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Abstract Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point

methods, has become the backbones of most optimization packages. Salahi et al. proposed a

cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and

maintained its efficiency in practice. We extend their algorithm to P∗(κ) linear complementar-

ity problems. The way of choosing corrector direction for our algorithm is different from theirs.

The new algorithm has been proved to have an O((1 + 4κ)(17 + 19κ)
√

1 + 2κn
3
2 log (x0)Ts

0

ε
)

worst case iteration complexity bound. An numerical experiment verifies the feasibility of the

new algorithm.

Keywords P∗(κ) linear complementarity problems; Mehrotra-type predictor-corrector algo-

rithm; polynomial iteration complexity; interior point method.
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1. Introduction

Variants of Mehrotra’s predictor-corrector algorithm [1, 2] are among the most practical

interior-point methods (IPMs) for linear optimization (LO), quadratic optimization(QO) and

linear complementarity problems(LCPs) and have become the backbones of most optimization

softwares. However, not much about their complexity was known until [3] was presented by Salahi

et al. In [3], a numerical example showed that a feasible version of Mehrotra-type predictor-

corrector algorithm may be forced to make very small steps to keep the iterates in a certain

neighborhood of the central path, which motivated them to combine this algorithm with a simple

large-update safeguard that guaranteed polynomial iteration complexity. The authors of [4]

analyzed the same algorithm from a different perspective and proposed a cut strategy based

algorithm. Their algorithm cuts the maximum step size in the predictor step if it is above a

certain threshold, if this cut does not give a desirable step size, then cuts it for the second

time which gives a lower bound for the step size in the corrector step. This algorithm enjoys

polynomial iteration while its practical efficiency is preserved. The algorithms of [4], having a
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stop criteria in the predictor step, are more efficient in solving large scale programs than the

safeguard algorithms in [3].

In this paper, the cut strategy based algorithm of [4] is extended to solve the P∗(κ) lin-

ear complementarity programs. The way of choosing corrector direction is different from the

corresponding algorithm for linear optimization. The new algorithm is proved to have an

O((1 + 4κ)(17 + 19κ)
√

1 + 2κn
3
2 log (x0)Ts0

ε
) worst case iteration complexity bound. A Matlab

numerical experiment indicates that the algorithm is efficient.

Throughout the paper, ‖ · ‖ denotes the 2-norm of vectors and e is the all one vector; For

x, s ∈ Rn, xs denotes the componentwise product (Hadamard product) of vectors x and s, and

so is true for other operations. For simplicity we also use the following notations:

x(α) = x + α∆x, s(α) = s + α∆s, µg =
xTs

n
,

I = {1, ..., n}, I+ = {i ∈ I | ∆xa
i ∆sa

i ≥ 0}, I− = {i ∈ I | ∆xa
i ∆sa

i < 0},
F = {(x, s) ∈ Rn × Rn | s = Mx + q, (x, s) ≥ 0},
F0 = {(x, s) ∈ F | (x, s) > 0},
X = diag(x), S = diag(s).

2. Preliminaries

In this paper we consider the following P∗(κ) linear complementarity problem (LCP):














s = Mx + q,

xTs = 0,

x ≥ 0, s ≥ 0,

(1)

where M ∈ Rn×n is a P∗(κ) matrix and q ∈ Rn.

P∗(κ) matrix was introduced in [5] and we give the definition as follows.

Definition 2.1. Let κ ≥ 0 be a nonnegative number. A matrix M ∈ Rn×n is called a P∗(κ)

matrix if

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I
−

(x)

xi(Mx)i ≥ 0,

or

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i,

for all x ∈ Rn, where

I+(x) = {i ∈ I : xi(Mx)i ≥ 0}, I−(x) = {i ∈ I : xi(Mx)i < 0}.

