By calculation, we have that  $Q(2,4), B_{1,1,4} \in [G]_h$ .

Case 2 G is not a connected graph.

By calculation, we have  $h(G) = h(B_{1,1,4}) = x^4 f_1(x) f_2(x)$ , where  $f_1(x) = x^2 + 3x + 1$  and  $f_2(x) = x^3 + 6x^2 + 7x + 1$ . Thus,  $R_1(f_1(x)) = 1$ . Noting that  $b_1(f_1(x)) = 3$ , we obtain that  $f_1(x) = h_1(P_4)$  or  $f_1(x) = h_1(C_3)$  if  $f_1(x)$  is a factor of adjoint polynomial of some graph.

**Subcase 2.1** Neither  $P_4$  nor  $C_3$  is a component of G.

Since G is not connected, the expression of G is  $G = aK_1 \cup G_1$ , where  $a \geq 1$  and  $G_1$  is connected. It is not difficult to obtain that  $q(G_1) - p(G_1) \geq 1$ . We conclude, from Lemma 2.7, that  $q(G_1) - p(G_1) \leq 1$ . Thus,  $q(G_1) - p(G_1) = 1$ . From Lemma 2.6, it follows that  $G_1 \cong F_8$  and  $G = K_1 \cup F_8$ . By calculation, we arrive at  $h(G) = h(K_1 \cup F_8) \neq h(B_{1,1,4})$ .

**Subcase 2.2** Either  $P_4$  or  $C_3$  is a component of G.

**Subcase 2.2.1**  $P_4$  is a component of G.

Let  $G = P_4 \cup G_1$ , where  $h_1(G_1) = x^3 + 6x^2 + 7x + 1$ . The following subcases are taken into account:

**Subcase 2.2.1.1**  $G_1$  is a connected graph.

Noting that  $R_1(G_1) = -2$  and  $q(G_1) = p(G_1) + 1 = 6$ , we have from Lemma 2.6, that  $G_1 \in \psi$ . Since the order of  $G_1$  is 5 and  $p(\psi_p^3) \ge 6$ ,  $p(\psi_p^4) \ge 6$ ,  $p(\psi_p^5) \ge 6$ , we have  $G_1 \in \{\psi_5^1, \psi_5^2, \psi_5^6\}$ . By calculation,  $P_4 \cup \psi_5^1, P_4 \cup \psi_5^2 \in [G]_h$ .

**Subcase 2.2.1.2**  $G_1$  is not a connected graph.

It follows that  $G = P_4 \cup aK_1 \cup G_1$ , where  $a \ge 1$  and  $h_1(G_1) = x^3 + 6x^2 + 7x + 1$ . It is not difficult to get that  $q(G_1) - p(G_1) \ge 2$ . Remarking that  $R_1(G_1) = -2$ , we obtain, from Lemma 2.7, that  $q(G_1) - p(G_1) \le 2$ , which results in  $q(G_1) - p(G_1) = 2$ . Thus we conclude, from Lemma 2.6, that  $G_1 \cong K_4^-$  and a = 1. By calculation,  $G = P_4 \cup K_1 \cup K_4^- \notin [G]_h$ .

**Subcase 2.2.2**  $C_3$  is a component of G.

Let  $G = C_3 \cup G_1$ , where  $h_1(G_1) = x^3 + 6x^2 + 7x + 1$ . We have the following subcases to be considered.

Subcase 2.2.2.1  $G_1$  is a connected graph.

Note that  $R_1(G_1) = -2$  and  $q(G_1) = p(G_1) = 6$ . It contradicts to Lemma 2.6.

Subcase 2.2.2.2  $G_1$  is not a connected graph.

It follows that  $G = C_3 \cup aK_1 \cup G_1$ , where  $a \ge 1$  and  $h_1(G_1) = x^3 + 6x^2 + 7x + 1$ . It is not difficult to get that  $q(G_1) - p(G_1) \ge 1$ . Remarking that  $R_1(G_1) = -2$ , we conclude, from Lemma 2.6, that  $1 \le q(G_1) - p(G_1) \le 2$ . If  $q(G_1) - p(G_1) = 1$ , or  $q(G_1) - p(G_1) = 2$ . Then we can turn to Subcase 2.2.1 for the same contradiction.

