Chromatic Uniqueness of K_4 -Homeomorphs with Girth 8

Weina SHI¹, Yongliang PAN^{1,*}, Yan ZHAO²

- Department of Mathematics, University of Science and Technology of China, Anhui 230026, P. R. China;
- 2. Institute of Electronics Engineering, China Academy of Engineering Physics, Sichuan 621900, P. R. China

Abstract In this paper, we determine all graphs of K_4 -homeomorphs of girth 8 which are chromatically unique.

Keywords chromatic polynomial; chromatically unique graph; K_4 -homeomorph.

MR(2010) Subject Classification 05C15

1. Introduction

All graphs considered here are finite and simple. For notations and terminology not defined here, we refer to [1]. Let G be a graph and $P(G; \lambda)$ be the chromatic polynomial of G. Two graphs G and H are chromatically equivalent, denoted by $G \sim H$, if P(G) = P(H). A graph G is chromatically unique (or simply χ -unique) if G is isomorphic to H whenever $G \sim H$.

A K_4 -homeomorph is a subdivision of the complete graph K_4 which is denoted by $K_4(a,b,c,d,e,f)$. $K_4(a,b,c,d,e,f)$ is a graph that the six edges of K_4 are replaced by the six paths of length a,b,c,d,e,f, respectively, as shown in Figure 1. The study of the chromaticity of K_4 -homeomorphs which have girth 3, 4, 5, 6 or 7 has been settled (see [8] and the references therein). When referring to the chromaticity of K_4 -homeomorphs with girth 8, there are 13 types altogether, which are $K_4(1,1,6,d,e,f)$, $K_4(1,1,c,1,e,5)$, $K_4(1,1,c,2,e,4)$, $K_4(1,2,c,1,e,4)$, $K_4(1,1,c,3,e,3)$, $K_4(1,3,c,1,e,3)$, $K_4(2,3,3,d,e,f)$, $K_4(1,2,5,d',e',f')$, $K_4(1,3,4,d',e',f')$, $K_4(1,2,c,2,e,3)$, $K_4(1,2,c,3,e,2)$, $K_4(2,3,3,d,e,f)$, $K_4(2,2,4,d,e,f)$, $K_4(2,2,c,2,e,2)$. As we know, only the chromaticity of the ones with at least 2 paths of length 1 have been obtained among all those K_4 -homeomorphs with girth 8 (see [4,7,10]). In this article, we will discuss the chromaticity of the others. If we write all the whole, the paper will be too long. Therefore we only write one case $K_4(2,3,3,d,e,f)$ (as Figure 2) of them here and the details of the left cases will be given in other papers.

Received June 2, 2010; Accepted November 20, 2010

Supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China. (Grant No. 10871189).

E-mail address: swinna@mail.ustc.edu.cn (Weina SHI); ylpan@ustc.edu.cn (Yongliang PAN); fredrec1916@gmail.com (Yan ZHAO)

^{*} Corresponding author

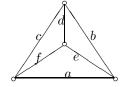


Figure 1 $K_4(a, b, c, d, e, f)$

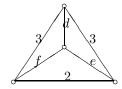


Figure 2 $K_4(2,3,3,d,e,f)$

2. Preparation

The following are some known results.

Proposition 2.1 ([2,5]) Let G and H be chromatically equivalent. Then

- (i) |V(G)| = |V(H)|, |E(G)| = |E(H)|;
- (ii) G and H have the same girth and same number of cycles with the length equal to their girth;
 - (iii) If G is a K_4 -homeomorph, then H is a K_4 -homeomorph as well;
- (iv) If G and H are homeomorphic to K_4 , then both the minimum values of parameters and the number of parameters equal to this minimum value of the graphs G and H coincide.

Proposition 2.2 ([6]) The graph $K_4(a, b, c, d, e, f)$ is chromatically unique if exactly four numbers among $\{a, b, c, d, e, f\}$ are the same.

Proposition 2.3 ([7]) Suppose that $G = K_4(a, b, c, d, e, f)$ and $H = K_4(a', b', c', d', e', f')$. If $G \sim H$ and $\{a, b, c, d, e, f\} = \{a', b', c', d', e', f'\}$ as multisets, then $G \cong H$.

Proposition 2.4 ([9]) G and H are both in the type of $K_4(2,3,3,d,e,f)$, then P(G) = P(H) if and only if $G \cong H$.

3. Main results and proofs

In the following, the girth of any graph we mentioned is 8.

Lemma 3.1 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(1,2,5,d',e',f')$, then $G \sim H$ if G is isomorphic to $K_4(2,3,3,1,6,f)$, $K_4(2,3,3,1,4,6)$, or $K_4(2,3,3,1,5,6)$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \cong K_4(1,2,5,d',e',f')$. Since the girth of G is 8, there is at most one 1 among d,e and f.

