Chromatic Uniqueness of K_{4}-Homeomorphs with Girth 8

Weina SHI ${ }^{1}$, Yongliang PAN ${ }^{1, *}$, Yan ZHAO ${ }^{2}$
1. Department of Mathematics, University of Science and Technology of China, Anhui 230026, P. R. China;
2. Institute of Electronics Engineering, China Academy of Engineering Physics, Sichuan 621900, P. R. China

Abstract

In this paper, we determine all graphs of K_{4}-homeomorphs of girth 8 which are chromatically unique.

Keywords chromatic polynomial; chromatically unique graph; K_{4}-homeomorph.
MR(2010) Subject Classification 05C15

1. Introduction

All graphs considered here are finite and simple. For notations and terminology not defined here, we refer to [1]. Let G be a graph and $P(G ; \lambda)$ be the chromatic polynomial of G. Two graphs G and H are chromatically equivalent, denoted by $G \sim H$, if $P(G)=P(H)$. A graph G is chromatically unique (or simply χ-unique) if G is isomorphic to H whenever $G \sim H$.

A K_{4}-homeomorph is a subdivision of the complete graph K_{4} which is denoted by $K_{4}(a, b, c, d$, $e, f) . K_{4}(a, b, c, d, e, f)$ is a graph that the six edges of K_{4} are replaced by the six paths of length a, b, c, d, e, f, respectively, as shown in Figure 1. The study of the chromaticity of $K_{4^{-}}$ homeomorphs which have girth $3,4,5,6$ or 7 has been settled (see [8] and the references therein). When referring to the chromaticity of K_{4}-homeomorphs with girth 8 , there are 13 types altogether, which are $K_{4}(1,1,6, d, e, f), K_{4}(1,1, c, 1, e, 5), K_{4}(1,1, c, 2, e, 4), K_{4}(1,2, c, 1, e, 4)$, $K_{4}(1,1, c, 3, e, 3), K_{4}(1,3, c, 1, e, 3), K_{4}(2,3,3, d, e, f), K_{4}\left(1,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right), K_{4}\left(1,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, $K_{4}(1,2, c, 2, e, 3), K_{4}(1,2, c, 3, e, 2), K_{4}(2,3,3, d, e, f), K_{4}(2,2,4, d, e, f), K_{4}(2,2, c, 2, e, 2)$. As we know, only the chromaticity of the ones with at least 2 paths of length 1 have been obtained among all those K_{4}-homeomorphs with girth 8 (see $[4,7,10]$). In this article, we will discuss the chromaticity of the others. If we write all the whole, the paper will be too long. Therefore we only write one case $K_{4}(2,3,3, d, e, f)$ (as Figure 2) of them here and the details of the left cases will be given in other papers.

[^0]

Figure $1 K_{4}(a, b, c, d, e, f)$

Figure $2 K_{4}(2,3,3, d, e, f)$

2. Preparation

The following are some known results.
Proposition $2.1([2,5])$ Let G and H be chromatically equivalent. Then
(i) $|V(G)|=|V(H)|,|E(G)|=|E(H)|$;
(ii) G and H have the same girth and same number of cycles with the length equal to their girth;
(iii) If G is a K_{4}-homeomorph, then H is a K_{4}-homeomorph as well;
(iv) If G and H are homeomorphic to K_{4}, then both the minimum values of parameters and the number of parameters equal to this minimum value of the graphs G and H coincide.

Proposition $2.2([6])$ The graph $K_{4}(a, b, c, d, e, f)$ is chromatically unique if exactly four numbers among $\{a, b, c, d, e, f\}$ are the same.

Proposition 2.3 ([7]) Suppose that $G=K_{4}(a, b, c, d, e, f)$ and $H=K_{4}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}\right.$, $\left.f^{\prime}\right)$. If $G \sim H$ and $\{a, b, c, d, e, f\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ as multisets, then $G \cong H$.

Proposition $2.4([9]) \quad G$ and H are both in the type of $K_{4}(2,3,3, d, e, f)$, then $P(G)=P(H)$ if and only if $G \cong H$.

3. Main results and proofs

In the following, the girth of any graph we mentioned is 8 .
Lemma 3.1 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(1,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then $G \sim H$ if G is isomorphic to $K_{4}(2,3,3,1,6, f), K_{4}(2,3,3,1,4,6)$, or $K_{4}(2,3,3,1,5,6)$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \cong K_{4}\left(1,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Since the girth of G is 8 , there is at most one 1 among d, e and f.

Let

$$
\begin{gathered}
Q\left(K_{4}(a, b, c, d, e, f)\right)=-(x+1)\left(x^{a}+x^{b}+x^{c}+x^{d}+x^{e}+x^{f}\right)+x^{a+d}+x^{b+f}+ \\
x^{c+e}+x^{a+b+e}+x^{b+c+d}+x^{a+c+f}+x^{d+e+f} .
\end{gathered}
$$

Let $x=1-\lambda$. Then it follows from [3] that the chromatic polynomial of $K_{4}(a, b, c, d, e, f)$ is

$$
\left.P\left(K_{4}(a, b, c, d, e, f)\right)=(-1)^{n+1} \frac{x}{(x-1)^{2}}\left[\left(x^{2}+3 x+2\right)+Q\left(K_{4}(a, b, c, d, e, f)\right)-x^{n+1}\right)\right]
$$

Hence $P(G)=P(H)$ if and only if $Q(G)=Q(H)$. We solve the equation $Q(G)=Q(H)$ to get all solutions. In the following, we will substitute h.p. for highest power and l.p. for lowest power.

$$
\begin{aligned}
Q(G)= & -(x+1)\left(x^{2}+2 x^{3}+x^{d}+x^{e}+x^{f}\right)+x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+ \\
& x^{6+d}+x^{5+f}+x^{d+e+f} \\
Q(H)= & -(x+1)\left(x+x^{2}+x^{5}+x^{d^{\prime}}+x^{e^{\prime}}+x^{f^{\prime}}\right)+x^{1+d^{\prime}}+x^{2+f^{\prime}}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+ \\
& x^{7+d^{\prime}}+x^{6+f^{\prime}}+x^{d^{\prime}+e^{\prime}+f^{\prime}}
\end{aligned}
$$

