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1. Introduction

All graphs considered here are finite and simple. For notations and terminology not defined

here, we refer to [1]. Let G be a graph and P (G; λ) be the chromatic polynomial of G. Two

graphs G and H are chromatically equivalent, denoted by G ∼ H , if P (G) = P (H). A graph G

is chromatically unique (or simply χ-unique) if G is isomorphic to H whenever G ∼ H .

A K4-homeomorph is a subdivision of the complete graph K4 which is denoted by K4(a, b, c, d,

e, f). K4(a, b, c, d, e, f) is a graph that the six edges of K4 are replaced by the six paths of

length a, b, c, d, e, f , respectively, as shown in Figure 1. The study of the chromaticity of K4-

homeomorphs which have girth 3, 4, 5, 6 or 7 has been settled (see [8] and the references

therein). When referring to the chromaticity of K4-homeomorphs with girth 8, there are 13 types

altogether, which are K4(1, 1, 6, d, e, f), K4(1, 1, c, 1, e, 5), K4(1, 1, c, 2, e, 4), K4(1, 2, c, 1, e, 4),

K4(1, 1, c, 3, e, 3), K4(1, 3, c, 1, e, 3), K4(2, 3, 3, d, e, f), K4(1, 2, 5, d′, e′, f ′), K4(1, 3, 4, d′, e′, f ′),

K4(1, 2, c, 2, e, 3), K4(1, 2, c, 3, e, 2), K4(2, 3, 3, d, e, f), K4(2, 2, 4, d, e, f), K4(2, 2, c, 2, e, 2). As

we know, only the chromaticity of the ones with at least 2 paths of length 1 have been obtained

among all those K4-homeomorphs with girth 8 (see [4, 7, 10]). In this article, we will discuss the

chromaticity of the others. If we write all the whole, the paper will be too long. Therefore we

only write one case K4(2, 3, 3, d, e, f) (as Figure 2) of them here and the details of the left cases

will be given in other papers.
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Figure 1 K4(a, b, c, d, e, f)
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Figure 2 K4(2, 3, 3, d, e, f)

2. Preparation

The following are some known results.

Proposition 2.1 ([2, 5]) Let G and H be chromatically equivalent. Then

(i) |V (G)| = |V (H)|, |E(G)| = |E(H)|;

(ii) G and H have the same girth and same number of cycles with the length equal to their

girth;

(iii) If G is a K4-homeomorph, then H is a K4-homeomorph as well;

(iv) If G and H are homeomorphic to K4, then both the minimum values of parameters and

the number of parameters equal to this minimum value of the graphs G and H coincide.

Proposition 2.2 ([6]) The graph K4(a, b, c, d, e, f) is chromatically unique if exactly four num-

bers among {a, b, c, d, e, f} are the same.

Proposition 2.3 ([7]) Suppose that G = K4(a, b, c, d, e, f) and H = K4(a
′, b′, c′, d′, e′, f ′). If

G ∼ H and {a, b, c, d, e, f} = {a′, b′, c′, d′, e′, f ′} as multisets, then G ∼= H .

Proposition 2.4 ([9]) G and H are both in the type of K4(2, 3, 3, d, e, f), then P (G) = P (H)

if and only if G ∼= H .

3. Main results and proofs

In the following, the girth of any graph we mentioned is 8.

Lemma 3.1 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(1, 2, 5, d′, e′, f ′),

then G ∼ H if G is isomorphic to K4(2, 3, 3, 1, 6, f), K4(2, 3, 3, 1, 4, 6), or K4(2, 3, 3, 1, 5, 6).

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼= K4(1, 2, 5, d′, e′, f ′).

Since the girth of G is 8, there is at most one 1 among d, e and f .

Let

Q(K4(a, b, c, d, e, f)) = − (x + 1)(xa + xb + xc + xd + xe + xf ) + xa+d + xb+f+

xc+e + xa+b+e + xb+c+d + xa+c+f + xd+e+f .
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Let x = 1− λ. Then it follows from [3] that the chromatic polynomial of K4(a, b, c, d, e, f) is

P (K4(a, b, c, d, e, f)) = (−1)n+1 x

(x − 1)2

[

(x2 + 3x + 2) + Q(K4(a, b, c, d, e, f)) − xn+1)
]

.

Hence P (G) = P (H) if and only if Q(G) = Q(H). We solve the equation Q(G) = Q(H) to get

all solutions. In the following, we will substitute h.p. for highest power and l.p. for lowest power.