Note that for κ = 0, P∗(0) is the class of positive semidefinite matrices. This implies that

the class of P∗(κ)-matrices includes both the class PSD of positive matrices and the class of

P-matrices with all the principal minors positive. Indeed, it is known that by exploiting the

first order optimality condition of the optimization problem, any differentiable convex quadratic
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program can be formulated into a monotone linear complementarity program (MLCP), i.e., P∗(0)

LCP, and vice versa [6].

Without loss of generality [7] we may assume that (1) satisfies the interior point condition

(IPC), i.e., there exists an (x0, s0) such that

s0 = Mx0 + q, x0 > 0, s0 > 0.

The basic idea of primal-dual IPMs is to replace the second equation of (1) by the parameterized

equation xs = µe. This leads to the following system:














s = Mx + q,

xs = µe,

x ≥ 0, s ≥ 0.

(2)

If the IPC holds, the system (2) has a unique solution for each µ > 0. This solution, denoted by

(x(µ), s(µ)), is called the µ-center of (1). The set of µ-centers gives the central path of (1). As

µ → 0, the central path forms a path to the optimal solution of (1) (see [7]).

Before proceeding, let us briefly recall a feasible version of Mehrotra’s original algorithm for

LCPs. In the predictor step one solves the so-called affine scaling system:

M∆xa = ∆sa,

s∆xa + x∆sa = −xs.
(3)

Then the maximum feasible step size in this direction is computed, i.e., the largest αa ≤ 1

satisfies

(x + αa∆xa, s + αa∆sa) ≥ 0.

However, the algorithm does not make this step right away, it uses the information from the

predictor step to compute the corrector direction by solving the following system:

M∆x = ∆s,

s∆x + x∆s = µe − xs − α2
a∆xa∆sa,

(4)

where µ is defined adaptively as

µ = (
ga

g
)2

ga

n
, (5)

where ga = (x + αa∆xa)T(s + αa∆sa) and g = xTs.

Remark 2.1 An important ingredient of this paper is that the second equation of (4) is different

from the corresponding equation in [4], where it is s∆x + x∆s = µe − xs − ∆xa∆sa, thus the

new corrector direction is also different, which is the key to proving the polynomial complexity

of the new algorithm.

Finally, the maximum step size αc is computed so that the next iterate given by

(x + αc∆x, s + αc∆s)

belongs to a certain neighborhood of the central path.
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3. Algorithm and complexity analysis

In this paper, we consider the negative infinity norm neighborhood defined by

N−
∞(γ) := {(x, s) ∈ F0 : xisi ≥ γµg, ∀i ∈ I},

where γ ∈ (0, 1
4κ+3 ) is a constant independent of n.

We can outline our algorithm as follows:

Algorithm 1

Input:

A proximity γ ∈ (0, 1
4κ+3 ); a safeguard parameter β ∈ [γ, 1

4κ+3 );

an accuracy parameter ε > 0; a starting point (x0, s0) ∈ N−
∞(γ).

begin

while xTs ≥ ε do

begin

(Predictor Step)

Solve (3) and compute the maximum step size αa such that

(x(αa), s(αa)) ∈ F ;

If x(αa)Ts(αa) ≤ ε, then

let x = x(αa), s = s(αa) and stop.

end

end

begin

(Corrector Step)

If αa > α1, where α1 is given by (13), then let αa = α1.

end

Solve (4) with µ defined by (5) and compute the

maximum step size αc such that (x(αc), s(αc)) ∈ N−
∞(γ);

If αc < γ
4p1n

, where p1 = 17+19κ
32γ

√

(1 + 4κ)(2 + 4κ), then

solve (4) with µ = β
1−β

µg and compute the

maximum step size αc such that (x(αc), s(αc)) ∈ N−
∞(γ);

end

Set (x, s) = (x(αc), s(αc)) .

end

end

The following technical lemma is used frequently during the analysis.