Considering the symmetry of the graph $K_{4}(2,3,3, d, e, f)$, we can assume $e \leq f$. From Proposition 2.1, we have that $\min \{d, e, f\}=\min \{d, e\}=1$, and

$$
\begin{equation*}
d+e+f=d^{\prime}+e^{\prime}+f^{\prime} \tag{1}
\end{equation*}
$$

There are 2 cases to be considered.
Case $1 \min \{d, e\}=d=1$. Here we have that $Q(G)=Q(H)$ iff $Q_{1}(G)=Q_{1}(H)$, where

$$
\begin{aligned}
& Q_{1}(G)=-x^{3}-2 x^{4}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7}+x^{5+f} \\
& Q_{1}(H)=-x^{5}-x^{6}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{e^{\prime}+1}}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+x^{7+d^{\prime}}+x^{6+f^{\prime}}
\end{aligned}
$$

Since $d+e \geq 5$, we have

$$
\begin{equation*}
f \geq e \geq 4 \tag{2}
\end{equation*}
$$

After comparing the powers in $Q_{1}(G)$ and $Q_{1}(H)$, we have the h.p. in $Q_{1}(G)$ is $5+f$. Considering the h.p. in $Q_{1}(G)$ and $Q_{1}(H)$, we know there are 3 cases to be considered.

Case 1.1 $\max \left\{5+e^{\prime}, 7+d^{\prime}, 6+f^{\prime}\right\}=5+e^{\prime}=5+f$. Now from the equation $Q_{1}(G)=Q_{1}(H)$, we obtain $Q_{2}(G)=Q_{2}(H)$ where

$$
\begin{aligned}
& Q_{2}(G)=-x^{3}-2 x^{4}-x^{e}-x^{e+1}+x^{3+e}+x^{5+e}+x^{7} \\
& Q_{2}(H)=-x^{5}-x^{6}-x^{d^{\prime}}-x^{f^{\prime}}-x^{f^{\prime+1}}+x^{2+f^{\prime}}+x^{7+d^{\prime}}+x^{6+f^{\prime}}
\end{aligned}
$$

So $d^{\prime}=4, f^{\prime}=3$ and $e=6$. Thus $K_{4}(2,3,3,1,6, f) \sim K_{4}(1,2,5,4, f, 3)$.
Case $1.2 \max \left\{5+e^{\prime}, 7+d^{\prime}, 6+f^{\prime}\right\}=6+f^{\prime}=5+f$. After simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we obtain $Q_{3}(G)=Q_{3}(H)$ and

$$
\begin{aligned}
& Q_{3}(G)=-x^{3}-2 x^{4}-x^{e}-x^{e+1}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7} \\
& Q_{3}(H)=-x^{5}-x^{6}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}+x^{2+f^{\prime}}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+x^{7+d^{\prime}}
\end{aligned}
$$

Now we can assume $5+e^{\prime}<6+f^{\prime}$ since $5+e^{\prime}=5+f$ has been discussed in Case 1.1. As $7+d^{\prime} \leq 6+f^{\prime}$, the term $x^{2+f^{\prime}}$ cannot be cancelled by any negative term in $Q_{3}(H)$, then none of the terms in $Q_{3}(H)$ is equal to the term $-x^{f+1}$ in $Q_{3}(G)$ by noting $f+1=f^{\prime}+2$. Therefore, $2 x^{2+f^{\prime}} \in Q_{3}(G)$. Considering (2), we get $3+e=7=2+f^{\prime}$. Thus $e=4, f=6, f^{\prime}=5$. Then
$-3 x^{4} \in Q_{3}(G)$, but $-3 x^{4} \notin Q_{3}(H)$, a contradiction.
Case $1.3 \max \left\{5+e^{\prime}, 7+d^{\prime}, 6+f^{\prime}\right\}=7+d^{\prime}=5+f$. After discussing the case $5+f=5+e^{\prime}$, we can suppose that

$$
\begin{equation*}
5+f>5+e^{\prime} \tag{3}
\end{equation*}
$$

Cancelling the same terms of $Q_{1}(G)$ and $Q_{1}(H)$, we get

$$
\begin{aligned}
& Q_{4}(G)=-x^{3}-2 x^{4}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7} \\
& Q_{4}(H)=-x^{5}-x^{6}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+x^{6+f^{\prime}}
\end{aligned}
$$

Consider $-x^{3}$ and $-2 x^{4}$ in $Q_{4}(G)$. It is due to $Q_{4}(G)=Q_{4}(H)$ that there are terms in $Q_{4}(H)$ which are equal to $-x^{3}$ and $-2 x^{4}$, respectively. The following cases should be considered.

Case 1.3.1 If $e^{\prime}=3, f^{\prime}=4$, then $e=4$ from equation (1). After simplification, we obtain

$$
Q_{5}(G)=-x^{4}-x^{f}-x^{f+1}+x^{3+f}+x^{9}+2 x^{7}, \quad Q_{5}(H)=-x^{d^{\prime}}-x^{5}+x^{6}+x^{8}+x^{10}
$$

No matter what value d^{\prime} is, $Q_{5}(G) \neq Q_{5}(H)$, which means $Q(G)$ is not equal to $Q(H)$.
Case 1.3.2 If $e^{\prime}=4, f^{\prime}=3$, here we also have $e=4$. After cancelling the same terms, we get $Q_{6}(G)=Q_{6}(H)$ where

$$
Q_{6}(G)=-x^{4}-x^{f}-x^{f+1}+x^{3+f}+x^{7}, \quad Q_{6}(H)=-x^{6}-x^{d^{\prime}}+x^{9}
$$

It is easy to see that $d^{\prime}=4$ and $f=6$. Thus we obtain the solution where G is isomorphic to $K_{4}(2,3,3,1,4,6)$ and H is isomorphic to $K_{4}(1,2,5,4,4,3)$. That is $K_{4}(2,3,3,1,4,6) \sim$ $K_{4}(1,2,5,4,4,3)$.