Q(G) = − (x + 1)(x2 + 2x3 + xd + xe + xf ) + x2+d + x3+f + x3+e + x5+e+

x6+d + x5+f + xd+e+f ,

Q(H) = − (x + 1)(x + x2 + x5 + xd′

+ xe′

+ xf ′

) + x1+d′

+ x2+f ′

+ x3+e′

+ x5+e′

+

x7+d′

+ x6+f ′

+ xd′
+e′

+f ′

.

Considering the symmetry of the graph K4(2, 3, 3, d, e, f), we can assume e ≤ f . From Proposi-

tion 2.1, we have that min{d, e, f} = min{d, e} = 1, and

d + e + f = d′ + e′ + f ′. (1)

There are 2 cases to be considered.

Case 1 min{d, e} = d = 1. Here we have that Q(G) = Q(H) iff Q1(G) = Q1(H), where

Q1(G) = − x3 − 2x4 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x7 + x5+f ,

Q1(H) = − x5 − x6 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+f ′

+ x3+e′

+ x5+e′

+ x7+d′

+ x6+f ′

.

Since d + e ≥ 5, we have

f ≥ e ≥ 4. (2)

After comparing the powers in Q1(G) and Q1(H), we have the h.p. in Q1(G) is 5+f . Considering

the h.p. in Q1(G) and Q1(H), we know there are 3 cases to be considered.

Case 1.1 max{5 + e′, 7 + d′, 6 + f ′} = 5 + e′ = 5 + f . Now from the equation Q1(G) = Q1(H),

we obtain Q2(G) = Q2(H) where

Q2(G) = − x3 − 2x4 − xe − xe+1 + x3+e + x5+e + x7,

Q2(H) = − x5 − x6 − xd′

− xf ′

− xf ′
+1 + x2+f ′

+ x7+d′

+ x6+f ′

.

So d′ = 4, f ′ = 3 and e = 6. Thus K4(2, 3, 3, 1, 6, f) ∼ K4(1, 2, 5, 4, f, 3).

Case 1.2 max{5 + e′, 7 + d′, 6 + f ′} = 6 + f ′ = 5 + f . After simplifying Q1(G) and Q1(H), we

obtain Q3(G) = Q3(H) and

Q3(G) = −x3 − 2x4 − xe − xe+1 − xf+1 + x3+f + x3+e + x5+e + x7,

Q3(H) = −x5 − x6 − xd′

− xe′

− xe′
+1 − xf ′

+ x2+f ′

+ x3+e′

+ x5+e′

+ x7+d′

.

Now we can assume 5 + e′ < 6 + f ′ since 5 + e′ = 5 + f has been discussed in Case 1.1. As

7 + d′ ≤ 6 + f ′, the term x2+f ′

cannot be cancelled by any negative term in Q3(H), then none

of the terms in Q3(H) is equal to the term −xf+1 in Q3(G) by noting f +1 = f ′ +2. Therefore,

2x2+f ′

∈ Q3(G). Considering (2), we get 3 + e = 7 = 2 + f ′. Thus e = 4, f = 6, f ′ = 5. Then
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−3x4 ∈ Q3(G), but −3x4 6∈ Q3(H), a contradiction.

Case 1.3 max{5 + e′, 7 + d′, 6 + f ′} = 7 + d′ = 5 + f . After discussing the case 5 + f = 5 + e′,

we can suppose that

5 + f > 5 + e′. (3)

Cancelling the same terms of Q1(G) and Q1(H), we get

Q4(G) = − x3 − 2x4 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x7,

Q4(H) = − x5 − x6 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+f ′

+ x3+e′

+ x5+e′

+ x6+f ′

.

Consider −x3 and −2x4 in Q4(G). It is due to Q4(G) = Q4(H) that there are terms in Q4(H)

which are equal to −x3 and −2x4, respectively. The following cases should be considered.

Case 1.3.1 If e′ = 3, f ′ = 4, then e = 4 from equation (1). After simplification, we obtain

Q5(G) = −x4 − xf − xf+1 + x3+f + x9 + 2x7, Q5(H) = −xd′

− x5 + x6 + x8 + x10.

No matter what value d′ is, Q5(G) 6= Q5(H), which means Q(G) is not equal to Q(H).

Case 1.3.2 If e′ = 4, f ′ = 3, here we also have e = 4. After cancelling the same terms, we get

Q6(G) = Q6(H) where

Q6(G) = −x4 − xf − xf+1 + x3+f + x7, Q6(H) = −x6 − xd′

+ x9.