Lemma 3.1 Suppose that (∆xa, ∆sa) is the solution of (3). Then

1) ∆xa
i ∆sa

i ≤ xisi

4 , i ∈ I+; −∆xa
i ∆sa

i ≤ 1
αa

( 1
αa

− 1)xisi, i ∈ I−;

2)
∑

i∈I+
∆xa

i ∆sa
i ≤ xTs

4 ,
∑

i∈I
−

|∆xa
i ∆sa

i | ≤ 4κ+1
4 xTs;



A Mehrotra-type predictor-corrector algorithm for P∗(κ) LCPs 301

3) −κxTs ≤ (∆xa)T∆sa ≤ xTs
4 .

Proof 1) The proof is analogous to those in Lemma A.1 and Lemma 4.1 in [3].

2) The first conclusion follows from 1). In the following we prove the second one. By (3)

and using the fact that M is a P∗(κ) matrix, we have

(1 + 4κ)
∑

i∈I+

∆xa
i (M∆xa)i +

∑

i∈I
−

∆xa
i (M∆xa)i ≥ 0,

or

(1 + 4κ)
∑

i∈I+

∆xa
i ∆sa

i +
∑

i∈I
−

∆xa
i ∆sa

i ≥ 0. (6)

Using the first conclusion in 2) completes the proof.

3) Following from 2), one has

(∆xa)T∆sa ≤
∑

i∈I+

∆xa
i ∆sa

i ≤ xTs

4
.

Moreover, by (6) we have

(∆xa)T∆sa ≥ −4κ
∑

i∈I+

∆xa
i ∆sa

i ≥ −κxTs.

This completes the proof. �

Following from 3) of Lemma 3.1, and using the definition of µ given by (5), we have

µ =
((1 − αa)xTs + α2

a(∆xa)T∆sa)3

n(xTs)2
= (1 − αa +

α2
a(∆xa)T∆sa

xTs
)3µg

≤ (1 − αa +
α2

a · 1
4xTs

xTs
)3µg = (1 − αa +

1

4
α2

a)3µg ≤ (1 − 3

4
αa)3µg.

Besides, by (∆xa)T∆sa ≥ −κxTs, there holds

µ ≥ (1 − αa +
α2

a(−κxTs)

xTs
)3µg = (1 − αa − κα2

a)3µg ≥ (1 − (1 + κ)αa)3µg.

Therefore, we get the bound of µ:

(1 − (1 + κ)αa)3µg ≤ µ ≤ (1 − 3

4
αa)3µg. (7)

The following theorem shows that there exists always a guaranteed positive step size in the

predictor step of the algorithm.

Theorem 3.2 Suppose that the current iterate (x, s) ∈ N−
∞(γ), and (∆xa, ∆sa) is the solution

of (3). Then the maximum feasible step size, αa ∈ (0, 1], so that (x(αa), s(αa)) ≥ 0, satisfies

αa ≥
√

γ

(4κ + 1)n
.

Proof Since (x, s) ∈ N−
∞(γ), by 2) of Lemma 3.1, we have

xi(α)si(α) = (1 − α)xisi + α2∆xa
i ∆sa

i ≥ γ(1 − α)
xTs

n
− 4κ + 1

4
α2xTs.
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Our aim is to ensure that xi(α)si(α) ≥ 0. For this it suffices to require that

γ(1 − α)
xTs

n
− 4κ + 1

4
α2xTs = ((1 − α)γ − 4κ + 1

4
nα2)

xTs

n
≥ 0,

that is equivalent to

(4κ + 1)nα2 + 4γα − 4γ ≤ 0.

This inequality holds when α ∈ [
−2γ−2

√
γ2+(4κ+1)nγ

(4κ+1)n ,
−2γ+2

√
γ2+(4κ+1)nγ

(4κ+1)n ]. So the feasible pre-

dictor step satisfies

αa ≥ −2γ + 2
√

γ2 + (4κ + 1)nγ

(4κ + 1)n
.