Case 1.3.3 If $d^{\prime}=e^{\prime}+1=4$, then $f=6$ and $f^{\prime}=e$. We obtain $Q_{7}(G)=Q_{7}(H)$ after simplifying $Q_{4}(G)$ and $Q_{4}(H)$ where

$$
Q_{7}(G)=-x^{6}+x^{9}+x^{3+e}+x^{5+e}, \quad Q_{7}(H)=-x^{5}+x^{2+f^{\prime}}+x^{8}+x^{6+f^{\prime}}
$$

As $e \geq 4$ (see(2)), the highest terms of $Q_{7}(G)$ and $Q_{7}(H)$ are not equal, a contradiction.
Case 1.3.4 If $d^{\prime}=f^{\prime}+1=4$, then $f=6$ and $e^{\prime}=e($ noting (1)). By (2) and (3), $e=4$ or 5 . It is easy to see that $Q_{4}(G)=Q_{4}(H)$. Thus $K_{4}(2,3,3,1,4,6) \sim K_{4}(1,2,5,4,4,3)$, and $K_{4}(2,3,3,1,5,6) \sim K_{4}(1,2,5,4,5,3)$.

Case 1.3.5 $d^{\prime}=3, e^{\prime}=f^{\prime}=4$. Then $-3 x^{5} \in Q_{4}(H)$, but not in $Q_{4}(G)$, a contradiction.
Case $2 \min \{d, e\}=e=1$. Since $d+e \geq 5, e+f \geq 6$, we have $d \geq 4, f \geq 5$. Cancelling equal terms of $Q(G)$ and $Q(H)$, we know $Q_{8}(G)=Q_{8}(H)$ where

$$
\begin{aligned}
& Q_{8}(G)=-2 x^{3}-x^{4}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{8}(H)=-x^{5}-x^{6}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+x^{7+d^{\prime}}+x^{6+f^{\prime}}
\end{aligned}
$$

Comparing the l.p. in $Q_{8}(G)$ and the l.p. in $Q_{8}(H)$, two of $d^{\prime}, e^{\prime}, f^{\prime}$ are 3. Since $e^{\prime}+f^{\prime} \geq 7$, only two cases need to be considered.

Case $2.1 d^{\prime}=e^{\prime}=3$. After cancelling the same terms, we get

$$
\begin{aligned}
& Q_{9}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{9}(H)=-x^{5}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+x^{8}+x^{10}+x^{6+f^{\prime}}
\end{aligned}
$$

Noting $f^{\prime} \geq 4$, so the h.p. in $Q_{9}(H)$ is $6+f^{\prime}$. So $6+f^{\prime}=6+d$ or $6+f^{\prime}=5+f$.
If $6+f^{\prime}=6+d$, we obtain $f=5$ from (1). Therefore, $Q_{9}(G)=Q_{9}(H)$. In fact, H is isomorphic to G in this case.

If $6+f^{\prime}=5+f$, then $d=4$ (noting (1)). Cancelling equal terms, we get

$$
Q_{10}(G)=-x^{4}-x^{f+1}+2 x^{6}+x^{3+f}, \quad Q_{10}(H)=-x^{f^{\prime}}+x^{2+f^{\prime}}+x^{8}
$$

When $f^{\prime}+1=f=5, Q_{10}(G)=Q_{10}(H)$. Thus G and H are also isomorphic.
Case $2.2 d^{\prime}=f^{\prime}=3$. Cancelling equal terms of $Q_{8}(G)$ and $Q_{8}(H)$, we know $Q_{11}(G)=Q_{11}(H)$ where

$$
\begin{aligned}
& Q_{11}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{11}(H)=-x^{6}-x^{e^{\prime}}-x^{e^{\prime}+1}+x^{3+e^{\prime}}+x^{5+e^{\prime}}+x^{10}+x^{9}
\end{aligned}
$$

As $e^{\prime} \geq 4$ (by noting $e^{\prime}+f^{\prime} \geq 7$), no positive term in $Q_{11}(H)$ is x^{6}, thus $-2 x^{6} \in Q_{11}(G)$. It is easy to see that $d=f=6$ or $d=f+1=6$ or $d+1=f=6$.

If $d=f=6$, we get $e^{\prime}=7$. We can easily see that $Q_{11}(G) \neq Q_{11}(H)$.
If $d=f+1=6$, we get $e^{\prime}=6$. But $Q_{11}(G) \neq Q_{11}(H)$.
If $d+1=f=6$, we get $e^{\prime}=6$. But $Q_{11}(G) \neq Q_{11}(H)$.
The proof of the lemma is now completed.
Lemma 3.2 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(1,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then $G \sim H$ when G is isomorphic to $K_{4}(2,3,3,1,4,4)$, or $K_{4}(2,3,3,1, e, e+2)$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \cong K_{4}\left(1,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$. As the above discussion, we know

$$
\begin{aligned}
Q(G)= & -(x+1)\left(x^{2}+2 x^{3}+x^{d}+x^{e}+x^{f}\right)+\left(x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+\right. \\
& \left.x^{6+d}+x^{5+f}+x^{d+e+f}\right) \\
Q(H)= & -(x+1)\left(x+x^{3}+x^{4}+x^{d^{\prime}}+x^{e^{\prime}}+x^{f^{\prime}}\right)+\left(x^{1+d^{\prime}}+x^{3+f^{\prime}}+\right. \\
& \left.2 x^{4+e^{\prime}}+x^{5+f^{\prime}}+x^{7+d^{\prime}}+x^{d^{\prime}+e^{\prime}+f^{\prime}}\right) .
\end{aligned}
$$

From Proposition 1 and the symmetry of the graph $K_{4}(2,3,3, d, e, f)$, we know the equation (1) also holds and $\min \{d, e, f\}=\min \{d, e\}=1$.