Let

$$Q(K_4(a,b,c,d,e,f)) = -(x+1)(x^a + x^b + x^c + x^d + x^e + x^f) + x^{a+d} + x^{b+f} + x^{c+e} + x^{a+b+e} + x^{b+c+d} + x^{a+c+f} + x^{d+e+f}.$$

Let $x = 1 - \lambda$. Then it follows from [3] that the chromatic polynomial of $K_4(a, b, c, d, e, f)$ is

$$P(K_4(a,b,c,d,e,f)) = (-1)^{n+1} \frac{x}{(x-1)^2} \Big[(x^2 + 3x + 2) + Q(K_4(a,b,c,d,e,f)) - x^{n+1}) \Big].$$

Hence P(G) = P(H) if and only if Q(G) = Q(H). We solve the equation Q(G) = Q(H) to get all solutions. In the following, we will substitute h.p. for highest power and l.p. for lowest power.

$$\begin{split} Q(G) &= -\,(x+1)(x^2+2x^3+x^d+x^e+x^f) + x^{2+d} + x^{3+f} + x^{3+e} + x^{5+e} + \\ & x^{6+d} + x^{5+f} + x^{d+e+f}, \end{split}$$

$$\begin{split} Q(H) = & -(x+1)(x+x^2+x^5+x^{d'}+x^{e'}+x^{f'}) + x^{1+d'} + x^{2+f'} + x^{3+e'} + x^{5+e'} + x^{7+d'} + x^{6+f'} + x^{d'+e'+f'}. \end{split}$$

Considering the symmetry of the graph $K_4(2,3,3,d,e,f)$, we can assume $e \leq f$. From Proposition 2.1, we have that $\min\{d,e,f\} = \min\{d,e\} = 1$, and

$$d + e + f = d' + e' + f'. (1)$$

There are 2 cases to be considered.

Case 1 min $\{d, e\} = d = 1$. Here we have that Q(G) = Q(H) iff $Q_1(G) = Q_1(H)$, where

$$Q_1(G) = -x^3 - 2x^4 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7 + x^{5+f},$$

$$Q_1(H) = -x^5 - x^6 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+f'} + x^{3+e'} + x^{5+e'} + x^{7+d'} + x^{6+f'}.$$

Since $d + e \ge 5$, we have

$$f \ge e \ge 4. \tag{2}$$

After comparing the powers in $Q_1(G)$ and $Q_1(H)$, we have the h.p. in $Q_1(G)$ is 5+f. Considering the h.p. in $Q_1(G)$ and $Q_1(H)$, we know there are 3 cases to be considered.

Case 1.1 $\max\{5 + e', 7 + d', 6 + f'\} = 5 + e' = 5 + f$. Now from the equation $Q_1(G) = Q_1(H)$, we obtain $Q_2(G) = Q_2(H)$ where

$$Q_2(G) = -x^3 - 2x^4 - x^e - x^{e+1} + x^{3+e} + x^{5+e} + x^7,$$

$$Q_2(H) = -x^5 - x^6 - x^{d'} - x^{f'} - x^{f'+1} + x^{2+f'} + x^{7+d'} + x^{6+f'}.$$

So d' = 4, f' = 3 and e = 6. Thus $K_4(2,3,3,1,6,f) \sim K_4(1,2,5,4,f,3)$.

Case 1.2 $\max\{5 + e', 7 + d', 6 + f'\} = 6 + f' = 5 + f$. After simplifying $Q_1(G)$ and $Q_1(H)$, we obtain $Q_3(G) = Q_3(H)$ and

$$\begin{split} Q_3(G) &= -x^3 - 2x^4 - x^e - x^{e+1} - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7, \\ Q_3(H) &= -x^5 - x^6 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} + x^{2+f'} + x^{3+e'} + x^{5+e'} + x^{7+d'}. \end{split}$$

Now we can assume 5 + e' < 6 + f' since 5 + e' = 5 + f has been discussed in Case 1.1. As $7 + d' \le 6 + f'$, the term $x^{2+f'}$ cannot be cancelled by any negative term in $Q_3(H)$, then none of the terms in $Q_3(H)$ is equal to the term $-x^{f+1}$ in $Q_3(G)$ by noting f + 1 = f' + 2. Therefore, $2x^{2+f'} \in Q_3(G)$. Considering (2), we get 3 + e = 7 = 2 + f'. Thus e = 4, f = 6, f' = 5. Then

 $-3x^4 \in Q_3(G)$, but $-3x^4 \notin Q_3(H)$, a contradiction.

Case 1.3 $\max\{5+e',7+d',6+f'\}=7+d'=5+f$. After discussing the case 5+f=5+e', we can suppose that

$$5 + f > 5 + e'. \tag{3}$$

Cancelling the same terms of $Q_1(G)$ and $Q_1(H)$, we get

$$Q_4(G) = -x^3 - 2x^4 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7,$$

$$Q_4(H) = -x^5 - x^6 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+f'} + x^{3+e'} + x^{5+e'} + x^{6+f'}.$$

Consider $-x^3$ and $-2x^4$ in $Q_4(G)$. It is due to $Q_4(G) = Q_4(H)$ that there are terms in $Q_4(H)$ which are equal to $-x^3$ and $-2x^4$, respectively. The following cases should be considered.

Case 1.3.1 If e' = 3, f' = 4, then e = 4 from equation (1). After simplification, we obtain

$$Q_5(G) = -x^4 - x^f - x^{f+1} + x^{3+f} + x^9 + 2x^7, \quad Q_5(H) = -x^{d'} - x^5 + x^6 + x^8 + x^{10}.$$

No matter what value d' is, $Q_5(G) \neq Q_5(H)$, which means Q(G) is not equal to Q(H).