Since γ
(4κ+1)n < 1

2 , we have

αa ≥ −2γ + 2
√

γ2 + (4κ + 1)nγ

(4κ + 1)n
=

2
√

1 + (4κ + 1)n
γ

+ 1
≥

√

γ

(4κ + 1)n
.

This completes the proof. �

Lemma 3.3 Let (∆x, ∆s) be the solution of (4) with µ > 0. Then

‖∆x∆s‖ ≤
√

(
1

4
+ κ)(

1

2
+ κ)‖r‖2,

∑

i∈I+

∆xi∆si ≤
1

4
‖r‖2,

where ‖r‖2 = ‖µ(xs)−
1
2 − (xs)

1
2 − α2

a(xs)−
1
2 ∆xa∆sa‖2.

Proof The proof is similar to that of Lemma 8 in [8].

The following technical lemma and its corollary will be used in the step size estimation for

the corrector step of the new algorithm.

Lemma 3.4 Suppose that the current iterate (x, s) ∈ N−
∞(γ), and let (∆x, ∆s) be the solution

of (4) with µ ≥ 0. Then we have

‖∆x∆s‖ ≤
√

(
1

4
+ κ)(

1

2
+ κ)(

nµ2

γµg

− 2nµ +
α2

anµ(4κ + 1)

2γ
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
nµg),

∆xT∆s ≤1

4
(
nµ2

γµg

− 2nµ +
α2

anµ(4κ + 1)

2γ
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
nµg).

Proof Expanding ‖r‖2 denoted in Lemma 3.3, we have

‖r‖2 = µ2
∑

i∈I

1

xisi

+
∑

i∈I

xisi − 2nµ+α4
a

∑

i∈I

(∆xa
i ∆sa

i )2

xisi

− 2µα2
a

∑

i∈I

∆xa
i ∆sa

i

xisi

+2α2
a

∑

i∈I

∆xa
i ∆sa

i .

Since (x, s) ∈ N−
∞(γ), there holds

µ2
∑

i∈I

1

xisi

≤ nµ2

γµg

.
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Furthermore, by 1) and 2) of Lemma 3.1, we have

∑

i∈I

(∆xa
i ∆sa

i )2

xisi

≤
∑

i∈I+

(1
4xisi)

2

xisi

+
∑

i∈I
−

1
αa

( 1
αa

− 1)xisi

xisi

(−∆xa
i ∆sa

i )

=
1

16
xTs +

1 − αa

α2
a

∑

i∈I
−

|∆xa
i ∆sa

i |

≤ (
1

16
+

(4κ + 1)(1 − αa)

4α2
a

)nµg.

Besides, there hold

−2µ
∑

i∈I

∆xa
i ∆sa

i

xisi

≤ 2µ
∑

i∈I
−

|∆xa
i ∆sa

i |
xisi

≤ 2µ

γµg

∑

i∈I
−

|∆xa
i ∆sa

i | ≤
(4κ + 1)nµ

2γ

and

2
∑

i∈I

∆xa
i ∆sa

i ≤ 2
∑

i∈I+

∆xa
i ∆sa

i ≤ nµg

2
.

Therefore, we have

‖r‖2 ≤ nµ2

γµg

− 2nµ +
α2

anµ(4κ + 1)

2γ
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
nµg.

We get the conclusion following from Lemma 3.3.

The following corollary gives an explicit upper bound for ‖∆x∆s‖ and ∆xT∆s when µ is

chosen adaptively as given by (5).

Corollary 3.5 Let µ be defined by (5), where γ ∈ (0, 1
4κ+3 ). Then

‖∆x∆s‖ ≤ p1nµg, ∆xT∆s ≤ p2nµg,

where p1 = 17+19κ
32γ

√

(1 + 4κ)(2 + 4κ), p2 = 17+19κ
32γ

.