Case $1 \min \{d, e\}=d=1$. As $d+e \geq 5$, then

$$
\begin{equation*}
f \geq e \geq 4 \tag{4}
\end{equation*}
$$

After simplification, we have $Q_{1}(G)=Q_{1}(H)$, where

$$
Q_{1}(G)=-x^{3}-x^{2}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7}+x^{5+f}
$$

$$
Q_{1}(H)=-x^{5}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{4+e^{\prime}}+x^{5+f^{\prime}}+x^{7+d^{\prime}} .
$$

By considering the h.p. in $Q_{1}(G)$ and the h.p. in $Q_{1}(H)$, we have $5+f=\max \left\{4+e^{\prime}, 7+\right.$ $\left.d^{\prime}, 5+f^{\prime}\right\}$.

Case $1.1 \max \left\{4+e^{\prime}, 7+d^{\prime}, 5+f^{\prime}\right\}=5+f^{\prime}=5+f$. After simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{2}(G)=Q_{2}(H)$ where

$$
\begin{aligned}
& Q_{2}(G)=-x^{3}-x^{2}-x^{e}-x^{e+1}+x^{3+e}+x^{5+e}+x^{7}, \\
& Q_{2}(H)=-x^{5}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}+2 x^{4+e^{\prime}}+x^{7+d^{\prime}} .
\end{aligned}
$$

Consider $-x^{2}$ in $Q_{2}(G)$, we know $d^{\prime}=2$ or $e^{\prime}=2$.
If $d^{\prime}=2$, since $d^{\prime}+e^{\prime} \geq 5$ and $-x^{3}$ is in $Q_{2}(G)$, we get $e^{\prime}=3$. Thus $e=4$ (see (1)), and $G \cong H$.

If $e^{\prime}=2$, then $e=d^{\prime}+1$ (see (1)). After simplification, we have

$$
Q_{3}(G)=-x^{e}-x^{e+1}+x^{3+e}+x^{5+e}+x^{7}, \quad Q_{3}(H)=-x^{5}-x^{d^{\prime}}+2 x^{6}+x^{7+d^{\prime}} .
$$

By considering the h.p. in $Q_{3}(G)$ and the h.p. in $Q_{3}(H)$, we know that $Q_{3}(G) \neq Q_{3}(H)$, thus $Q(G)$ is not equal to $Q(H)$.

Case $1.2 \max \left\{4+e^{\prime}, 7+d^{\prime}, 5+f^{\prime}\right\}=7+d^{\prime}=5+f$. We have discussed the case $5+f=5+f^{\prime}$, so we can assume that $5+f>5+f^{\prime}$. Cancelling the same terms in $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{4}(G)=Q_{4}(H)$ where

$$
\begin{aligned}
& Q_{4}(G)=-x^{3}-x^{2}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7}, \\
& Q_{4}(H)=-x^{5}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{4+e^{\prime}}+x^{5+f^{\prime}} .
\end{aligned}
$$

Comparing the lowest power of $Q_{4}(G)$ to the lowest power of $Q_{4}(H)$, we get $\min \left\{d^{\prime}, e^{\prime}, f^{\prime}\right\}=2$.
If $d^{\prime}=2$, then we get $e=f=d^{\prime}+2=4$ (by (4)) and $e^{\prime}+f^{\prime}=7$ (see (1)). Cancelling equal terms, we obtain $Q_{5}(G)=Q_{5}(H)$ where

$$
\begin{aligned}
& Q_{5}(G)=-x^{3}-x^{5}-2 x^{4}+3 x^{7}+x^{9}, \\
& Q_{5}(H)=-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{4+e^{\prime}}+x^{5+f^{\prime}} .
\end{aligned}
$$

Consider $3 x^{7}$ in $Q_{5}(G)$, we know that $e^{\prime}=3, f^{\prime}=4$ and then $Q_{5}(G)=Q_{5}(H)$. In fact, $K_{4}(2,3,3,1,4,4) \cong K_{4}(1,3,4,2,3,4)$.

If $e^{\prime}=2$, we know $f^{\prime}=e+1$ from (1). Cancelling equal terms in $Q_{4}(G)$ and $Q_{4}(H)$, we get $Q_{6}(G)=Q_{6}(H)$ where

$$
\begin{aligned}
& Q_{6}(G)=-x^{e}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7}, \\
& Q_{6}(H)=-x^{5}-x^{d^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{6}+x^{5+f^{\prime}} .
\end{aligned}
$$

As $5+f^{\prime}=6+e>7$, and the h.p. in $Q_{6}(H)$ is $5+f^{\prime}$, then we get $3+f=5+f^{\prime}$, that is $f=2+d^{\prime}=2+f^{\prime}=3+e$. After simplification, we have $Q_{7}(G)=Q_{7}(H)$, where

$$
Q_{7}(G)=-x^{e}-x^{f+1}+x^{5+e}+x^{7}, \quad Q_{7}(H)=-x^{5}-x^{d^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{6} .
$$

Since $f^{\prime}+3=f+1$, and no negative terms can cancel the term $x^{f^{\prime}+3}$ (noting $e^{\prime}+f^{\prime} \geq 7$), $2 x^{f+1}$ should be in $Q_{7}(G)$, which is impossible.

If $f^{\prime}=2$, then $e^{\prime}=e+1(\operatorname{by}(1))$. After simplifying $Q_{4}(G)$ and $Q_{4}(H)$, we obtain $Q_{8}(G)=$ $Q_{8}(H)$ where

$$
Q_{8}(G)=-x^{e}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}, \quad Q_{8}(H)=-x^{d^{\prime}}-x^{e^{\prime}+1}+x^{4+e^{\prime}}
$$

We can check that $d^{\prime}=e$ is a solution of $Q_{8}(G)=Q_{8}(H)$. Thus we obtain the solution of $Q(G)=Q(H)$ where G is isomorphic to $K_{4}(2,3,3,1, e, e+2)$ and H is isomorphic to $K_{4}(1,3,4, e, e+1,2)$.

