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1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn} and

edge set E(G). Denote by d(vi) the degree of the graph G, N(vi) the set of vertices which are

adjacent to vertex vi. Let A(G) be the adjacency matrix and Q(G) = D(G) + A(G) be the

signless Laplacian matrix of the graph G, where D(G) = diag(d(v1), d(v2), . . . , d(vn)) denotes

the diagonal matrix of vertex degrees of G. It is well known that Q(G) is a positive semidefinite

matrix. Hence the eigenvalues of Q(G) can be ordered as

q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) ≥ 0.

The largest eigenvalues of A(G), L(G) = D(G) − A(G) and Q(G) are called the spectral

radius, the Laplacian spectral radius and the signless Laplacian spectral radius of G, respectively.

The signless Laplacian spectral radius is denoted by q(G) for convenience. It is easy to see that if

G is connected, then Q(G) is nonegative irreducible matrix. By the Perron-Frobenius theory, we

can see that q(G) has multiplicity one and exists a unique positive unit eigenvector corresponding

to q(G). We refer to such an eigenvector as the Perron vector of G.

A tricyclic graph is a connected graph with the number of edges equal to the number of

vertices plus two. Denote by T k
n the set of tricyclic graphs on n vertices and k pendant vertices.

Recently, the problem concerning graphs with maximal spectral radius or the Laplacian spectral

radius of a given class of graphs has been studied by many authors. Guo [1] determined the graph
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with the largest spectral radius among all the unicyclic and bicyclic graphs with n vertices and k

pendant vertices. Guo [2] determined the graph with the largest Laplacian spectral radius among

all the unicyclic and bicyclic graphs with n vertices and k pendant vertices. Guo and Wang [3]

also determined the graph with the largest Laplacian spectral radius among all the tricyclic

graphs with n vertices and k pendant vertices. Geng and Li [4] determined the graph with the

largest spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. In

this paper, we determine the unique graph with the largest signless Laplacian spectral radius

among all the tricyclic and graph with n vertices and k pendant vertices.

Denote by Cn the cycle on n vertices. And a path P : vv1v2 · · · vk is such a graph that v1

joins v and vi+1 joins vi (i = 1, 2, . . . , k − 1).

2. Preliminaries

Let G − x or G − xy denote the graph obtained from G by deleting the vertex x ∈ V (G)

or the edge xy ∈ E(G). Similarly, G + xy is a graph obtained from G by adding an edge xy,

where x, y ∈ V (G) and xy /∈ E(G). A pendant vertex of G is a vertex with degree 1. A path

P : v0v1v2 · · · vk in G is called a pendant path, where vi is adjacent to vi+1 (i = 0, 1, . . . , k − 1)

and d(v1) = d(v2) = · · · = d(vk−1) = 2, d(vk) = 1. If k = 1, then we say vv1 is a pendant edge

of the graph G. k paths Pl1 , Pl2 , . . . , Plk are said to have almost equal lengths if l1, l2, . . . , lk

satisfy |li − lj| ≤ 1 for 1 ≤ i, j ≤ k. We know, by [5], that a tricyclic graph G contains at

least 3 cycles and at most 7 cycles, furthermore, there do not exist 5 cycles in G. Then let

T k
n = T k,3

n

⋃
T k,,4

n

⋃
T k,6

n

⋃
T k,7

n , where T k,i
n denotes the set of tricyclic graphs in T k

n with exact

i cycles for i = 3, 4, 6, 7.

In order to complete the proof of our main result, we need the following lemmas.

Lemma 1 ([6, 7]) Let G be a connected graph, and u, v be two vertices of G. Suppose that

v1, v2, . . . , vs ∈ N(v)\(N(u)
⋃
{u}) (1 ≤ s ≤ d(v)) and x = (x1, x2, . . . , xn) is the Perron vector

of G, where xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph obtained from G

by deleting the edges vvi and adding the edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then q(G) < q(G∗).