Proof By (7), and using the fact that γ < 1
4κ+3 ≤ 1

3 and 0 < αa ≤ 1, then

nµ2

γµg

− 2nµ +
α2

anµ(4κ + 1)

2γ
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
nµg

≤ (
1

γ
(1 − 3

4
αa)6 +

(4κ + 1)α2
a

2γ
(1 − 3

4
αa)3 +

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
)nµg

≤ (
1

γ
+

4κ + 1

2γ
+

1 + 8 + 4(4κ + 1) + 16

16
)nµg

=
16 + 32κ + 8 + (29 + 16κ)γ

16γ
nµg ≤ 17 + 19κ

8γ
nµg.

By Lemma 3.4 we complete the proof of the corollary.

For simplicity the following notation is used in the rest of our development:

t = max
i∈I+

{∆xa
i ∆sa

i

xisi

}. (8)

Remark 3.1 Since M is a P∗(κ) matrix, there is I+ 6= ∅. Besides, by 1) of Lemma 3.1, we have

t ∈ [0, 1
4 ].
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The next theorem provides an upper bound for αa that ensures a positive step size in the

corrector step, which also indicates that a larger step size in the predictor step might result in a

very small or zero step size in the corrector step.

Theorem 3.6 Suppose that the current iterate (x, s) ∈ N−
∞(γ), and let (∆x, ∆s) be the solution

of (4) with µ as defined by (5). Then for αa ∈ (0, 1] satisfying

αa <
1

1 + κ
(1 − (

1
1+κ

γ(t + κ)

1 − γ
)

1
3 ) (9)

the maximum step size in the corrector step is strictly positive.

Proof Our goal is to find a lower bound for the maximal α ∈ (0, 1] such that

xi(α)si(α) ≥ γµg(α), ∀i ∈ I, (10)

where

µg(α) =
x(α)Ts(α)

n
= (1 − α)µg + αµ − αα2

a(∆xa)T∆sa

n
+

α2∆xT∆s

n
. (11)

By (4), we conclude that (10) is equivalent to

(1−α)xisi+αµ−αα2
a∆xa

i ∆sa
i +α2∆xi∆si ≥ γ(1−α)µg +αγµ− αα2

aγ(∆xa)T∆sa

n
+

α2γ∆xT∆s

n

or

(1−α)xisi+(1−γ)αµ−αα2
a∆xa

i ∆sa
i +α2∆xi∆si+

αα2
aγ(∆xa)T∆sa

n
−α2γ∆xT∆s

n
≥ γ(1−α)µg.

Note that (x, s) ∈ N−
∞(γ). It follows from 3) of Lemma 3.1 that the above inequality holds if

(1 − γ)
µ

µg

− α2
aγ∆xa

i ∆sa
i

µg

− α2
aγκ +

α∆xi∆si

µg

− αγ∆xT∆s

nµg

≥ 0. (12)

In the following, we consider (12) for two cases.

i) For i ∈ I+, by using (8), (7) and (x, s) ∈ N−
∞(γ), it follows from Corollary 3.5 that (12)

holds when

−α2
aγ(t + κ) + (1 − γ)(1 − αa(1 + κ))3 − α(p1n + p2γ) ≥ 0.

Obviously, for αa satisfying (9), the above inequality holds if α satisfies

− γ(t + κ)

1 + κ
(1 − (

1
1+κ

γ(t + κ)

1 − γ
)

1
3 ) +

γ(t + κ)

1 + κ
− α(p1n + p2γ)

= (1 − γ)−
1
3 (

γ(t + κ)

1 + κ
)

4
3 − α(p1n + p2γ) ≥ 0

or

α <
1

(p1n + p2γ)(1 − γ)
1
3

(
γ(t + κ)

1 + κ
)

4
3 ,

that is

αc ≥ 1

(p1n + p2γ)(1 − γ)
1
3

(
γ(t + κ)

1 + κ
)

4
3 > 0.
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ii) For i ∈ I− and αa satisfying (9), by Corollary 3.5, (12) holds for α satisfying

− α2
aγκ + (1 − γ)(1 − αa(1 + κ))3 − α(p1n + p2γ)