Case $1.3 \max \left\{4+e^{\prime}, 7+d^{\prime}, 5+f^{\prime}\right\}=4+e^{\prime}=5+f$. As the coefficient of $x^{4+e^{\prime}}$ is 2 , we know $5+e$ should also be equal to $4+e^{\prime}$. After simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{9}(G)=Q_{9}(H)$, where

$$
\begin{aligned}
& Q_{9}(G)=-x^{3}-x^{2}-2 x^{e}-x^{e+1}+2 x^{3+e}+x^{7} \\
& Q_{9}(H)=-x^{5}-x^{d^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+x^{5+f^{\prime}}+x^{7+d^{\prime}}
\end{aligned}
$$

Since the lowest term in $Q_{9}(G)$ is $-x^{2}$, we have $d^{\prime}=2$ or $f^{\prime}=2$.
If $d^{\prime}=2$, noting that $-x^{3} \in Q_{3}(G)$, we have $f^{\prime}=3$. Since $d+e+f=d^{\prime}+e^{\prime}+f^{\prime}$, we get $e=f=5, e^{\prime}=6$. It is easy to check $Q_{9}(G)$ is not equal to $Q_{9}(H)$, a contradiction.

If $f^{\prime}=2$, cancelling equal terms of $Q_{9}(G)$ and $Q_{9}(H)$, we get $Q_{10}(G)=Q_{10}(H)$, where

$$
Q_{10}(G)=-2 x^{e}-x^{e+1}+2 x^{3+e}, \quad Q_{10}(H)=-x^{d^{\prime}}-x^{e^{\prime}+1}+x^{7+d^{\prime}}
$$

Because there are five terms in $Q_{10}(G)$, and no positive terms can cancel negative terms, but there are only three terms in $Q_{10}(H), Q_{10}(G) \neq Q_{10}(H)$.

Case $2 e=1$. Cancelling equal terms of $Q(G)$ and $Q(H)$, we have $Q_{11}(G)=Q_{11}(H)$, where

$$
\begin{aligned}
& Q_{11}(G)=-2 x^{3}-x^{2}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{11}(H)=-x^{5}-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{4+e^{\prime}}+x^{5+f^{\prime}}+x^{7+d^{\prime}}
\end{aligned}
$$

Consider the l.p. in $Q_{11}(G)$ and the l.p. in $Q_{11}(H)$, we have $\min \left\{d^{\prime}, e^{\prime}, f^{\prime}\right\}=2$.
Case 2.1 $d^{\prime}=2$. After simplifying, we have $Q_{12}(G)=Q_{12}(H)$, where

$$
\begin{aligned}
& Q_{12}(G)=-2 x^{3}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{12}(H)=-x^{5}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+2 x^{4+e^{\prime}}+x^{5+f^{\prime}}+x^{9}
\end{aligned}
$$

Since $-2 x^{3} \in Q_{12}(G)$, and the power of each positive term is not equal to $3,-2 x^{3} \in Q_{12}(H)$. Then $e^{\prime}+f^{\prime} \leq 6$. It means length of a cycle of graph H is less than 8 , a contradiction.

Case 2.2 $e^{\prime}=2$. As $e^{\prime}+f^{\prime} \geq 7$, we have $f^{\prime} \geq 5$. After simplifying $Q_{11}(G)$ and $Q_{11}(H)$, we have $Q_{13}(G)=Q_{13}(H)$ where

$$
\begin{aligned}
& Q_{13}(G)=-x^{3}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6+d}+x^{5+f} \\
& Q_{13}(H)=-x^{5}-x^{d^{\prime}}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+x^{6}+x^{5+f^{\prime}}+x^{7+d^{\prime}}
\end{aligned}
$$

Since $-x^{3}$ is in $Q_{13}(G), d^{\prime}=3$ (noting $f^{\prime} \geq 5$). Cancelling equal terms, we get $Q_{14}(G)=Q_{14}(H)$ where

$$
\begin{aligned}
& Q_{14}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6+d}+x^{5+f} \\
& Q_{14}(H)=-x^{5}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{3+f^{\prime}}+x^{6}+x^{5+f^{\prime}}+x^{10}
\end{aligned}
$$

By considering the h.p. in $Q_{14}(G)$ and the h.p. in $Q_{14}(H)$, we have $5+f^{\prime}=\max \{6+d, 5+f\}$.
If $5+f^{\prime}=5+f$, we have $d=4$. Thus $G \cong H$ in this case.
If $5+f^{\prime}=6+d$, we know $f=5$ from equation $d+e+f=d^{\prime}+e^{\prime}+f^{\prime}$. We now suppose $f^{\prime}>f=5$, as $5+f=5+f^{\prime}$ has been discussed just now. For $d=f^{\prime}-1>4$, then we note x^{4} is in $Q_{14}(G)$, but not in $Q_{14}(H)$, a contradiction.

Case 2.3 $f^{\prime}=2$. As $e^{\prime}+f^{\prime} \geq 7$, we have $e^{\prime} \geq 5$. By $Q_{11}(G)=Q_{11}(H)$, after simplification, we have $Q_{15}(G)=Q_{15}(H)$ where

$$
\begin{aligned}
& Q_{15}(G)=-x^{3}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{15}(H)=-x^{d^{\prime}}-x^{e^{\prime}}-x^{e^{\prime}+1}+2 x^{4+e^{\prime}}+x^{7}+x^{7+d^{\prime}}
\end{aligned}
$$

Consider $-x^{3}$ in $Q_{15}(G)$. It is due to $Q_{15}(G)=Q_{15}(H)$ that there is one term in $Q_{15}(H)$ which is equal to $-x^{3}$. So we have $d^{\prime}=3$ and then we get

$$
\begin{aligned}
& Q_{16}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{4}+x^{6}+x^{6+d}+x^{5+f} \\
& Q_{16}(H)=-x^{e^{\prime}}-x^{e^{\prime}+1}+2 x^{4+e^{\prime}}+x^{7}+x^{10}
\end{aligned}
$$

Then we note $x^{4} \in Q_{16}(G)$, but the lowest power in $Q_{16}(H)$ is greater than 5 . So one of the negative terms should be $-x^{4}$ in $Q_{16}(G)$. Noting $e=1$ and $f+e \geq 6$, we get $d=4$. From (1), $f=e^{\prime}$. It is easy to say that $Q_{16}(G) \neq Q_{16}(H)$, which is a contradiction. So this lemma holds.