(2) When n = 10, let G be a graph such that  $h(G) = h(B_{2,1,4})$ , which brings p(G) = q(G) = 10 and  $R_1(G) = -1$ . We distinguish the following cases:

Case 1 G is a connected graph.

From  $R_4(G) = R_4(B_{2,1,4}) = 4$  and (2) of Lemma 3.5, it follows that  $G \in \{C_4(P_7), C_5(P_6), C_6(P_5), C_7(P_4), C_8(P_3), Q_{1,6}, B_{2,1,4}\}$ . By calculation, we have that  $h(G) = h(B_{2,1,4})$  if and only if  $G \cong B_{2,1,4}$ , which implies that  $B_{2,1,4}$  is adjoint uniqueness.

Case 2 G is not a connected graph.

By calculation, we obtain that  $h(B_{2,1,4}) = x^5 f_1(x) f_2(x)$ , where  $f_1(x) = x + 3$  and  $f_2(x) = x^4 + 7x^3 + 13x^2 + 7x + 1$ . Remarking that  $R_1(f_1(x)) = 1$  and  $b_1(f_1(x)) = 2$ . Since  $f_1(x)$  is not a factor of adjoint polynomial of some graph G with  $R_1(G) = 1$ , it means that  $B_{2,1,4}$  is adjoint uniqueness.

(3) When n = 11, using the similar method to that of (2), we can show that  $B_{3,1,4}$  is adjoint uniqueness. The details of the proof are omitted.

(4) When  $n \geq 12$ , let  $G = \bigcup_{i=1}^{t} G_i$ . From Lemma 2.1, we have that

$$h(G) = \prod_{i=1}^{t} h(G_i) = h(B_{n-8,1,4}), \tag{4.1}$$

which results in  $\beta(G) = \beta(B_{n-8,1,4}) \in [-2 - \sqrt{5}, -4)$  by Lemma 2.10. Let  $s_i$  denote the number of components  $G_i$  such that  $R(G_i) = -i$ , where  $i \ge -1$ . From Theorem 4.1, Lemmas 2.1 and 2.2, it follows that  $0 \le s_{-1} \le 1$  and

$$R_1(G) = \sum_{i=1}^t R_1(G_i) = -1, q(G) = p(G)$$
(4.2)

which results in

$$s_{-1} = s_1 + 2s_2 - 1. (4.3)$$

We distinguish the following cases by  $0 \le s_{-1} \le 1$ :

#### Case 1 $s_{-1} = 0$ .

It follows, from (4.3), that  $s_2 = 0$ ,  $s_1 = 1$  with  $R_1(G_1) = -1$ . Without loss of generality, we set

$$G = G_1 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup fD_4 \cup aK_1 \cup bT_{1,1,1} \cup (\cup_{T \in T_0} T_{l_1,l_2,l_3}), \tag{4.4}$$

where  $R_1(G_1) = -1$ ,  $\bigcup_{T \in \mathcal{T}_0} T_{l_1, l_2, l_3} = (\bigcup_{T \in \mathcal{T}_1} T_{1, 1, l_3}) \cup (\bigcup_{T \in \mathcal{T}_2} T_{1, l_2, l_3}) \cup (\bigcup_{T \in \mathcal{T}_3} T_{l_1, l_2, l_3})$ ,  $\mathcal{T}_1 = \{T_{1, 1, l_3} | l_3 \ge 2\}$ ,  $\mathcal{T}_2 = \{T_{1, l_2, l_3} | l_3 \ge l_2 \ge 2\}$ ,  $\mathcal{T}_3 = \{T_{l_1, l_2, l_3} | l_3 \ge l_2 \ge l_1 \ge 2\}$ ,  $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3$ , the tree  $T_{l_1, l_2, l_3}$  is denoted by  $\mathcal{T}$  for short,  $A = \{i | i \ge 4\}$  and  $B = \{j | j \ge 5\}$ .