It is easy to see that d′ = 4 and f = 6. Thus we obtain the solution where G is isomor-

phic to K4(2, 3, 3, 1, 4, 6) and H is isomorphic to K4(1, 2, 5, 4, 4, 3). That is K4(2, 3, 3, 1, 4, 6) ∼

K4(1, 2, 5, 4, 4, 3).

Case 1.3.3 If d′ = e′ + 1 = 4, then f = 6 and f ′ = e. We obtain Q7(G) = Q7(H) after

simplifying Q4(G) and Q4(H) where

Q7(G) = −x6 + x9 + x3+e + x5+e, Q7(H) = −x5 + x2+f ′

+ x8 + x6+f ′

.

As e ≥ 4 (see(2)), the highest terms of Q7(G) and Q7(H) are not equal, a contradiction.

Case 1.3.4 If d′ = f ′ + 1 = 4, then f = 6 and e′ = e (noting (1)). By (2) and (3), e = 4

or 5. It is easy to see that Q4(G) = Q4(H). Thus K4(2, 3, 3, 1, 4, 6) ∼ K4(1, 2, 5, 4, 4, 3), and

K4(2, 3, 3, 1, 5, 6) ∼ K4(1, 2, 5, 4, 5, 3).

Case 1.3.5 d′ = 3, e′ = f ′ = 4. Then −3x5 ∈ Q4(H), but not in Q4(G), a contradiction.

Case 2 min{d, e} = e = 1. Since d + e ≥ 5, e + f ≥ 6, we have d ≥ 4, f ≥ 5. Cancelling equal

terms of Q(G) and Q(H), we know Q8(G) = Q8(H) where

Q8(G) = − 2x3 − x4 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x6 + x6+d + x5+f ,

Q8(H) = − x5 − x6 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+f ′

+ x3+e′

+ x5+e′

+ x7+d′

+ x6+f ′

.

Comparing the l.p. in Q8(G) and the l.p. in Q8(H), two of d′, e′, f ′ are 3. Since e′ + f ′ ≥ 7,

only two cases need to be considered.
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Case 2.1 d′ = e′ = 3. After cancelling the same terms, we get

Q9(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x6 + x6+d + x5+f ,

Q9(H) = − x5 − xf ′

− xf ′
+1 + x2+f ′

+ x8 + x10 + x6+f ′

.

Noting f ′ ≥ 4, so the h.p. in Q9(H) is 6 + f ′. So 6 + f ′ = 6 + d or 6 + f ′ = 5 + f .

If 6 + f ′ = 6 + d, we obtain f = 5 from (1). Therefore, Q9(G) = Q9(H). In fact, H is

isomorphic to G in this case.

If 6 + f ′ = 5 + f , then d = 4 (noting (1)). Cancelling equal terms, we get

Q10(G) = −x4 − xf+1 + 2x6 + x3+f , Q10(H) = −xf ′

+ x2+f ′

+ x8.

When f ′ + 1 = f = 5, Q10(G) = Q10(H). Thus G and H are also isomorphic.

Case 2.2 d′ = f ′ = 3. Cancelling equal terms of Q8(G) and Q8(H), we know Q11(G) = Q11(H)

where

Q11(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x6 + x6+d + x5+f ,

Q11(H) = − x6 − xe′

− xe′
+1 + x3+e′

+ x5+e′

+ x10 + x9.

As e′ ≥ 4 (by noting e′ + f ′ ≥ 7), no positive term in Q11(H) is x6, thus −2x6 ∈ Q11(G). It is

easy to see that d = f = 6 or d = f + 1 = 6 or d + 1 = f = 6.

If d = f = 6, we get e′ = 7. We can easily see that Q11(G) 6= Q11(H).

If d = f + 1 = 6, we get e′ = 6. But Q11(G) 6= Q11(H).

If d + 1 = f = 6, we get e′ = 6. But Q11(G) 6= Q11(H).

The proof of the lemma is now completed. 2

Lemma 3.2 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(1, 3, 4, d′, e′, f ′),

then G ∼ H when G is isomorphic to K4(2, 3, 3, 1, 4, 4), or K4(2, 3, 3, 1, e, e + 2).

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼= K4(1, 3, 4, d′, e′, f ′).