Lemma 3.3 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 3\right)$, then there is no graph G satisfying $G \sim H$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \cong K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 3\right)$.
Then

$$
\begin{aligned}
Q(G)= & -(x+1)\left(x^{2}+2 x^{3}+x^{d}+x^{e}+x^{f}\right)+\left(x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+\right. \\
& \left.x^{6+d}+x^{5+f}+x^{d+e+f}\right) \\
Q(H)= & -(x+1)\left(x+2 x^{2}+x^{3}+x^{c^{\prime}}+x^{e^{\prime}}\right)+\left(x^{3}+x^{5}+x^{3+e^{\prime}}+2 x^{4+c^{\prime}}+\right. \\
& \left.x^{5+e^{\prime}}+x^{c^{\prime}+e^{\prime}}\right) .
\end{aligned}
$$

From Proposition 1, we know that $\min \{d, e, f\}=\min \{d, e\}=1$ and

$$
\begin{equation*}
d+e+f=c^{\prime}+e^{\prime} \tag{5}
\end{equation*}
$$

Cancelling equal terms, we have $Q_{1}(G)=Q_{1}(H)$ where

$$
Q_{1}(G)=-x^{3}-x^{4}-x^{d}-x^{d+1}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{3+e}+
$$

$$
\begin{gathered}
x^{5+e}+x^{6+d}+x^{5+f} \\
Q_{1}(H)=-x-2 x^{2}-x^{c^{\prime}}-x^{c^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}+x^{5}+x^{3+e^{\prime}}+2 x^{4+c^{\prime}}+x^{5+e^{\prime}}
\end{gathered}
$$

Consider $-x$ and $-2 x^{2}$ in $Q_{1}(H)$. It is due to $Q_{1}(G)=Q_{1}(H)$ that there are terms in $Q_{1}(G)$ which are equal to $-x$ and $-2 x^{2}$, so one of d, e, f is 1 , and one of the left two is 2 . However, the girth of G and H is 8 , which needs $d+e \geq 5$ and $e+f \geq 6$. Hence we know there is no solution to $Q(G)=Q(H)$.

Lemma 3.4 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 2\right)$, then there is no graph G satisfying $G \sim H$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \cong K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 2\right)$. Then

$$
\begin{aligned}
Q(G)= & -(x+1)\left(x^{2}+2 x^{3}+x^{d}+x^{e}+x^{f}\right)+\left(x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+\right. \\
& \left.x^{6+d}+x^{5+f}+x^{d+e+f}\right) \\
Q(H)= & -(x+1)\left(x+2 x^{2}+x^{3}+x^{c^{\prime}}+x^{e^{\prime}}\right)+\left(2 x^{4}+x^{3+e^{\prime}}+x^{3+c^{\prime}}+\right. \\
& \left.x^{5+c^{\prime}}+x^{5+e^{\prime}}+x^{c^{\prime}+e^{\prime}}\right) .
\end{aligned}
$$

From Proposition 1, the equation (5) also holds. After simplifying $Q(G)$ and $Q(H)$, we have $Q_{1}(G)=Q_{1}(H)$, where

$$
\begin{aligned}
Q_{1}(G)= & -x^{4}-x^{d}-x^{d+1}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{3+e}+ \\
& x^{5+e}+x^{6+d}+x^{5+f} \\
Q_{1}(H)= & -x-2 x^{2}-x^{c^{\prime}}-x^{c^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}+2 x^{4}+x^{3+e^{\prime}}+x^{3+c^{\prime}}+x^{5+c^{\prime}}+x^{5+e^{\prime}} .
\end{aligned}
$$

It is easy to handle these cases in the same way as the proof of Lemma 3.3.
Lemma 3.5 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(2,2,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then there is no graph G satisfying $G \sim H$ unless $G \cong H$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \cong K_{4}\left(2,2,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Then

$$
\begin{aligned}
Q(G)= & -(x+1)\left(x^{2}+2 x^{3}+x^{d}+x^{e}+x^{f}\right)+\left(x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+\right. \\
& \left.x^{6+d}+x^{5+f}+x^{d+e+f}\right) \\
Q(H)= & -(x+1)\left(2 x^{2}+x^{4}+x^{d^{\prime}}+x^{e^{\prime}}+x^{f^{\prime}}\right)+\left(x^{2+d^{\prime}}+x^{2+f^{\prime}}+2 x^{4+e^{\prime}}+x^{6+d^{\prime}}+\right. \\
& \left.x^{6+f^{\prime}}+x^{d^{\prime}+e^{\prime}+f^{\prime}}\right) .
\end{aligned}
$$

Now both $K_{4}(2,3,3, d, e, f)$ and $K_{4}\left(2,2,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ have the property of symmetry, thus we can assume $e \leq f$ and $e^{\prime} \leq f^{\prime}$. As Proposition 1 shows, equation (1) also holds. Cancelling equal terms, we have $Q_{1}(G)=Q_{1}(H)$ where

$$
\begin{aligned}
Q_{1}(G)= & -x^{3}-x^{4}-x^{d}-x^{d+1}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{3+e}+ \\
& x^{5+e}+x^{6+d}+x^{5+f}
\end{aligned}
$$

$$
\begin{aligned}
Q_{1}(H)= & -x^{2}-x^{5}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+ \\
& 2 x^{4+e^{\prime}}+x^{6+d^{\prime}}+x^{6+f^{\prime}} .
\end{aligned}
$$

Case $1 \min \{d, e, f\}=\min \{d, e\}=1$. From Proposition 1, $\min \left\{d^{\prime}, e^{\prime}, f^{\prime}\right\}=\min \left\{d^{\prime}, e^{\prime}\right\}=1$.
If $d=e^{\prime}=1$. As $e+d \geq 5$ and $d^{\prime}+e^{\prime} \geq 6$, we have $f \geq e \geq 4$, and $f^{\prime} \geq d^{\prime} \geq 5$. After simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{2}(G)=Q_{2}(H)$ where

$$
\begin{aligned}
& Q_{2}(G)=-x^{4}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{7}+x^{5+f} \\
& Q_{2}(H)=-x^{2}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+x^{5}+x^{6+d^{\prime}}+x^{6+f^{\prime}} .
\end{aligned}
$$

Comparing the l.p. in $Q_{2}(G)$ with the l.p. in $Q_{2}(H)$, we know that $Q_{2}(G) \neq Q_{2}(H)$.
It is easy to handle other left cases in the same fashion as Case 1 , and we obtain that $Q(G) \neq Q(H)$ if one of the three parameters is 1 . In the following, we can suppose that $\min \{d, e, f\} \geq 2$.