From Lemmas 3.2, 3.3 and 3.4, we arrive at

$$R_4(G) = R_4(B_{n-8,1,4}) = 4 = R_4(G_1) + |B| + a + |\mathcal{T}_1| + 2|\mathcal{T}_2| + 3|\mathcal{T}_3|. \tag{4.5}$$

From (1) of Lemma 2.7, it follows that  $q(G_1) - p(G_1) \le 1$ . Combining this with (4.2), we know that  $0 \le q(G_1) - p(G_1) \le 1$ . Thus, we consider the following subcases:

# **Subcase 1.1** $q(G_1) = p(G_1) + 1$ .

From Lemmas 2.6 and 4.2, we have  $G_1 \cong F_m$ . Recalling that q(G) = p(G), we obtain the following equality:

$$a + b + |\mathcal{T}_1| + |\mathcal{T}_2| + |\mathcal{T}_3| = 1.$$
 (4.6)

If  $m \ge 9$ , from (3) of Lemma 3.4, (4.5) and (4.6), we arrive at  $|B| + a + |\mathcal{T}_1| + 2|\mathcal{T}_2| + 3|\mathcal{T}_3| = 1$ , which leads to  $|B| + a + |\mathcal{T}_1| = 1$ ,  $|\mathcal{T}_2| = |\mathcal{T}_3| = 0$  and  $a + b + |\mathcal{T}_1| = 1$ . Then we have the following three cases to be considered:

If |B| = 1, then  $a = |\mathcal{T}_1| = 0$  and b = 1, which results in

$$G = F_m \cup (\cup_{i \in A} C_i) \cup D_i \cup fD_4 \cup T_{1,1,1}.$$

If a = 1, then  $|B| = |\mathcal{T}_1| = b = 0$ , which leads to

$$G = F_m \cup (\cup_{i \in A} C_i) \cup fD_4 \cup K_1.$$

If  $|\mathcal{T}_1| = 1$ , then |B| = a = b = 0, which brings about

$$G = F_m \cup (\cup_{i \in A} C_i) \cup fD_4 \cup T_{1,1,l_3}.$$

From the above arguments, we have, from Lemmas 2.9 and 2.10, that  $\beta(G) = \beta(F_m)$ . From (2) of Theorem 3.4 and  $\beta(G) = \beta(B_{n-8,1,4})$ , it follows that  $\beta(F_m) = \beta(B_{n-8,1,4})$  if and only if m = 6, n = 10, or m = 9, n = 16. Note that  $p(G) = p(B_{n-8,1,4}) = n$ , so we only have  $G = F_9 \cup C_6 \cup K_1$ , or  $G = F_9 \cup T_{1,1,4}$ , which contradicts to  $h(G) = h(B_{8,1,4})$  by direct calculation.

#### **Subcase 1.2** $q(G_1) = p(G_1)$ .

Recalling that q(G) = p(G), we arrive at, from (4.4),  $a = b = |\mathcal{T}_1| = |\mathcal{T}_2| = |\mathcal{T}_3| = 0$ , which leads to

$$G = G_1 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup fD_4. \tag{4.7}$$

From (3) of Lemmas 2.6 and 2.10, it follows that

$$G_1 \in \{B_{m-t-4,1,t}, C_r(P_2), Q(1,2), C_4(P_3)\},$$

$$(4.8)$$

where m-t-4,t and r satisfy the conditions of Lemma 2.10.

We distinguish the following subcases by (4.8):

# **Subcase 1.2.1** $G_1 \cong C_r(P_2)$ .

From Lemmas 2.9, 2.10 and (1) of Lemma 3.7, it follows that  $\beta(G) = \beta(C_r(P_2))$ . Since  $\beta(G) = \beta(B_{n-8,1,4})$ , we have, from (1) of Theorem 3.4, that  $\beta(G) = \beta(C_r(P_2))$  if and only if p(G) = n = 16, r = 8. From (4.7) and p(G) = 16, we only have that  $G = C_8(P_2) \cup C_7$  or  $G = C_8(P_2) \cup D_7$ . By calculation, we arrive at  $C_8(P_2) \cup D_7 \in [G]_h$ .