Case 1.3.2 If e' = 4, f' = 3, here we also have e = 4. After cancelling the same terms, we get $Q_6(G) = Q_6(H)$ where

$$Q_6(G) = -x^4 - x^f - x^{f+1} + x^{3+f} + x^7, \quad Q_6(H) = -x^6 - x^{d'} + x^9.$$

It is easy to see that d'=4 and f=6. Thus we obtain the solution where G is isomorphic to $K_4(2,3,3,1,4,6)$ and H is isomorphic to $K_4(1,2,5,4,4,3)$. That is $K_4(2,3,3,1,4,6) \sim K_4(1,2,5,4,4,3)$.

Case 1.3.3 If d' = e' + 1 = 4, then f = 6 and f' = e. We obtain $Q_7(G) = Q_7(H)$ after simplifying $Q_4(G)$ and $Q_4(H)$ where

$$Q_7(G) = -x^6 + x^9 + x^{3+e} + x^{5+e}, \quad Q_7(H) = -x^5 + x^{2+f'} + x^8 + x^{6+f'}.$$

As $e \geq 4$ (see(2)), the highest terms of $Q_7(G)$ and $Q_7(H)$ are not equal, a contradiction.

Case 1.3.4 If d' = f' + 1 = 4, then f = 6 and e' = e (noting (1)). By (2) and (3), e = 4 or 5. It is easy to see that $Q_4(G) = Q_4(H)$. Thus $K_4(2,3,3,1,4,6) \sim K_4(1,2,5,4,4,3)$, and $K_4(2,3,3,1,5,6) \sim K_4(1,2,5,4,5,3)$.

Case 1.3.5 d' = 3, e' = f' = 4. Then $-3x^5 \in Q_4(H)$, but not in $Q_4(G)$, a contradiction.

Case 2 min $\{d, e\} = e = 1$. Since $d + e \ge 5$, $e + f \ge 6$, we have $d \ge 4$, $f \ge 5$. Cancelling equal terms of Q(G) and Q(H), we know $Q_8(G) = Q_8(H)$ where

$$Q_8(G) = -2x^3 - x^4 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^6 + x^{6+d} + x^{5+f},$$

$$Q_8(H) = -x^5 - x^6 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+f'} + x^{3+e'} + x^{5+e'} + x^{7+d'} + x^{6+f'}.$$

Comparing the l.p. in $Q_8(G)$ and the l.p. in $Q_8(H)$, two of d', e', f' are 3. Since $e' + f' \ge 7$, only two cases need to be considered.

Case 2.1 d' = e' = 3. After cancelling the same terms, we get

$$Q_9(G) = -x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^6 + x^{6+d} + x^{5+f},$$

$$Q_9(H) = -x^5 - x^{f'} - x^{f'+1} + x^{2+f'} + x^8 + x^{10} + x^{6+f'}.$$

Noting $f' \ge 4$, so the h.p. in $Q_9(H)$ is 6 + f'. So 6 + f' = 6 + d or 6 + f' = 5 + f.

If 6 + f' = 6 + d, we obtain f = 5 from (1). Therefore, $Q_9(G) = Q_9(H)$. In fact, H is isomorphic to G in this case.

If 6 + f' = 5 + f, then d = 4 (noting (1)). Cancelling equal terms, we get

$$Q_{10}(G) = -x^4 - x^{f+1} + 2x^6 + x^{3+f}, \quad Q_{10}(H) = -x^{f'} + x^{2+f'} + x^8.$$

When f' + 1 = f = 5, $Q_{10}(G) = Q_{10}(H)$. Thus G and H are also isomorphic.

Case 2.2 d' = f' = 3. Cancelling equal terms of $Q_8(G)$ and $Q_8(H)$, we know $Q_{11}(G) = Q_{11}(H)$ where

$$Q_{11}(G) = -x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^6 + x^{6+d} + x^{5+f},$$

$$Q_{11}(H) = -x^6 - x^{e'} - x^{e'+1} + x^{3+e'} + x^{5+e'} + x^{10} + x^9.$$

As $e' \ge 4$ (by noting $e' + f' \ge 7$), no positive term in $Q_{11}(H)$ is x^6 , thus $-2x^6 \in Q_{11}(G)$. It is easy to see that d = f = 6 or d = f + 1 = 6 or d + 1 = f = 6.

If d = f = 6, we get e' = 7. We can easily see that $Q_{11}(G) \neq Q_{11}(H)$.

If d = f + 1 = 6, we get e' = 6. But $Q_{11}(G) \neq Q_{11}(H)$.

If d+1=f=6, we get e'=6. But $Q_{11}(G) \neq Q_{11}(H)$.

The proof of the lemma is now completed. \Box

Lemma 3.2 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(1,3,4,d',e',f')$, then $G \sim H$ when G is isomorphic to $K_4(2,3,3,1,4,4)$, or $K_4(2,3,3,1,e,e+2)$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \cong K_4(1,3,4,d',e',f')$. As the above discussion, we know

$$\begin{split} Q(G) &= - \ (x+1)(x^2 + 2x^3 + x^d + x^e + x^f) + (x^{2+d} + x^{3+f} + x^{3+e} + x^{5+e} + x^{6+d} + x^{5+f} + x^{d+e+f}), \\ Q(H) &= - \ (x+1)(x+x^3 + x^4 + x^{d'} + x^{e'} + x^{f'}) + (x^{1+d'} + x^{3+f'} + x^{2+f'} + x^{5+f'} + x^{7+d'} + x^{d'+e'+f'}). \end{split}$$

From Proposition 1 and the symmetry of the graph $K_4(2,3,3,d,e,f)$, we know the equation (1) also holds and $\min\{d,e,f\} = \min\{d,e\} = 1$.