Case $2 \min \{d, e, f\}=\min \{d, e\}=2$.
Case 2.1 $d=2$. From $d+e \geq 5$, we obtain

$$
\begin{equation*}
f \geq e \geq 3 . \tag{6}
\end{equation*}
$$

After simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{3}(G)=Q_{3}(H)$ where

$$
\begin{aligned}
Q_{3}(G)= & -2 x^{3}-x^{e}-x^{e+1}-x^{f}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{8}+x^{5+f}, \\
Q_{3}(H)= & -x^{5}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+ \\
& 2 x^{4+e^{\prime}}+x^{6+d^{\prime}}+x^{6+f^{\prime}} .
\end{aligned}
$$

Comparing the h.p. in $Q_{3}(G)$ with the h.p. in $Q_{3}(H)$, we have $5+f=\max \left\{4+e^{\prime}, 6+f^{\prime}\right\}$.
Case 2.1.1 max $\left\{4+e^{\prime}, 6+f^{\prime}\right\}=4+e^{\prime}=5+f$. Note the coefficient of $x^{4+e^{\prime}}$ is 2 , we know $5+e$ must also be equal to $4+e^{\prime}$. Cancelling equal terms of $Q_{3}(G)$ and $Q_{3}(H)$, we have $Q_{4}(G)=Q_{4}(H)$ where

$$
\begin{aligned}
& Q_{4}(G)=-2 x^{3}-2 x^{e}-x^{e+1}+2 x^{3+e}+x^{8}, \\
& Q_{4}(H)=-x^{5}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+x^{6+d^{\prime}}+x^{6+f^{\prime}} .
\end{aligned}
$$

The lowest power of $Q_{4}(G)$ is 3 (see (6)) and since $Q_{4}(G)=Q_{4}(H)$, there are two terms in $Q_{4}(H)$ which are equal to $-x^{3}$. Therefore, $d^{\prime}=f^{\prime}=3$. From $e=f=e^{\prime}-1$ and $d+e+f=$ $d^{\prime}+e^{\prime}+f^{\prime}$, we know $e=f=5$. Thus $Q_{4}(G) \neq Q_{4}(H)$.

Case 2.1.2 $\max \left\{4+e^{\prime}, 6+f^{\prime}\right\}=6+f^{\prime}=5+f$. After simplifying $Q_{3}(G)$ and $Q_{3}(H)$, we have $Q_{5}(G)=Q_{5}(H)$ where

$$
\begin{aligned}
Q_{5}(G) & =-2 x^{3}-x^{e}-x^{e+1}-x^{f+1}+x^{3+f}+x^{3+e}+x^{5+e}+x^{8}, \\
Q_{5}(H) & =-x^{5}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+2 x^{4+e^{\prime}}+x^{6+d^{\prime}} .
\end{aligned}
$$

For the same reason as above discussion given, 3 is the l.p. in $Q_{5}(G)$, and for $Q_{5}(G)=Q_{5}(H)$, $-2 x^{3} \in Q_{5}(H)$, we know $d^{\prime}=e^{\prime}=3$ or $d^{\prime}=f^{\prime}=3$.

If $d^{\prime}=e^{\prime}=3$, noting equations $f=f^{\prime}+1$ and $d+e+f=d^{\prime}+e^{\prime}+f^{\prime}$, we know $e=3$. Now after simplifying, we get

$$
\begin{aligned}
& Q_{6}(G)=-x^{3}-x^{f}-x^{f+1}+x^{3+f}+x^{6}+2 x^{8} \\
& Q_{6}(H)=-x^{4}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+2 x^{7}+x^{9}
\end{aligned}
$$

It is easy to see $f^{\prime}=3$, then $Q_{6}(G) \neq Q_{6}(H)$, which means $Q(G) \neq Q(H)$.
If $d^{\prime}=f^{\prime}=3$, then $f=4$ and $e=e^{\prime}$. Simplifying $Q_{5}(G)$ and $Q_{5}(H)$, we obtain

$$
Q_{7}(G)=-x^{5}+x^{7}+x^{3+e}+x^{5+e}+x^{8}, \quad Q_{7}(H)=-x^{4}+x^{5}+2 x^{4+e^{\prime}}+x^{9}
$$

Consider term x^{5}. It is due to $Q_{7}(G)=Q_{7}(H)$ that $2 x^{5}$ must be in $Q_{7}(G)$, which is impossible.

Case 2.2 $e=2$. After cancelling equal terms in $Q_{1}(G)$ and $Q_{1}(H)$, we have $Q_{8}(G)=Q_{8}(H)$ where

$$
\begin{aligned}
Q_{8}(G)= & -2 x^{3}-x^{4}-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{5}+x^{7}+x^{6+d}+x^{5+f} \\
Q_{8}(H)= & -x^{5}-x^{d^{\prime}}-x^{d^{\prime}+1}-x^{e^{\prime}}-x^{e^{\prime}+1}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+d^{\prime}}+x^{2+f^{\prime}}+ \\
& 2 x^{4+e^{\prime}}+x^{6+d^{\prime}}+x^{6+f^{\prime}}
\end{aligned}
$$