# **Subcase 1.2.2** $G_1 \cong Q(1,2)$ or $G_1 \cong C_4(P_3)$ .

From (4) and (5) of Theorem 3.4 and Lemma 2.9, we have that  $\beta(G) = \beta(G_1) = \beta(B_{n-8,1,4})$  if and only if p(G) = n = 12, which brings about  $G_1 \in \mathcal{G}_1 = \{Q(1,2) \cup C_6, C_4(P_3) \cup C_6\}$  by (4.7). By calculation, we have  $\mathcal{G}_1 \subseteq [G]_h$ .

#### Subcase 1.2.3 $G_1 \cong B_{m-t-4,1,t}$ .

We distinguish the following subcases:

# Subcase 1.2.3.1 t = 1.

From (3) of Lemma 3.7 and Lemma 2.9, we obtain that  $\beta(G) = \beta(B_{m-5,1,1})$ . According to (6) of Theorem 3.4,  $\beta(B_{m-5,1,1}) = \beta(B_{n-8,1,4})$  if and only if m = 6, n = 16, which leads to  $G \in \mathscr{G}_2 = \{B_{1,1,1} \cup C_{10}, B_{1,1,1} \cup D_{10}, B_{1,1,1} \cup C_4 \cup C_6, B_{1,1,1} \cup D_4 \cup D_6, B_{1,1,1} \cup C_4 \cup D_6, B_{1,1,1} \cup D_4 \cup C_6\}$  from (4.7). By direct calculation,  $\mathscr{G}_2 \nsubseteq [G]_h$ .

# Subcase 1.2.3.2 t = 2.

From (3) of Lemma 3.7 and Lemma 2.9, (7) of Theorem 3.4, it follows that  $\beta(G) = \beta(B_{m-6,1,2}) = \beta(B_{m-8,1,4})$  if and only if m=7, n=10 or m=10, n=16, which leads to  $G \in \{B_{4,1,2} \cup C_6, B_{4,1,2} \cup D_6 \text{ from (4.7)}$ . By calculation, we know that it contradicts to  $h(G) = h(B_{8,1,4})$ .

#### Subcase 1.2.3.3 t = 3.

From (8) of Theorem 3.4, it follows that  $\beta(G) = \beta(B_{m-7,1,3}) = \beta(B_{n-8,1,4})$  if and only if m = 13, n = 16, which contradicts  $h(G) = h(B_{8,1,4})$ .

#### Subcase 1.2.3.4 $t \ge 5$ .

From Lemma 2.9, (3), (4) of Theorem 3.4 and (3) of Theorem 3.4, we arrive at  $\beta(G) = \beta(B_{m-t-4,1,t}) < \beta(B_{n-8,1,4})$ , which contradicts to  $\beta(G) = \beta(B_{n-8,1,4})$  by direct calculation.

As analyzed above, we obtain that t = 4. From (4) of Theorem 3.4 and Lemma 2.9, it follows that  $\beta(G) = \beta(B_{m-8,1,4})$ , together with  $\beta(G) = \beta(B_{n-8,1,4})$  and (3) of Lemma 3.8, we arrive at m = n. Hence  $G \cong B_{n-8,1,4}$ .

#### Case 2 $s_{-1} = 1$ .

It follows, from (4.3), that  $s_1 + 2s_2 = 2$ , which leads to

$$s_2 = 1, s_1 = 0, \text{ or } s_2 = 0, s_1 = 2.$$
 (4.9)

We distinguish the following cases by (4.9):

#### **Subcase 2.1** $s_2 = 1, s_1 = 0.$

Without loss of generality, let  $G_1$  be the component such that  $R_1(G_1) = -2$ . From Corollary 2.1, we know that  $\beta(G_1) < -2 - \sqrt{5}$ , which contradicts to  $\beta(B_{n-8,1,4}) \in [-2 - \sqrt{5}, -4)$ .