Case 1 $\min\{d, e\} = d = 1$. As $d + e \ge 5$, then

$$f \ge e \ge 4. \tag{4}$$

After simplification, we have $Q_1(G) = Q_1(H)$, where

$$Q_1(G) = -x^3 - x^2 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7 + x^{5+f}$$

$$Q_1(H) = -x^5 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + 2x^{4+e'} + x^{5+f'} + x^{7+d'}.$$

By considering the h.p. in $Q_1(G)$ and the h.p. in $Q_1(H)$, we have $5 + f = \max\{4 + e', 7 + d', 5 + f'\}$.

Case 1.1 $\max\{4 + e', 7 + d', 5 + f'\} = 5 + f' = 5 + f$. After simplifying $Q_1(G)$ and $Q_1(H)$, we have $Q_2(G) = Q_2(H)$ where

$$Q_2(G) = -x^3 - x^2 - x^e - x^{e+1} + x^{3+e} + x^{5+e} + x^7,$$

$$Q_2(H) = -x^5 - x^{d'} - x^{e'} - x^{e'+1} + 2x^{4+e'} + x^{7+d'}.$$

Consider $-x^2$ in $Q_2(G)$, we know d'=2 or e'=2.

If d'=2, since $d'+e'\geq 5$ and $-x^3$ is in $Q_2(G)$, we get e'=3. Thus e=4 (see (1)), and $G\cong H$.

If e' = 2, then e = d' + 1 (see (1)). After simplification, we have

$$Q_3(G) = -x^e - x^{e+1} + x^{3+e} + x^{5+e} + x^7$$
, $Q_3(H) = -x^5 - x^{d'} + 2x^6 + x^{7+d'}$.

By considering the h.p. in $Q_3(G)$ and the h.p. in $Q_3(H)$, we know that $Q_3(G) \neq Q_3(H)$, thus Q(G) is not equal to Q(H).

Case 1.2 $\max\{4+e',7+d',5+f'\}=7+d'=5+f$. We have discussed the case 5+f=5+f', so we can assume that 5+f>5+f'. Cancelling the same terms in $Q_1(G)$ and $Q_1(H)$, we have $Q_4(G)=Q_4(H)$ where

$$\begin{aligned} Q_4(G) &= -x^3 - x^2 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7, \\ Q_4(H) &= -x^5 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + 2x^{4+e'} + x^{5+f'}. \end{aligned}$$

Comparing the lowest power of $Q_4(G)$ to the lowest power of $Q_4(H)$, we get $\min\{d', e', f'\} = 2$.

If d'=2, then we get e=f=d'+2=4 (by (4)) and e'+f'=7 (see (1)). Cancelling equal terms, we obtain $Q_5(G)=Q_5(H)$ where

$$Q_5(G) = -x^3 - x^5 - 2x^4 + 3x^7 + x^9,$$

$$Q_5(H) = -x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + 2x^{4+e'} + x^{5+f'}.$$

Consider $3x^7$ in $Q_5(G)$, we know that e' = 3, f' = 4 and then $Q_5(G) = Q_5(H)$. In fact, $K_4(2,3,3,1,4,4) \cong K_4(1,3,4,2,3,4)$.

If e' = 2, we know f' = e + 1 from (1). Cancelling equal terms in $Q_4(G)$ and $Q_4(H)$, we get $Q_6(G) = Q_6(H)$ where

$$Q_6(G) = -x^e - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7,$$

$$Q_6(H) = -x^5 - x^{d'} - x^{f'+1} + x^{3+f'} + 2x^6 + x^{5+f'}.$$

As 5 + f' = 6 + e > 7, and the h.p. in $Q_6(H)$ is 5 + f', then we get 3 + f = 5 + f', that is f = 2 + d' = 2 + f' = 3 + e. After simplification, we have $Q_7(G) = Q_7(H)$, where

$$Q_7(G) = -x^e - x^{f+1} + x^{5+e} + x^7, \quad Q_7(H) = -x^5 - x^{d'} - x^{f'+1} + x^{3+f'} + 2x^6$$

Since f' + 3 = f + 1, and no negative terms can cancel the term $x^{f'+3}$ (noting $e' + f' \ge 7$), $2x^{f+1}$ should be in $Q_7(G)$, which is impossible.

If f' = 2, then e' = e + 1(by(1)). After simplifying $Q_4(G)$ and $Q_4(H)$, we obtain $Q_8(G) = Q_8(H)$ where

$$Q_8(G) = -x^e - x^f - x^{f+1} + x^{3+f} + x^{3+e}, \quad Q_8(H) = -x^{d'} - x^{e'+1} + x^{4+e'}.$$

We can check that d' = e is a solution of $Q_8(G) = Q_8(H)$. Thus we obtain the solution of Q(G) = Q(H) where G is isomorphic to $K_4(2,3,3,1,e,e+2)$ and H is isomorphic to $K_4(1,3,4,e,e+1,2)$.