Let G be a connected graph, and uv ∈ E(G). The graph Guv is obtained from G by

subdividing the edge uv, i.e., adding a new vertex w and edges wu, wv in G − uv.

An internal path of a graph G is a sequence of vertices v1, v2, . . . , vm with m ≥ 2 such that:

(1) The vertices in the sequences are distinct (except possibly v1 = vm);

(2) vi is adjacent to vi+1 (i = 1, 2, . . . , m − 1);

(3) The vertex degrees d(vi) satisfy d(v1) ≥ 3, d(v2) = · · · = d(vm−1) = 2 (unless m = 2)

and d(vm) ≥ 3.

By similar reasoning to that of Theorem 3.1 of [8] and Lemmas 2 and 7 of [15], we have the

following result.

Lemma 2 Let P : v1v2 · · · vk (k ≥ 2) be an internal path of a connected graph G. Let G′ be a

graph obtained from G by subdividing some edge of P . Then we have q(G′) < q(G).
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Let mi =

∑
vivj∈E

d(vj)

d(vi)
be the average of the degrees of the vertices of G adjacent to vi,

which is called average 2-degree of vertex vi.

From the proof of Theorem 3 of [9] and Theorem 2.10 of [10], we have the following result.

Lemma 3 If G is a graph, then

q(G) ≤ max{
du(du + mu) + dv(dv + mv)

du + dv

: uv ∈ E(G)}

with equality if and only if G is regular or semiregular bipartite.

Let S(G) be a graph obtained by subdividing every edge of G. Then

Lemma 4 ([11, 12]) Let G be a graph on n vertices and m edges, PG(x) = det(xI − A(G)),

QG(x) = det(xI − Q(G)). Then PS(G) = xm−nQG(x2).

Lemma 5 Let u be a vertex of a connected graph G and d(u) ≥ 2. Let Gk,l (k, l ≥ 0) be the

graph obtained from G by attaching two pendant paths of lengths k and l at u, respectively. If

k ≥ l ≥ 1, then q(Gk,l) > q(Gk+1,l−1).

Proof Let S1 = S(Gk,l) and S2 = S(Gk+1,l−1). It is easy to see that S1 (S2) can be obtained

from S(G) by attaching pendant paths of lengths 2k − 1 (2k + 1) and 2l − 1 (2l − 3) at u,

respectively. Then applying Theorem 5 ([13]) and Lemma 4, we have

ρ(S1) > ρ(S2),

and consequently q(Gk,l) > q(Gk+1,l−1). �

Lemma 6 ([6]) Let G be a simple graph on n vertices which has at least one edge. Then

△(G) + 1 ≤ q(G) ≤ 2△(G),

where △(G) is the largest degree of G. Moreover, if G is connected, then the first equality holds

if and only if G is the star K1,n−1; and the second equality holds if and only if G is a regular

graph.

Lemma 7 ([14]) Let e be an edge of the graph G. Then

q1(G) ≥ q1(G − e) ≥ q2(G) ≥ q2(G − e) ≥ · · · ≥ qn(G) ≥ qn(G − e) ≥ 0.

Let B3(1) be a tricyclic graph in T k
n obtained from the graph G1 in Figure 1 by attaching

k paths with almost equal lengths to the vertex with degree 6.

Let B4(1) be a tyicyclic graph in T k
n obtained from the graph G2 in Figure 1 by attaching

k paths with almost equal lengths to the vertex with degree 5.

Let B6(1) be a tyicyclic graph in T k
n obtained from the graph G3 in Figure 1 by attaching

k paths with almost equal lengths to some vertex with degree 4.

Let B7(1) be a tyicyclic graph in T k
n obtained from K4 by attaching k paths with almost

equal lengths to a vertex of K4.
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If G ∈ T k,3
n , then G is obtained by attaching some trees to some vertices of graph G′, where

G′ ∈ {T1, T2, T3, T4, T5, T6, T7} (see Figure 1).

If G ∈ T k,4
n , then G is obtained by attaching some trees to some vertices of graph G′, where

G′ ∈ {T8, T9, T10, T11} (see Figure 1).