As the above discussion, we know

Q(G) = − (x + 1)(x2 + 2x3 + xd + xe + xf ) + (x2+d + x3+f + x3+e + x5+e+

x6+d + x5+f + xd+e+f ),

Q(H) = − (x + 1)(x + x3 + x4 + xd′

+ xe′

+ xf ′

) + (x1+d′

+ x3+f ′

+

2x4+e′

+ x5+f ′

+ x7+d′

+ xd′
+e′

+f ′

).

From Proposition 1 and the symmetry of the graph K4(2, 3, 3, d, e, f), we know the equation (1)

also holds and min{d, e, f} = min{d, e} = 1.

Case 1 min{d, e} = d = 1. As d + e ≥ 5, then

f ≥ e ≥ 4. (4)

After simplification, we have Q1(G) = Q1(H), where

Q1(G) = − x3 − x2 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x7 + x5+f ,
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Q1(H) = − x5 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ 2x4+e′

+ x5+f ′

+ x7+d′

.

By considering the h.p. in Q1(G) and the h.p. in Q1(H), we have 5 + f = max{4 + e′, 7 +

d′, 5 + f ′}.

Case 1.1 max{4 + e′, 7 + d′, 5 + f ′} = 5 + f ′ = 5 + f. After simplifying Q1(G) and Q1(H), we

have Q2(G) = Q2(H) where

Q2(G) = − x3 − x2 − xe − xe+1 + x3+e + x5+e + x7,

Q2(H) = − x5 − xd′

− xe′

− xe′
+1 + 2x4+e′

+ x7+d′

.

Consider −x2 in Q2(G), we know d′ = 2 or e′ = 2.

If d′ = 2, since d′ + e′ ≥ 5 and −x3 is in Q2(G), we get e′ = 3. Thus e = 4 (see (1)), and

G ∼= H .

If e′ = 2, then e = d′ + 1 (see (1)). After simplification, we have

Q3(G) = −xe − xe+1 + x3+e + x5+e + x7, Q3(H) = −x5 − xd′

+ 2x6 + x7+d′

.

By considering the h.p. in Q3(G) and the h.p. in Q3(H), we know that Q3(G) 6= Q3(H),

thus Q(G) is not equal to Q(H).

Case 1.2 max{4+ e′, 7+ d′, 5+ f ′} = 7+ d′ = 5+ f. We have discussed the case 5+ f = 5+ f ′,

so we can assume that 5 + f > 5 + f ′. Cancelling the same terms in Q1(G) and Q1(H), we have

Q4(G) = Q4(H) where

Q4(G) = − x3 − x2 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x7,

Q4(H) = − x5 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ 2x4+e′

+ x5+f ′

.

Comparing the lowest power of Q4(G) to the lowest power of Q4(H), we get min{d′, e′, f ′} = 2.

If d′ = 2, then we get e = f = d′ + 2 = 4 (by (4)) and e′ + f ′ = 7 (see (1)). Cancelling equal

terms, we obtain Q5(G) = Q5(H) where

Q5(G) = − x3 − x5 − 2x4 + 3x7 + x9,

Q5(H) = − xe′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ 2x4+e′

+ x5+f ′

.

Consider 3x7 in Q5(G), we know that e′ = 3, f ′ = 4 and then Q5(G) = Q5(H). In fact,

K4(2, 3, 3, 1, 4, 4) ∼= K4(1, 3, 4, 2, 3, 4).

If e′ = 2, we know f ′ = e + 1 from (1). Cancelling equal terms in Q4(G) and Q4(H), we get

Q6(G) = Q6(H) where

Q6(G) = − xe − xf − xf+1 + x3+f + x3+e + x5+e + x7,

Q6(H) = − x5 − xd′

− xf ′
+1 + x3+f ′

+ 2x6 + x5+f ′

.

As 5 + f ′ = 6 + e > 7, and the h.p. in Q6(H) is 5 + f ′, then we get 3 + f = 5 + f ′, that is

f = 2 + d′ = 2 + f ′ = 3 + e. After simplification, we have Q7(G) = Q7(H), where

Q7(G) = −xe − xf+1 + x5+e + x7, Q7(H) = −x5 − xd′

− xf ′
+1 + x3+f ′

+ 2x6.
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Since f ′+3 = f +1, and no negative terms can cancel the term xf ′
+3 (noting e′ +f ′ ≥ 7), 2xf+1

should be in Q7(G), which is impossible.

If f ′ = 2, then e′ = e + 1(by(1)). After simplifying Q4(G) and Q4(H), we obtain Q8(G) =

Q8(H) where

Q8(G) = −xe − xf − xf+1 + x3+f + x3+e, Q8(H) = −xd′

− xe′
+1 + x4+e′

.