Case 1.3 $\max\{4+e',7+d',5+f'\}=4+e'=5+f$. As the coefficient of $x^{4+e'}$ is 2, we know 5+e should also be equal to 4+e'. After simplifying $Q_1(G)$ and $Q_1(H)$, we have $Q_9(G)=Q_9(H)$, where

$$Q_9(G) = -x^3 - x^2 - 2x^e - x^{e+1} + 2x^{3+e} + x^7,$$

$$Q_9(H) = -x^5 - x^{d'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + x^{5+f'} + x^{7+d'}.$$

Since the lowest term in $Q_9(G)$ is $-x^2$, we have d'=2 or f'=2.

If d'=2, noting that $-x^3 \in Q_3(G)$, we have f'=3. Since d+e+f=d'+e'+f', we get e=f=5, e'=6. It is easy to check $Q_9(G)$ is not equal to $Q_9(H)$, a contradiction.

If f'=2, cancelling equal terms of $Q_9(G)$ and $Q_9(H)$, we get $Q_{10}(G)=Q_{10}(H)$, where

$$Q_{10}(G) = -2x^e - x^{e+1} + 2x^{3+e}, \quad Q_{10}(H) = -x^{d'} - x^{e'+1} + x^{7+d'}.$$

Because there are five terms in $Q_{10}(G)$, and no positive terms can cancel negative terms, but there are only three terms in $Q_{10}(H)$, $Q_{10}(G) \neq Q_{10}(H)$.

Case 2 e=1. Cancelling equal terms of Q(G) and Q(H), we have $Q_{11}(G)=Q_{11}(H)$, where

$$Q_{11}(G) = -2x^3 - x^2 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^4 + x^6 + x^{6+d} + x^{5+f},$$

$$Q_{11}(H) = -x^5 - x^{d'} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + 2x^{4+e'} + x^{5+f'} + x^{7+d'}.$$

Consider the l.p. in $Q_{11}(G)$ and the l.p. in $Q_{11}(H)$, we have min $\{d', e', f'\} = 2$.

Case 2.1 d'=2. After simplifying, we have $Q_{12}(G)=Q_{12}(H)$, where

$$Q_{12}(G) = -2x^3 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^4 + x^6 + x^{6+d} + x^{5+f},$$

$$Q_{12}(H) = -x^5 - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{3+f'} + 2x^{4+e'} + x^{5+f'} + x^9.$$

Since $-2x^3 \in Q_{12}(G)$, and the power of each positive term is not equal to $3, -2x^3 \in Q_{12}(H)$. Then $e' + f' \le 6$. It means length of a cycle of graph H is less than 8, a contradiction.

Case 2.2 e'=2. As $e'+f'\geq 7$, we have $f'\geq 5$. After simplifying $Q_{11}(G)$ and $Q_{11}(H)$, we have $Q_{13}(G)=Q_{13}(H)$ where

$$Q_{13}(G) = -x^3 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^4 + x^{6+d} + x^{5+f},$$

$$Q_{13}(H) = -x^5 - x^{d'} - x^{f'} - x^{f'+1} + x^{3+f'} + x^6 + x^{5+f'} + x^{7+d'}.$$

Since $-x^3$ is in $Q_{13}(G)$, d'=3 (noting $f'\geq 5$). Cancelling equal terms, we get $Q_{14}(G)=Q_{14}(H)$ where

$$Q_{14}(G) = -x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^4 + x^{6+d} + x^{5+f},$$

$$Q_{14}(H) = -x^5 - x^{f'} - x^{f'+1} + x^{3+f'} + x^6 + x^{5+f'} + x^{10}.$$

By considering the h.p. in $Q_{14}(G)$ and the h.p. in $Q_{14}(H)$, we have $5 + f' = \max\{6 + d, 5 + f\}$. If 5 + f' = 5 + f, we have d = 4. Thus $G \cong H$ in this case.

If 5 + f' = 6 + d, we know f = 5 from equation d + e + f = d' + e' + f'. We now suppose f' > f = 5, as 5 + f = 5 + f' has been discussed just now. For d = f' - 1 > 4, then we note x^4 is in $Q_{14}(G)$, but not in $Q_{14}(H)$, a contradiction.

Case 2.3 f'=2. As $e'+f'\geq 7$, we have $e'\geq 5$. By $Q_{11}(G)=Q_{11}(H)$, after simplification, we have $Q_{15}(G)=Q_{15}(H)$ where

$$Q_{15}(G) = -x^3 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^4 + x^6 + x^{6+d} + x^{5+f},$$

$$Q_{15}(H) = -x^{d'} - x^{e'} - x^{e'+1} + 2x^{4+e'} + x^7 + x^{7+d'}.$$

Consider $-x^3$ in $Q_{15}(G)$. It is due to $Q_{15}(G) = Q_{15}(H)$ that there is one term in $Q_{15}(H)$ which is equal to $-x^3$. So we have d'=3 and then we get

$$Q_{16}(G) = -x^{d} - x^{d+1} - x^{f} - x^{f+1} + x^{2+d} + x^{3+f} + x^{4} + x^{6} + x^{6+d} + x^{5+f},$$

$$Q_{16}(H) = -x^{e'} - x^{e'+1} + 2x^{4+e'} + x^{7} + x^{10}.$$

Then we note $x^4 \in Q_{16}(G)$, but the lowest power in $Q_{16}(H)$ is greater than 5. So one of the negative terms should be $-x^4$ in $Q_{16}(G)$. Noting e = 1 and $f + e \ge 6$, we get d = 4. From (1), f = e'. It is easy to say that $Q_{16}(G) \ne Q_{16}(H)$, which is a contradiction. So this lemma holds. \square