#### **Subcase 2.2** $s_2 = 0, s_1 = 2.$

Without loss of generality, let

$$G = G_1 \cup G_2 \cup G_3 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup fD_4 \cup aK_1 \cup bT_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}), \tag{4.10}$$

where  $G_1 \in \{P_4, C_3\}$ ,  $R_1(G_2) = R_1(G_3) = -1$ ,  $\bigcup_{T \in \mathcal{T}_0} T_{l_1, l_2, l_3} = (\bigcup_{T \in \mathcal{T}_1} T_{1, 1, l_3}) \cup (\bigcup_{T \in \mathcal{T}_2} T_{1, l_2, l_3}) \cup (\bigcup_{T \in \mathcal{T}_3} T_{l_1, l_2, l_3})$ ,  $\mathcal{T}_1 = \{T_{1, 1, l_3} | l_3 \ge 2\}$ ,  $\mathcal{T}_2 = \{T_{1, l_2, l_3} | l_3 \ge l_2 \ge 2\}$ ,  $\mathcal{T}_3 = \{T_{l_1, l_2, l_3} | l_3 \ge l_2 \ge l_1 \ge 2\}$ ,  $\mathcal{T}_0 = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3$ , the tree  $T_{l_1, l_2, l_3}$  is denoted by T for short,  $A = \{i | i \ge 4\}$  and  $B = \{j | j \ge 5\}$ .

From Lemmas 3.2, 3.3 and 3.4, we arrive at

$$R_4(G) = R_4(B_{n-8,1,4}) = 4 = \sum_{i=1}^{3} R_4(G_i) + |B| + a + |\mathcal{T}_1| + 2|\mathcal{T}_2| + 3|\mathcal{T}_3|.$$
 (4.11)

# Subcase 2.2.1 $G_1 \cong P_4$ .

In terms of Lemmas 2.6, 2.7, (4.2) and (4.10), we have that  $1 \leq \sum_{i=2}^{3} (q(G_i) - p(G_i)) \leq 2$ , which implies the following subcases:

**Subcase 2.2.1.1** 
$$q(G_2) - p(G_2) = 1$$
,  $q(G_3) - p(G_3) = 1$ .

From Lemmas 2.6, 4.2 and (4.10), it follows that  $G_i \cong F_m(i=2,3)$  and  $a+b+|\mathcal{T}_1|+|\mathcal{T}_2|+|\mathcal{T}_3|=1$ . Thus

if b = 0, then we obtain, from (4.11), that  $4 = -1 + 2R_4(F_m) + |B| + 1$ , which contradicts  $R_4(F_m) = 3$  by Lemma 3.4.

if b = 1, then we have, from (4.11), that  $4 = -1 + 2R_4(F_m) + |B|$ , which also contradicts to  $R_4(F_m) = 3$  by Lemma 3.4.

# **Subcase 2.2.1.2** $q(G_2) = p(G_2), q(G_2) - p(G_2) = 1.$

It is obvious that  $G_2 \in \xi$ ,  $G_3 \cong F_m$  and  $a = b = |\mathcal{T}_1| = |\mathcal{T}_2| = |\mathcal{T}_3| = 0$  by Lemmas 2.6, 4.2 and (4.10). From (4.11), we arrive at  $R_4(G_2) = 5 - R_4(F_m) - |B| \le 2 - |B| \le 2$ , which

contradicts  $G_2 \in \xi$  by Corollary 3.1.

Subcase 2.2.2  $G_1 \cong C_3$ .

From Lemmas 2.6, 2.7, (4.2) and (4.10), we get that  $0 \leq \sum_{i=2}^{3} (q(G_i) - p(G_i)) \leq 2$ , which brings about the following subcases:

Subcase 2.2.2.1  $\sum_{i=2}^{3} (q(G_i) - p(G_i)) = 2$ .

Applying Lemmas 2.6, 4.2, and (4.10), we have that  $G_i \cong F_m(i=2,3)$  and  $a+b+|\mathcal{T}_1|+|\mathcal{T}_2|+|\mathcal{T}_3|=2$ . From these together with (4.11), we know that

If b = 0, then  $4 = -2 + 2R_4(F_m) + |B| + 2$ , which contradicts to  $R_4(F_m) = 3$  by Lemma 3.4.