We can check that d′ = e is a solution of Q8(G) = Q8(H). Thus we obtain the solu-

tion of Q(G) = Q(H) where G is isomorphic to K4(2, 3, 3, 1, e, e + 2) and H is isomorphic to

K4(1, 3, 4, e, e + 1, 2).

Case 1.3 max{4+e′, 7+d′, 5+f ′} = 4+e′ = 5+f . As the coefficient of x4+e′

is 2, we know 5+e

should also be equal to 4 + e′. After simplifying Q1(G) and Q1(H), we have Q9(G) = Q9(H),

where

Q9(G) = − x3 − x2 − 2xe − xe+1 + 2x3+e + x7,

Q9(H) = − x5 − xd′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ x5+f ′

+ x7+d′

.

Since the lowest term in Q9(G) is −x2, we have d′ = 2 or f ′ = 2.

If d′ = 2, noting that −x3 ∈ Q3(G), we have f ′ = 3. Since d + e + f = d′ + e′ + f ′, we get

e = f = 5, e′ = 6. It is easy to check Q9(G) is not equal to Q9(H), a contradiction.

If f ′ = 2, cancelling equal terms of Q9(G) and Q9(H), we get Q10(G) = Q10(H), where

Q10(G) = −2xe − xe+1 + 2x3+e, Q10(H) = −xd′

− xe′
+1 + x7+d′

.

Because there are five terms in Q10(G), and no positive terms can cancel negative terms, but

there are only three terms in Q10(H), Q10(G) 6= Q10(H).

Case 2 e = 1. Cancelling equal terms of Q(G) and Q(H), we have Q11(G) = Q11(H), where

Q11(G) = − 2x3 − x2 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6 + x6+d + x5+f ,

Q11(H) = − x5 − xd′

− xe′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ 2x4+e′

+ x5+f ′

+ x7+d′

.

Consider the l.p. in Q11(G) and the l.p. in Q11(H), we have min{d′, e′, f ′} = 2.

Case 2.1 d′ = 2. After simplifying, we have Q12(G) = Q12(H), where

Q12(G) = − 2x3 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6 + x6+d + x5+f ,

Q12(H) = − x5 − xe′

− xe′
+1 − xf ′

− xf ′
+1 + x3+f ′

+ 2x4+e′

+ x5+f ′

+ x9.

Since −2x3 ∈ Q12(G), and the power of each positive term is not equal to 3, −2x3 ∈ Q12(H).

Then e′ + f ′ ≤ 6. It means length of a cycle of graph H is less than 8, a contradiction.

Case 2.2 e′ = 2. As e′ + f ′ ≥ 7, we have f ′ ≥ 5. After simplifying Q11(G) and Q11(H), we

have Q13(G) = Q13(H) where

Q13(G) = − x3 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6+d + x5+f ,

Q13(H) = − x5 − xd′

− xf ′

− xf ′
+1 + x3+f ′

+ x6 + x5+f ′

+ x7+d′

.
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Since −x3 is in Q13(G), d′ = 3 (noting f ′ ≥ 5). Cancelling equal terms, we get Q14(G) = Q14(H)

where

Q14(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6+d + x5+f ,

Q14(H) = − x5 − xf ′

− xf ′
+1 + x3+f ′

+ x6 + x5+f ′

+ x10.

By considering the h.p. in Q14(G) and the h.p. in Q14(H), we have 5 + f ′ = max{6 + d, 5 + f}.

If 5 + f ′ = 5 + f , we have d = 4. Thus G ∼= H in this case.

If 5 + f ′ = 6 + d, we know f = 5 from equation d + e + f = d′ + e′ + f ′. We now suppose

f ′ > f = 5, as 5 + f = 5 + f ′ has been discussed just now. For d = f ′ − 1 > 4, then we note x4

is in Q14(G), but not in Q14(H), a contradiction.

Case 2.3 f ′ = 2. As e′ + f ′ ≥ 7, we have e′ ≥ 5. By Q11(G) = Q11(H), after simplification, we

have Q15(G) = Q15(H) where

Q15(G) = − x3 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6 + x6+d + x5+f ,

Q15(H) = − xd′

− xe′

− xe′
+1 + 2x4+e′

+ x7 + x7+d′

.