Lemma 3.3 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(1,2,c',2,e',3)$, then there is no graph G satisfying $G \sim H$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \cong K_4(1,2,c',2,e',3)$. Then

$$\begin{split} Q(G) &= -(x+1)(x^2+2x^3+x^d+x^e+x^f) + (x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+x^{6+d}+x^{5+f}+x^{d+e+f}),\\ Q(H) &= -(x+1)(x+2x^2+x^3+x^{c'}+x^{e'}) + (x^3+x^5+x^{3+e'}+2x^{4+c'}+x^{5+e'}+x^{c'+e'}). \end{split}$$

From Proposition 1, we know that $\min\{d, e, f\} = \min\{d, e\} = 1$ and

$$d + e + f = c' + e'. ag{5}$$

Cancelling equal terms, we have $Q_1(G) = Q_1(H)$ where

$$Q_1(G) = -x^3 - x^4 - x^d - x^{d+1} - x^e - x^{e+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^{3+e} + x^{2+d} + x^{2$$

$$\begin{split} x^{5+e} + x^{6+d} + x^{5+f}, \\ Q_1(H) = & -x - 2x^2 - x^{c'} - x^{c'+1} - x^{e'} - x^{e'+1} + x^5 + x^{3+e'} + 2x^{4+c'} + x^{5+e'}. \end{split}$$

Consider -x and $-2x^2$ in $Q_1(H)$. It is due to $Q_1(G) = Q_1(H)$ that there are terms in $Q_1(G)$ which are equal to -x and $-2x^2$, so one of d, e, f is 1, and one of the left two is 2. However, the girth of G and H is 8, which needs $d + e \ge 5$ and $e + f \ge 6$. Hence we know there is no solution to Q(G) = Q(H). \square

Lemma 3.4 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(1,2,c',3,e',2)$, then there is no graph G satisfying $G \sim H$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \cong K_4(1,2,c',3,e',2)$. Then

$$Q(G) = -(x+1)(x^2 + 2x^3 + x^d + x^e + x^f) + (x^{2+d} + x^{3+f} + x^{3+e} + x^{5+e} + x^{6+d} + x^{5+f} + x^{d+e+f}),$$

$$Q(H) = -(x+1)(x+2x^2 + x^3 + x^{c'} + x^{e'}) + (2x^4 + x^{3+e'} + x^{3+c'} + x^{5+c'} + x^{5+e'} + x^{c'+e'}).$$

From Proposition 1, the equation (5) also holds. After simplifying Q(G) and Q(H), we have $Q_1(G) = Q_1(H)$, where

$$Q_1(G) = -x^4 - x^d - x^{d+1} - x^e - x^{e+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^{3+e} + x^{5+e} + x^{6+d} + x^{5+f},$$

$$Q_1(H) = -x - 2x^2 - x^{c'} - x^{c'+1} - x^{e'} - x^{e'+1} + 2x^4 + x^{3+e'} + x^{3+c'} + x^{5+c'} + x^{5+e'}.$$

It is easy to handle these cases in the same way as the proof of Lemma 3.3. \Box

Lemma 3.5 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(2,2,4,d',e',f')$, then there is no graph G satisfying $G \sim H$ unless $G \cong H$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \cong K_4(2,2,4,d',e',f')$. Then

$$\begin{split} Q(G) &= -(x+1)(x^2+2x^3+x^d+x^e+x^f) + (x^{2+d}+x^{3+f}+x^{3+e}+x^{5+e}+x^{6+d}+x^{5+f}+x^{d+e+f}), \\ Q(H) &= -(x+1)(2x^2+x^4+x^{d'}+x^{e'}+x^{f'}) + (x^{2+d'}+x^{2+f'}+2x^{4+e'}+x^{6+d'}+x^{6+f'}+x^{d'+e'+f'}). \end{split}$$

Now both $K_4(2,3,3,d,e,f)$ and $K_4(2,2,4,d',e',f')$ have the property of symmetry, thus we can assume $e \leq f$ and $e' \leq f'$. As Proposition 1 shows, equation (1) also holds. Cancelling equal terms, we have $Q_1(G) = Q_1(H)$ where

$$Q_1(G) = -x^3 - x^4 - x^d - x^{d+1} - x^e - x^{e+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^{3+e} + x^{5+e} + x^{6+d} + x^{5+f},$$

$$Q_1(H) = -x^2 - x^5 - x^{d'} - x^{d'+1} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+d'} + x^{2+f'} + 2x^{4+e'} + x^{6+d'} + x^{6+f'}.$$

Case 1 $\min\{d, e, f\} = \min\{d, e\} = 1$. From Proposition 1, $\min\{d', e', f'\} = \min\{d', e'\} = 1$.