If G ∈ T k,6
n , then G is obtained by attaching some trees to some vertices of graph G′, where

G′ ∈ {T12, T13, T14} (see Figure 1).

If G ∈ T k,7
n , then G is obtained by attaching some trees to some vertices of graph T15 (see

Figure 1).

1
G

2
G

3
G

1
T

1
v

2
T

u

3
T

4
T 5

T

6
T

7
T

8
T

9
T

10
T

11
T

12
T 13

T
15

T
14

T

pC hC
r

Figure 1 Graphs G1 − G3 T1 − T15

3. Main results

Lemma 8 If both B3(1) and B4(1) exist, then q(B4(1)) < q(B3(1)).

Proof Let

t1 =
(k + 5)(k + 5 + 2k+2+3+2+2+2

k+5 ) + 3(3 + 2+k+5+2
3 )

k + 5 + 3
,

t2 =
(k + 5)(k + 5 + 2k+2+3+2+2+2

k+5 ) + 2(2 + 3+k+5
2 )

k + 5 + 2
,

t3 =
(k + 5)(k + 5 + 2k+2+3+2+2+2

k+5 ) + 2(2 + 2+k+5
2 )

k + 5 + 2
,

t4 =
(k + 5)(k + 5 + 2k+2+3+2+2+2

k+5 ) + 2(2 + k+5+2
2 )

k + 5 + 2
,

t5 =
3(3 + 2+2+k+5

3 ) + 2(2 + 3+k+5
2 )

3 + 2
,
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t6 =
2(2 + k+5+2

2 ) + 2(2 + k+5+2
2 )

2 + 2
,

t7 =
2(2 + k+5+2

2 ) + 2(2 + 2+2
2 )

2 + 2
,

t8 =
2(2 + 2+2

2 ) + 2(2 + 2+2
2 )

2 + 2
,

t9 =
(k + 5)(k + 5 + 2k+2+3+2+2+2

k+5 ) + 1(1 + k+5
1 )

k + 5 + 1
.

By Lemmas 3 and 6, we can get

q(B4(1)) ≤ max{t1, t2, t3, t4, t5, t6, t7, t8, t9} ≤ k + 7 = △(B3(1)) + 1 < q(B3(1)).

By similar reasoning to that of Lemma 8, we can get the following lemma.

Lemma 9 If B3(1), B6(1) and B7(1) exist, then q(B6(1)) < q(B3(1)), q(B7(1)) < q(B3(1)).

Theorem 1 Let G ∈ T k,3
n . Then q(G) ≤ q(B3(1)); the equality holds if and only if G ∼= B3(1).

Proof Choose G ∈ T k,3
n such that q(G) is as large as possible. Denote by Cp, Cq, Ch the three

cycles of G, respectively.

We first prove that G must be obtained by attaching some trees to some vertices of T1 in

Figure 1.

Denote the vertex set of G by {v1, v2, . . . , vn} and the Perron vector of G by x = (x1, x2, . . . , xn),

where xi corresponds to vi.

Assume G is obtained by attaching some trees to some vertices of graph T3 in Figure 1. If

xr ≥ xu, then let G∗ = G−uvi+1−uvi−1−uf1−· · ·−ufz +rvi+1 +rvi−1 +rf1 + · · ·+rfz , where

uvi+1, uvi−1 ∈ E(Ch), and f1, . . . , fz are all the neighbors of u in those trees (if exist) attaching to

u. If xr < xu, then let G∗ = G− rvj+1 − rvj−1 − rq1−· · ·− rqs +uvj+1 +uvj−1 +uq1 + · · ·+uqs,

where rvj+1, rvj−1 ∈ E(Cp), and q1, . . . , qs are all the neighbors of r in those trees (if exist)

attaching to r. Combining two cases above, by Lemma 1, we can see that q(G∗) > q(G) and

G∗ ∈ T k,3
n , a contradiction. Hence G cannot be obtained by attaching some trees to some vertices

of graph T3.