Consider −x3 in Q15(G). It is due to Q15(G) = Q15(H) that there is one term in Q15(H) which

is equal to −x3. So we have d′ = 3 and then we get

Q16(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x4 + x6 + x6+d + x5+f ,

Q16(H) = − xe′

− xe′
+1 + 2x4+e′

+ x7 + x10.

Then we note x4 ∈ Q16(G), but the lowest power in Q16(H) is greater than 5. So one of

the negative terms should be −x4 in Q16(G). Noting e = 1 and f + e ≥ 6, we get d = 4. From

(1), f = e′. It is easy to say that Q16(G) 6= Q16(H), which is a contradiction. So this lemma

holds. 2

Lemma 3.3 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(1, 2, c′, 2, e′, 3),

then there is no graph G satisfying G ∼ H .

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼= K4(1, 2, c′, 2, e′, 3).

Then

Q(G) = − (x + 1)(x2 + 2x3 + xd + xe + xf ) + (x2+d + x3+f + x3+e + x5+e+

x6+d + x5+f + xd+e+f ),

Q(H) = − (x + 1)(x + 2x2 + x3 + xc′ + xe′

) + (x3 + x5 + x3+e′

+ 2x4+c′+

x5+e′

+ xc′+e′

).

From Proposition 1, we know that min{d, e, f} = min{d, e} = 1 and

d + e + f = c′ + e′. (5)

Cancelling equal terms, we have Q1(G) = Q1(H) where

Q1(G) = − x3 − x4 − xd − xd+1 − xe − xe+1 − xf − xf+1 + x2+d + x3+f + x3+e+
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x5+e + x6+d + x5+f ,

Q1(H) = − x − 2x2 − xc′ − xc′+1 − xe′

− xe′
+1 + x5 + x3+e′

+ 2x4+c′ + x5+e′

.

Consider −x and −2x2 in Q1(H). It is due to Q1(G) = Q1(H) that there are terms in Q1(G)

which are equal to −x and −2x2, so one of d, e, f is 1, and one of the left two is 2. However, the

girth of G and H is 8, which needs d + e ≥ 5 and e + f ≥ 6. Hence we know there is no solution

to Q(G) = Q(H). 2

Lemma 3.4 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(1, 2, c′, 3, e′, 2),

then there is no graph G satisfying G ∼ H .

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼= K4(1, 2, c′, 3, e′, 2).

Then

Q(G) = − (x + 1)(x2 + 2x3 + xd + xe + xf ) + (x2+d + x3+f + x3+e + x5+e+

x6+d + x5+f + xd+e+f ),

Q(H) = − (x + 1)(x + 2x2 + x3 + xc′ + xe′

) + (2x4 + x3+e′

+ x3+c′+

x5+c′ + x5+e′

+ xc′+e′

).

From Proposition 1, the equation (5) also holds. After simplifying Q(G) and Q(H), we have

Q1(G) = Q1(H), where

Q1(G) = − x4 − xd − xd+1 − xe − xe+1 − xf − xf+1 + x2+d + x3+f + x3+e+

x5+e + x6+d + x5+f ,

Q1(H) = − x − 2x2 − xc′ − xc′+1 − xe′

− xe′
+1 + 2x4 + x3+e′

+ x3+c′ + x5+c′ + x5+e′

.

It is easy to handle these cases in the same way as the proof of Lemma 3.3. 2

Lemma 3.5 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(2, 2, 4, d′, e′, f ′),

then there is no graph G satisfying G ∼ H unless G ∼= H .

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼= K4(2, 2, 4, d′, e′, f ′).

Then

Q(G) = − (x + 1)(x2 + 2x3 + xd + xe + xf ) + (x2+d + x3+f + x3+e + x5+e+

x6+d + x5+f + xd+e+f ),

Q(H) = − (x + 1)(2x2 + x4 + xd′

+ xe′

+ xf ′

) + (x2+d′

+ x2+f ′

+ 2x4+e′

+ x6+d′

+

x6+f ′

+ xd′
+e′

+f ′

).

Now both K4(2, 3, 3, d, e, f) and K4(2, 2, 4, d′, e′, f ′) have the property of symmetry, thus we

can assume e ≤ f and e′ ≤ f ′. As Proposition 1 shows, equation (1) also holds. Cancelling equal

terms, we have Q1(G) = Q1(H) where

Q1(G) = − x3 − x4 − xd − xd+1 − xe − xe+1 − xf − xf+1 + x2+d + x3+f + x3+e+

x5+e + x6+d + x5+f ,
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Q1(H) = − x2 − x5 − xd′

− xd′
+1 − xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+d′

+ x2+f ′

+

2x4+e′

+ x6+d′

+ x6+f ′

.