If d = e' = 1. As $e + d \ge 5$ and $d' + e' \ge 6$, we have $f \ge e \ge 4$, and $f' \ge d' \ge 5$. After simplifying $Q_1(G)$ and $Q_1(H)$, we have $Q_2(G) = Q_2(H)$ where

$$Q_2(G) = -x^4 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^7 + x^{5+f},$$

$$Q_2(H) = -x^2 - x^{d'} - x^{d'+1} - x^{f'} - x^{f'+1} + x^{2+d'} + x^{2+f'} + x^5 + x^{6+d'} + x^{6+f'}.$$

Comparing the l.p. in $Q_2(G)$ with the l.p. in $Q_2(H)$, we know that $Q_2(G) \neq Q_2(H)$.

It is easy to handle other left cases in the same fashion as Case 1, and we obtain that $Q(G) \neq Q(H)$ if one of the three parameters is 1. In the following, we can suppose that $\min\{d,e,f\} \geq 2$.

Case 2 $\min\{d, e, f\} = \min\{d, e\} = 2$.

Case 2.1 d=2. From $d+e\geq 5$, we obtain

$$f \ge e \ge 3. \tag{6}$$

After simplifying $Q_1(G)$ and $Q_1(H)$, we have $Q_3(G) = Q_3(H)$ where

$$Q_3(G) = -2x^3 - x^e - x^{e+1} - x^f - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^8 + x^{5+f},$$

$$Q_3(H) = -x^5 - x^{d'} - x^{d'+1} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+d'} + x^{2+f'} + x^{4+e'} + x^{6+f'}.$$

Comparing the h.p. in $Q_3(G)$ with the h.p. in $Q_3(H)$, we have $5 + f = \max\{4 + e', 6 + f'\}$.

Case 2.1.1 $\max\{4+e',6+f'\}=4+e'=5+f$. Note the coefficient of $x^{4+e'}$ is 2, we know 5+e must also be equal to 4+e'. Cancelling equal terms of $Q_3(G)$ and $Q_3(H)$, we have $Q_4(G)=Q_4(H)$ where

$$\begin{split} Q_4(G) &= -2x^3 - 2x^e - x^{e+1} + 2x^{3+e} + x^8, \\ Q_4(H) &= -x^5 - x^{d'} - x^{d'+1} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+d'} + x^{2+f'} + x^{6+d'} + x^{6+f'}. \end{split}$$

The lowest power of $Q_4(G)$ is 3 (see (6)) and since $Q_4(G) = Q_4(H)$, there are two terms in $Q_4(H)$ which are equal to $-x^3$. Therefore, d' = f' = 3. From e = f = e' - 1 and d + e + f = d' + e' + f', we know e = f = 5. Thus $Q_4(G) \neq Q_4(H)$.

Case 2.1.2 $\max\{4 + e', 6 + f'\} = 6 + f' = 5 + f$. After simplifying $Q_3(G)$ and $Q_3(H)$, we have $Q_5(G) = Q_5(H)$ where

$$Q_5(G) = -2x^3 - x^e - x^{e+1} - x^{f+1} + x^{3+f} + x^{3+e} + x^{5+e} + x^8,$$

$$Q_5(H) = -x^5 - x^{d'} - x^{d'+1} - x^{e'} - x^{e'+1} - x^{f'} + x^{2+d'} + x^{2+f'} + 2x^{4+e'} + x^{6+d'}.$$

For the same reason as above discussion given, 3 is the l.p. in $Q_5(G)$, and for $Q_5(G) = Q_5(H)$, $-2x^3 \in Q_5(H)$, we know d' = e' = 3 or d' = f' = 3.

If d' = e' = 3, noting equations f = f' + 1 and d + e + f = d' + e' + f', we know e = 3. Now after simplifying, we get

$$Q_6(G) = -x^3 - x^f - x^{f+1} + x^{3+f} + x^6 + 2x^8,$$

$$Q_6(H) = -x^4 - x^{f'} - x^{f'+1} + x^{2+f'} + 2x^7 + x^9.$$

It is easy to see f'=3, then $Q_6(G)\neq Q_6(H)$, which means $Q(G)\neq Q(H)$.

If d' = f' = 3, then f = 4 and e = e'. Simplifying $Q_5(G)$ and $Q_5(H)$, we obtain

$$Q_7(G) = -x^5 + x^7 + x^{3+e} + x^{5+e} + x^8, \quad Q_7(H) = -x^4 + x^5 + 2x^{4+e'} + x^9.$$

Consider term x^5 . It is due to $Q_7(G) = Q_7(H)$ that $2x^5$ must be in $Q_7(G)$, which is impossible.

Case 2.2 e = 2. After cancelling equal terms in $Q_1(G)$ and $Q_1(H)$, we have $Q_8(G) = Q_8(H)$ where

$$Q_8(G) = -2x^3 - x^4 - x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^5 + x^7 + x^{6+d} + x^{5+f},$$

$$Q_8(H) = -x^5 - x^{d'} - x^{d'+1} - x^{e'} - x^{e'+1} - x^{f'} - x^{f'+1} + x^{2+d'} + x^{2+f'} + x^{2+f'} + x^{4+e'} + x^{6+d'} + x^{6+f'}.$$

Consider $-2x^3$ in $Q_8(G)$. Because

$$d + e \ge 5, \quad f + e \ge 6, \tag{7}$$

3 is l.p. in $Q_8(G)$. So two cases need to be considered.