If b = 1, then  $4 = -2 + 2R_4(F_m) + |B| + 1$ , which also contradicts to  $R_4(F_m) = 3$  by Lemma 3.4.

If b=2, then we have, from (4.11), that  $4=-2+2R_4(F_m)+|B|$ , which results in

$$G = C_3 \cup F_m \cup F_m \cup (\cup_{i \in A} C_i) \cup fD_4 \cup 2T_{1,1,1}.$$

In terms of Lemmas 2.9 and 2.10, we have that  $\beta(G) = \min\{\beta(F_{m_1}), \beta(F_{m_2})\} = \beta(F_{m_1})$  if  $m_1 \geq m_2$ . By (2) of Theorem 3.4, it follows that  $\beta(G) = \beta(F_{m_1}) = \beta(B_{n-8,1,4})$  if and only if  $m_1 = 6$ , n = 10 or  $m_1 = 9$ , n = 16. This contradicts  $p(G) = p(B_{n-8,1,4})$ .

Subcase 2.2.2.  $\sum_{i=2}^{3} (q(G_i) - p(G_i)) = 1.$ 

From Lemmas 2.6, 4.2 and (4.10), it follows that  $G_2 \in \xi$ ,  $G_3 \cong F_m$  and  $a+b+|\mathcal{T}_1|+|\mathcal{T}_2|+|\mathcal{T}_3|=1$ . Thus

if b = 0, then we obtain, from (4.11), that  $4 = -2 + R_4(G_2) + R_4(F_m) + |B| + 1$ , which results in  $R_4(G_2) \le 2 - |B| \le 2$ . It contradicts  $G_2 \in \xi$ .

if b = 1, then we have, from (4.11), that  $4 = -2 + R_4(G_2) + R_4(F_m) + |B|$ , which leads to  $R_4(G_2) = 3$  and |B| = 0. Thus

$$G = C_3 \cup G_2 \cup F_m \cup (\cup_{i \in A} C_i) \cup fD_4 \cup T_{1,1,1}$$

In terms of (1) of Lemma 3.5, we have that  $G_2 \in \{C_{n-1}(P_2)\} \cup \{Q_{1,1}\} \cup \{B_{n-5,1,1}\}$ .

If  $G_2 \cong C_r(P_2)$ , then we obtain, from (1) of Theorem 3.4, that  $\beta(G) = \beta(B_{n-8,1,4}) = \beta(C_r(P_2)) = \beta(F_m)$  if and only if r = 8, m = 9, n = 16. It contradicts to p(G) = 16.

If  $G_2 \cong B_{s,1,1}$ , then we get, from (6) of Theorem 3.4, that  $\beta(G) = \beta(B_{n-8,1,4}) = \beta(B_{s,1,1}) = \beta(F_m)$  if and only if s = 1, m = 9, n = 16. This contradicts to p(G) = 16.

If  $G_2 \cong Q_{1,1}$ , then from (2) of Theorem 3.4 we arrive at  $\beta(G) = \beta(B_{n-8,1,4}) = \beta(F_m)$  if and only if m = 9, n = 16 or m = 6, n = 10. It also contradicts to p(G) = 16.

Subcase 2.2.2.3  $\sum_{i=2}^{3} (q(G_i) - p(G_i)) = 0$ .

It is easy to see that  $G_i \in \xi(i=2,3)$  and  $a+b+|\mathcal{T}_1|+|\mathcal{T}_2|+|\mathcal{T}_3|=1$  by Lemmas 2.6, 4.2 and (4.10). From (4.11), it follows that  $4=-2+R_4(G_2)+R_4(G_3)+|B|$ . Combining with Corollary 3.1, we have |B|=0 and  $R_4(G_i)=3(i=2,3)$ . Then

$$G = C_3 \cup G_2 \cup G_3 \cup F_m \cup (\cup_{i \in A} C_i) \cup fD_4.$$

In terms of Lemma 3.5, we have that  $G_i \in \{C_{n-1}(P_2)\} \cup \{Q_{1,1}\} \cup \{B_{n-5,1,1}\} (i=2,3)$ . With the same methods as that of Subcase 2.2.2.2, we can get a contradiction.