Consider $-2 x^{3}$ in $Q_{8}(G)$. Because

$$
\begin{equation*}
d+e \geq 5, \quad f+e \geq 6 \tag{7}
\end{equation*}
$$

3 is l.p. in $Q_{8}(G)$. So two cases need to be considered.
Case 2.2.1 $d^{\prime}=e^{\prime}=3$. After simplifying, we obtain $Q_{9}(G)=Q_{9}(H)$ where

$$
\begin{aligned}
& Q_{9}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{5}+x^{6+d}+x^{5+f} \\
& Q_{9}(H)=-x^{4}-x^{f^{\prime}}-x^{f^{\prime}+1}+x^{2+f^{\prime}}+x^{7}+x^{9}+x^{6+f^{\prime}}
\end{aligned}
$$

Comparing the h.p. of $Q_{9}(G)$ with the h.p. of $Q_{9}(H)$, we obtain $6+f^{\prime}=\max \{6+d, 5+f\}$.
If $6+f^{\prime}=6+d$, then we know $f=4$ for $d+e+f=d^{\prime}+e^{\prime}+f^{\prime}$. Thus $G \cong H$.
If $6+f^{\prime}=5+f$, then $d=3$. It is easy to get $f=f^{\prime}+1=4$, so $f^{\prime}=d=3$. We can see this is just a special case of $6+f^{\prime}=6+d$.

Case 2.2.2 $d^{\prime}=f^{\prime}=3$. By $Q_{8}(G)=Q_{8}(H)$, and after simplifying, we obtain $Q_{10}(G)=Q_{10}(H)$ where

$$
\begin{aligned}
& Q_{10}(G)=-x^{d}-x^{d+1}-x^{f}-x^{f+1}+x^{2+d}+x^{3+f}+x^{7}+x^{6+d}+x^{5+f} \\
& Q_{10}(H)=-x^{4}-x^{e^{\prime}}-x^{e^{\prime+1}}+2 x^{4+e^{\prime}}+2 x^{9}
\end{aligned}
$$

The highest power of $Q_{10}(H)$ is $\max \left\{4+e^{\prime}, 9\right\}$, and the coefficient of highest term is at least 2 . As $d \geq 3, f \geq 4$ (see (7)), $6+d$ must be equal to $5+f$.

If $6+d=5+f=4+e^{\prime}$, we get $d+1=f=6, e^{\prime}=7$, since $d+e+f=d^{\prime}+e^{\prime}+f^{\prime}$. Thus $Q_{10}(G) \neq Q_{10}(H)$.

If $6+d=5+f=9$, then $d+1=f=4$, and $e^{\prime}=3$. Thus $G \cong H$. So this lemma holds.

Lemma 3.6 If G is in the type of $K_{4}(2,3,3, d, e, f)$, and H is in the type of $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 2\right)$, then there is no graph G satisfying $G \sim H$.

Proof From Proposition 2, we know that $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 2\right)$ is chromatically unique.
Theorem 3.7 K_{4}-homeomorphs $K_{4}(2,3,3, d, e, f)$ with girth 8 is not χ-unique if and only if it is isomorphic to $K_{4}(2,3,3,1,6, \alpha)(\alpha \geq 6), K_{4}(2,3,3,1, \beta, \beta+2)(\beta \geq 4)$, or $K_{4}(2,3,3,1,5,6)$.

Proof Let G and H be two graphs such that $G \cong K_{4}(2,3,3, d, e, f)$ and $H \sim G$. Since the girth of G is 8 , there is at most one 1 among d, e and f. Moreover, from (ii) and (iii) of Proposition 2.1, it follows that H is a K_{4}-homeomorph with girth 8 . So H must be one of the following 7 types.

Type 1. $K_{4}\left(1,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7$.
Type 2. $K_{4}\left(1,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 5, d^{\prime}+f^{\prime} \geq 4, e^{\prime}+f^{\prime} \geq 7$.
Type 3. $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 3\right)$, where $c^{\prime} \geq 5, e^{\prime} \geq 4$.
Type 4. $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 2\right)$, where $e^{\prime} \geq c \geq 5$.
Type 5. $K_{4}\left(2,3,3, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 6, f^{\prime} \geq e^{\prime} \geq 1$.
Type 6. $K_{4}\left(2,2,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 4, f^{\prime} \geq d^{\prime} \geq 1$.
Type 7. $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 2\right)$, where $e^{\prime} \geq c^{\prime} \geq 4$.
From Lemma 1 and the lemmas in this section, we get the conclusion.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
[2] Chongyun CHAO, Lianchang ZHAO. Chromatic polynomials of a family of graphs. Ars Combin., 1983, 15: 111-129.
[3] K. M. KOH, K. L. TEO. The search for chromatically unique graphs. Graphs Combin., 1990, 6(3): 259-285.
[4] Zhiyi GUO, E. G. JR. WHITEHEAD. Chromaticity of a family of K_{4} homeomorphs. Discrete Math., 1997, 172(1-3): 53-58.
[5] E. G. JR. WHITEHEAD, Lianchang ZHAO. Chromatic uniqueness and equivalence of K_{4} homeomorphs. J. Graph Theory, 1984, 8(3): 355-364.
[6] Haizhen REN. On the chromaticity of K_{4} homeomorphs. Discrete Math., 2002, 252: 247-257.
[7] Yanling PENG, Ruying LIU. Chromaticity of a family of K_{4}-homeomorphs. Discrete Math., 2002, 258(1-3): 161-177.
[8] Yanling PENG. Chromatic uniqueness of a family of K_{4}-homeomorphs. Discrete Math., 2008, 308(24): 6132-6140.
[9] Yanling PENG. Chromaticity of $K_{4}(2,3,3, \delta, \varepsilon, \eta)$. J. Math. Study, 2003, 36(4): 433-436. (in Chinese)
[10] Yanling PENG. Another family of chromatically unique graphs. Graphs Combin., 1995, 11(3): 285-291.

[^0]: Received June 2, 2010; Accepted November 20, 2010
 Supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China. (Grant No. 10871189).

 * Corresponding author

 E-mail address: swinna@mail.ustc.edu.cn (Weina SHI); ylpan@ustc.edu.cn (Yongliang PAN); fredrec1916@gmail. com (Yan ZHAO)