By similar reasoning, it is easy to prove that G cannot be obtained by attaching trees to

some vertices of graph T2, T4, T5, T6, T7. Hence G must be obtained by attaching some trees to

vertices of T1.

Next, we will prove that G must be obtained by attaching exactly one tree to some vertex

of T1.

Assume there exist two trees, say T ′

1, T ′

2 are attached to vertices w1, w2 of T1, respectively.

If xw1
≤ xw2

, then let G∗ = G−w1u1 −w1u2 − · · · −w1ug +w2u1 + · · ·+w2ug, where u1, . . . , ug

are all the neighbors of w1 in T ′

1. If xw1
> xw2

, then let G∗ = G − w2u
′

1 − w2u
′

2 − · · · − w2u
′

l +

w1u
′

1 + · · · + w1u
′

l, where u′

1, . . . , u
′

l are all the neighbors of w2 in T ′

2. By Lemma 1, we can see

that q(G∗) > q(G) and G∗ ∈ T k,3
n , a contradiction. Hence G has only one tree, say T ∗, attached

to some vertex, say v, of T1.
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Thirdly, we prove that d(u) ≤ 2, for any u ∈ V (T ∗), u /∈ V (T1), where T ∗ is a tree

which attaches to some vertex of T1. If d(u) > 2, denote N(u) = {z1, z2, . . . , zs} and N(v) =

{w1, w2, . . . , wt}, t ≥ 3. Let z1, w3 belong to the path joining v and u, and w1 belong to one cycle

in G. If xv ≥ xu, let G∗ = G−uz3−· · ·−uzs+vz3+· · ·+vzs. If xv < xu, let G∗ = G−vw1+uw1.

It is easy to see that G∗ ∈ T k,3
n . By Lemma 1, we can get that q(G∗) > q(G), a contradiction.

Hence, G is a graph obtained from T1 by attaching k paths.

By Lemma 5, it is easy to get that the k paths attached to v of T1 have almost equal lengths.

Let v1 be the common vertex of the three cycles of T1. Finally, we prove that v = v1.

Assume that v 6= v1. Without loss of generality, suppose that v ∈ Cp, where Cp is some

cycle of T1. Let P1, P2, . . . , Pk be the k paths attached to v, and vwi1 ∈ Pi (i = 1, 2, . . . , k).

Denote v1v
′

m−1, v1v
′

m+1 ∈ Cq, v1v
′

j−1, v1v
′

j+1 ∈ Ch, where Cq and Ch are the two cycles except

Cp of T1.

If xv ≥ xv1
, then let G∗ = G−v1v

′

i−1−v1v
′

i+1−v1v
′

j−1−v1v
′

j+1+vv′i−1+vv′i+1+vv′j−1+vv′j+1.

If xv < xv1
, then let G∗ = G−vw11−vw21−· · ·−vwk1 +v1w11 +v1w21 + · · ·+v1wk1. Obviously,

G∗ ∈ T k,3
n , and by Lemma 1, we get q(G∗) > q(G), a contradiction. Hence v = v1.

By Lemmas 2 and 7, it is easy to prove that all the cycles in G have length 3. Then

G ∼= B3(1). �

By similar reasoning to that of Theorem 1, it is not difficult to prove the following theorems.

Theorem 2 Let G ∈ T k,4
n . Then q(G) ≤ q(B4(1)), and the equality holds if and only if

G ∼= B4(1).

Theorem 3 Let G ∈ T k,6
n . Then q(G) ≤ q(B6(1)), and the equality holds if and only if

G ∼= B6(1).

Theorem 4 Let G ∈ T k,7
n . Then q(G) ≤ q(B7(1)), and the equality holds if and only if

G ∼= B7(1).

From Lemmas 8, 9 and Theorems 1–4, we get the main result.

Theorem 5 Let G ∈ T k
n , k ≥ 1. Then q(G) ≤ q(B3(1)), and the equality holds if and only if

G ∼= B3(1).
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