Case 2.2.1 d' = e' = 3. After simplifying, we obtain $Q_9(G) = Q_9(H)$ where

$$Q_9(G) = -x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^5 + x^{6+d} + x^{5+f},$$

$$Q_9(H) = -x^4 - x^{f'} - x^{f'+1} + x^{2+f'} + x^7 + x^9 + x^{6+f'}.$$

Comparing the h.p. of $Q_9(G)$ with the h.p. of $Q_9(H)$, we obtain $6 + f' = \max\{6 + d, 5 + f\}$.

If 6 + f' = 6 + d, then we know f = 4 for d + e + f = d' + e' + f'. Thus $G \cong H$.

If 6 + f' = 5 + f, then d = 3. It is easy to get f = f' + 1 = 4, so f' = d = 3. We can see this is just a special case of 6 + f' = 6 + d.

Case 2.2.2 d' = f' = 3. By $Q_8(G) = Q_8(H)$, and after simplifying, we obtain $Q_{10}(G) = Q_{10}(H)$ where

$$Q_{10}(G) = -x^d - x^{d+1} - x^f - x^{f+1} + x^{2+d} + x^{3+f} + x^7 + x^{6+d} + x^{5+f},$$

$$Q_{10}(H) = -x^4 - x^{e'} - x^{e'+1} + 2x^{4+e'} + 2x^9.$$

The highest power of $Q_{10}(H)$ is $\max\{4+e',9\}$, and the coefficient of highest term is at least 2. As $d \geq 3$, $f \geq 4$ (see (7)), 6+d must be equal to 5+f.

If 6+d=5+f=4+e', we get d+1=f=6, e'=7, since d+e+f=d'+e'+f'. Thus $Q_{10}(G)\neq Q_{10}(H)$.

If 6+d=5+f=9, then d+1=f=4, and e'=3. Thus $G\cong H$. So this lemma holds. \square

Lemma 3.6 If G is in the type of $K_4(2,3,3,d,e,f)$, and H is in the type of $K_4(2,2,c',2,e',2)$, then there is no graph G satisfying $G \sim H$.

Proof From Proposition 2, we know that $K_4(2,2,c',2,e',2)$ is chromatically unique. \Box

Theorem 3.7 K_4 -homeomorphs $K_4(2, 3, 3, d, e, f)$ with girth 8 is not χ -unique if and only if it is isomorphic to $K_4(2, 3, 3, 1, 6, \alpha)$ ($\alpha \ge 6$), $K_4(2, 3, 3, 1, \beta, \beta + 2)$ ($\beta \ge 4$), or $K_4(2, 3, 3, 1, 5, 6)$.

Proof Let G and H be two graphs such that $G \cong K_4(2,3,3,d,e,f)$ and $H \sim G$. Since the girth of G is 8, there is at most one 1 among d,e and f. Moreover, from (ii) and (iii) of Proposition 2.1, it follows that H is a K_4 -homeomorph with girth 8. So H must be one of the following 7 types.

```
Type 1. K_4(1, 2, 5, d', e', f'), where d' + e' \ge 6, d' + f' \ge 5, e' + f' \ge 7.
```

Type 2. $K_4(1, 3, 4, d', e', f')$, where $d' + e' \ge 5$, $d' + f' \ge 4$, $e' + f' \ge 7$.

Type 3. $K_4(1, 2, c', 2, e', 3)$, where $c' \ge 5$, $e' \ge 4$.

Type 4. $K_4(1, 2, c', 3, e', 2)$, where $e' \ge c \ge 5$.

Type 5. $K_4(2,3,3,d',e',f')$, where $d'+e' \geq 5$, $e'+f' \geq 6$, $f' \geq e' \geq 1$.

Type 6. $K_4(2, 2, 4, d', e', f')$, where $d' + e' \ge 6$, $d' + f' \ge 4$, $f' \ge d' \ge 1$.

Type 7. $K_4(2, 2, c', 2, e', 2)$, where $e' \ge c' \ge 4$.

From Lemma 1 and the lemmas in this section, we get the conclusion. \Box

References

- J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.
- [2] Chongyun CHAO, Lianchang ZHAO. Chromatic polynomials of a family of graphs. Ars Combin., 1983, 15: 111–129.
- [3] K. M. KOH, K. L. TEO. The search for chromatically unique graphs. Graphs Combin., 1990, 6(3): 259–285.
- [4] Zhiyi GUO, E. G. JR. WHITEHEAD. Chromaticity of a family of K₄ homeomorphs. Discrete Math., 1997, 172(1-3): 53-58.
- [5] E. G. JR. WHITEHEAD, Lianchang ZHAO. Chromatic uniqueness and equivalence of K₄ homeomorphs. J. Graph Theory, 1984, 8(3): 355–364.
- [6] Haizhen REN. On the chromaticity of K₄ homeomorphs. Discrete Math., 2002, **252**: 247–257.
- [7] Yanling PENG, Ruying LIU. Chromaticity of a family of K₄-homeomorphs. Discrete Math., 2002, 258(1-3): 161–177.
- [8] Yanling PENG. Chromatic uniqueness of a family of K₄-homeomorphs. Discrete Math., 2008, 308(24): 6132–6140.
- [9] Yanling PENG. Chromaticity of $K_4(2,3,3,\delta,\varepsilon,\eta)$. J. Math. Study, 2003, **36**(4): 433–436. (in Chinese)
- [10] Yanling PENG. Another family of chromatically unique graphs. Graphs Combin., 1995, 11(3): 285–291.