Case 1 min{d, e, f} = min{d, e} = 1. From Proposition 1, min{d′, e′, f ′} = min{d′, e′} = 1.

If d = e′ = 1. As e + d ≥ 5 and d′ + e′ ≥ 6, we have f ≥ e ≥ 4, and f ′ ≥ d′ ≥ 5. After

simplifying Q1(G) and Q1(H), we have Q2(G) = Q2(H) where

Q2(G) = − x4 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x7 + x5+f ,

Q2(H) = − x2 − xd′

− xd′
+1 − xf ′

− xf ′
+1 + x2+d′

+ x2+f ′

+ x5 + x6+d′

+ x6+f ′

.

Comparing the l.p. in Q2(G) with the l.p. in Q2(H), we know that Q2(G) 6= Q2(H).

It is easy to handle other left cases in the same fashion as Case 1, and we obtain that

Q(G) 6= Q(H) if one of the three parameters is 1. In the following, we can suppose that

min{d, e, f} ≥ 2.

Case 2 min{d, e, f} = min{d, e} = 2.

Case 2.1 d = 2. From d + e ≥ 5, we obtain

f ≥ e ≥ 3. (6)

After simplifying Q1(G) and Q1(H), we have Q3(G) = Q3(H) where

Q3(G) = − 2x3 − xe − xe+1 − xf − xf+1 + x3+f + x3+e + x5+e + x8 + x5+f ,

Q3(H) = − x5 − xd′

− xd′
+1 − xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+d′

+ x2+f ′

+

2x4+e′

+ x6+d′

+ x6+f ′

.

Comparing the h.p. in Q3(G) with the h.p. in Q3(H), we have 5 + f = max{4 + e′, 6 + f ′}.

Case 2.1.1 max{4 + e′, 6 + f ′} = 4 + e′ = 5 + f. Note the coefficient of x4+e′

is 2, we know

5 + e must also be equal to 4 + e′. Cancelling equal terms of Q3(G) and Q3(H), we have

Q4(G) = Q4(H) where

Q4(G) = − 2x3 − 2xe − xe+1 + 2x3+e + x8,

Q4(H) = − x5 − xd′

− xd′
+1 − xe′

+1 − xf ′

− xf ′
+1 + x2+d′

+ x2+f ′

+ x6+d′

+ x6+f ′

.

The lowest power of Q4(G) is 3 (see (6)) and since Q4(G) = Q4(H), there are two terms in

Q4(H) which are equal to −x3. Therefore, d′ = f ′ = 3. From e = f = e′ − 1 and d + e + f =

d′ + e′ + f ′, we know e = f = 5. Thus Q4(G) 6= Q4(H).

Case 2.1.2 max{4 + e′, 6 + f ′} = 6 + f ′ = 5 + f. After simplifying Q3(G) and Q3(H), we have

Q5(G) = Q5(H) where

Q5(G) = − 2x3 − xe − xe+1 − xf+1 + x3+f + x3+e + x5+e + x8,

Q5(H) = − x5 − xd′

− xd′
+1 − xe′

− xe′
+1 − xf ′

+ x2+d′

+ x2+f ′

+ 2x4+e′

+ x6+d′

.

For the same reason as above discussion given, 3 is the l.p. in Q5(G), and for Q5(G) = Q5(H),

−2x3 ∈ Q5(H), we know d′ = e′ = 3 or d′ = f ′ = 3.



Chromatic uniqueness of K4-homeomorphs with girth 8 279

If d′ = e′ = 3, noting equations f = f ′ + 1 and d + e + f = d′ + e′ + f ′, we know e = 3. Now

after simplifying, we get

Q6(G) = − x3 − xf − xf+1 + x3+f + x6 + 2x8,

Q6(H) = − x4 − xf ′

− xf ′
+1 + x2+f ′

+ 2x7 + x9.

It is easy to see f ′ = 3, then Q6(G) 6= Q6(H), which means Q(G) 6= Q(H).

If d′ = f ′ = 3, then f = 4 and e = e′. Simplifying Q5(G) and Q5(H), we obtain

Q7(G) = −x5 + x7 + x3+e + x5+e + x8, Q7(H) = −x4 + x5 + 2x4+e′

+ x9.

Consider term x5. It is due to Q7(G) = Q7(H) that 2x5 must be in Q7(G), which is

impossible.