This completes the proof of the theorem.  $\Box$ 

Corollary 4.1 If  $n \ge 9$ , graph  $B_{n-8,1,4}$  is adjoint uniqueness if and only if  $n \ne 9, 16$ .

**Corollary 4.2** If  $n \geq 9$ , the chromatic equivalence class of  $\overline{B_{n-8,1,4}}$  only contains the complements of graphs that are in Theorem 4.2.

Corollary 4.3 If  $n \geq 9$ , graph  $\overline{B_{n-8,1,4}}$  is chromatic uniqueness if and only if  $n \neq 9, 16$ .

**Acknowledgements** We are grateful to the referees for their careful reading of the paper, and for their comments and suggestions, which are very helpful for improving the presentation of this paper.

#### References

- [1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
- [2] F. M. DONG, K. M. KOH, K. L. TEO, et al. Two invariants for adjoint equivalent graphs. Australasian J. Combin., 2002, 25: 133-143.
- [3] F. M. DONG, K. L. TEO, C. H. C. LITTLE, et al. Chromaticity of some families of dense graphs. Discrete Math., 2002, 258(1-3): 303–321.
- [4] K. M. KOH, K. L. TEO. The search for chromatically unique graphs. Graphs Combin., 1990, 6(3): 259-285.
- [5] K. M. KOH, K. L. TEO. The search for chromatically unique graphs (II). Discrete Math., 1997, 172(1-3): 59-78.
- [6] Ruying LIU, Lianchang ZHAO. A new method for proving chromatic uniqueness of graphs. Discrete Math., 1997, 171(1-3): 169–177.
- [7] Ruying LIU. Adjoint polynomials and chromatically unique graphs. Discrete Math., 1997, 172(1-3): 85-92.
- [8] Ruying LIU. Several results on adjoint polynomials of graphs. Qinghai Normal Univ. Nat. Sci. Ed., 1992, 1: 1-6.
- [9] Ruying LIU. On the irreducible graph. Neimonggol Univ. Nat. Sci. Ed., 1995, 26: 258–262.
- [10] Qingyan DU. The graph parameter  $\pi(G)$  and the classification of graphs according to it. Qinghai Normal Univ. (Natur. Sci.), 1993, 4: 29–33.
- [11] Bofeng HUO. Relations between three parameters A(G), R(G) and  $D_2(G)$ . Qinghai Normal Univ. Nat. Sci. Ed., 1998, 2: 1–6.
- [12] Haizhen REN, Ruying LIU. On the fourth coefficients of adjoint polynomials of some graphs. Pure Appl. Math. (Xi'an), 2003, 19(3): 213–218.
- [13] Jianshu MAO. Adjoint uniqueness of two kinds of tree. The Thesis for Master Degree, Qinghai Normal University, 2004.
- [14] Jianfeng WANG, Ruying LIU, Chengfu YE, et al. A complete solution to the adjoint equivalence class of graph B<sub>n-7,1,3</sub>. Discrete Math., 2008, 308(16): 3607–3623.
- [15] Jianfeng WANG, Qiongxiang HUANG, Chengfu YE, et al. The chromatic equivalence class of graph  $\overline{B}_{n-6,1,2}$ . Discuss. Math. Graph Theory, 2008, **28**(2): 189–218.
- [16] Chengfu YE. The roots of adjoint polynomial of the graphs containing triangles. Chinese Quart. J. Math., 2004, 19(3): 280–285.
- [17] R. C. READ, W. T. TUTTE. Chromatic Polynomials. Academic Press, New York, 1998.
- [18] Haixing ZHAO. Chromaticity and adjoint polynomials of graphs. The Thesis for Docter Degree (University of Twente), The Netherland, Wöhrmann Print Service, 2005.