Case 2.2 e = 2. After cancelling equal terms in Q1(G) and Q1(H), we have Q8(G) = Q8(H)

where

Q8(G) = − 2x3 − x4 − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x5 + x7 + x6+d + x5+f ,

Q8(H) = − x5 − xd′

− xd′
+1 − xe′

− xe′
+1 − xf ′

− xf ′
+1 + x2+d′

+ x2+f ′

+

2x4+e′

+ x6+d′

+ x6+f ′

.

Consider −2x3 in Q8(G). Because

d + e ≥ 5, f + e ≥ 6, (7)

3 is l.p. in Q8(G). So two cases need to be considered.

Case 2.2.1 d′ = e′ = 3. After simplifying, we obtain Q9(G) = Q9(H) where

Q9(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x5 + x6+d + x5+f ,

Q9(H) = − x4 − xf ′

− xf ′
+1 + x2+f ′

+ x7 + x9 + x6+f ′

.

Comparing the h.p. of Q9(G) with the h.p. of Q9(H), we obtain 6 + f ′ = max{6 + d, 5 + f}.

If 6 + f ′ = 6 + d, then we know f = 4 for d + e + f = d′ + e′ + f ′. Thus G ∼= H .

If 6 + f ′ = 5 + f , then d = 3. It is easy to get f = f ′ + 1 = 4, so f ′ = d = 3. We can see this

is just a special case of 6 + f ′ = 6 + d.

Case 2.2.2 d′ = f ′ = 3. By Q8(G) = Q8(H), and after simplifying, we obtain Q10(G) = Q10(H)

where

Q10(G) = − xd − xd+1 − xf − xf+1 + x2+d + x3+f + x7 + x6+d + x5+f ,

Q10(H) = − x4 − xe′

− xe′
+1 + 2x4+e′

+ 2x9.

The highest power of Q10(H) is max{4 + e′, 9}, and the coefficient of highest term is at least 2.

As d ≥ 3, f ≥ 4 (see (7)), 6 + d must be equal to 5 + f .

If 6 + d = 5 + f = 4 + e′, we get d + 1 = f = 6, e′ = 7, since d + e + f = d′ + e′ + f ′. Thus

Q10(G) 6= Q10(H).

If 6 + d = 5 + f = 9, then d + 1 = f = 4, and e′ = 3. Thus G ∼= H . So this lemma holds. 2
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Lemma 3.6 If G is in the type of K4(2, 3, 3, d, e, f), and H is in the type of K4(2, 2, c′, 2, e′, 2),

then there is no graph G satisfying G ∼ H .

Proof From Proposition 2, we know that K4(2, 2, c′, 2, e′, 2) is chromatically unique. 2

Theorem 3.7 K4-homeomorphs K4(2, 3, 3, d, e, f) with girth 8 is not χ-unique if and only if it

is isomorphic to K4(2, 3, 3, 1, 6, α) (α ≥ 6), K4(2, 3, 3, 1, β, β + 2) (β ≥ 4), or K4(2, 3, 3, 1, 5, 6).

Proof Let G and H be two graphs such that G ∼= K4(2, 3, 3, d, e, f) and H ∼ G. Since the girth

of G is 8, there is at most one 1 among d, e and f . Moreover, from (ii) and (iii) of Proposition

2.1, it follows that H is a K4-homeomorph with girth 8. So H must be one of the following 7

types.

Type 1. K4(1, 2, 5, d′, e′, f ′), where d′ + e′ ≥ 6, d′ + f ′ ≥ 5, e′ + f ′ ≥ 7.

Type 2. K4(1, 3, 4, d′, e′, f ′), where d′ + e′ ≥ 5, d′ + f ′ ≥ 4, e′ + f ′ ≥ 7.

Type 3. K4(1, 2, c′, 2, e′, 3), where c′ ≥ 5, e′ ≥ 4.

Type 4. K4(1, 2, c′, 3, e′, 2), where e′ ≥ c ≥ 5.

Type 5. K4(2, 3, 3, d′, e′, f ′), where d′ + e′ ≥ 5, e′ + f ′ ≥ 6, f ′ ≥ e′ ≥ 1.

Type 6. K4(2, 2, 4, d′, e′, f ′), where d′ + e′ ≥ 6, d′ + f ′ ≥ 4, f ′ ≥ d′ ≥ 1.

Type 7. K4(2, 2, c′, 2, e′, 2), where e′ ≥ c′ ≥ 4.

From Lemma 1 and the lemmas in this section, we get the conclusion. 2
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