> − γκ

1 + κ
(1 − (

1
1+κ

γ(t + κ)

1 − γ
)

1
3 ) +

γ(t + κ)

1 + κ
− α(p1n + p2γ)

=
γt

1 + κ
+

γκ

1 + κ
(

1
1+κ

γ(t + κ)

1 − γ
)

1
3 − α(p1n + p2γ) ≥ 0

or

α <
1

p1n + p2γ
(

γt

1 + κ
+

γκ

1 + κ
(

1
1+κ

γ(t + κ)

1 − γ
)

1
3 )

i.e.,

αc ≥ 1

p1n + p2γ
(

γt

1 + κ
+

γκ

1 + κ
(

1
1+κ

γ(t + κ)

1 − γ
)

1
3 ) > 0.

This completes the proof. �

Following from the proof of Theorem 3.6, to have an explicit strictly positive lower bound

for the maximum step size αc in the corrector step, instead of (9), we use the following inequality:

αa ≤ 1

1 + κ
(1 − (

γ(t + κ)

1 − γ
)

1
3 ) := α1. (13)

Lemma 3.7 For sufficiently small µg there holds t ≤ O(µg).

Proof Analogously to the proof of Theorem 3.6 of [9], we have ‖∆xa‖ = O(µg) and ‖∆sa‖ =

O(µg) (see Appendix for the proof). Therefore, there is

|∆xa∆sa| ≤ O(µ2
g).

This implies the statement of the lemma by the definition of t.

Corollary 3.8 For sufficiently small µg one has αa ≥ 1 −O(µg).

Proof The proof is analogous to the interpretation of the section 5 in [3].

Remark 3.2 By Theorem 3.6 we see that for sufficiently small µg, we can guarantee a positive

step size in the corrector step for αa ≤ 1
1+κ

(1 − O(µ
1
3
g )). However, following the Corollary 3.8

αa ≥ 1 −O(µg), which is greater than or equal to 1
1+κ

(1 − O(µ
1
3
g )) for sufficiently small µg. In

other words, in asymptotic case we might need to cut αa, but still have a reasonably big αa.

Remark 3.3 From (13) it is obvious that when κ = 0 and t approaches to zero, α1 approaches

to one. In other words, our cut does not block the convergence of the affine scaling step size to

one, it just reduces the speed of convergence in order to guarantee a positive step size for the

corrector step.

In the following corollary, we discuss the specific case that t = 0.

Corollary 3.9 If t = 0 at a certain iteration, then the algorithm can make a full Newton step

in the predictor step and stop with an optimal solution.
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Proof From (8) it is obvious that when t = 0, there is ∆xa
i ∆sa

i = 0, ∀i ∈ I+. Thus, by the first

equation of (3) and using the fact that M is a P∗(κ) matrix, we have

0 ≤ (1 + 4κ)
∑

i∈I+

∆xa
i (M∆xa)i +

∑

i∈I
−

∆xa
i (M∆xa)i

= (1 + 4κ)
∑

i∈I+

∆xa
i ∆sa

i +
∑

i∈I
−

∆xa
i ∆sa

i =
∑

i∈I
−

∆xa
i ∆sa

i .

Subsequently ∆xa
i ∆sa

i = 0, ∀i ∈ I, i.e., for all i ∈ I, there is ∆xa
i = 0 or ∆sa

i = 0. In the

following, the proof of (x + ∆xa, s + ∆sa) ∈ F is given.

a) It is obvious that (x + ∆xa, s + ∆sa) satisfies M(x + ∆xa) + q = s + ∆sa.

b) There are both x + ∆xa ≥ 0 and s + ∆sa ≥ 0. By contradiction, we assume that

xi + ∆xa
i < 0 or si + ∆sa

i < 0 for some i ∈ I. Let us suppose xi + ∆xa
i < 0 here. Then one has

∆sa
i = 0 since ∆xa

i < 0. Moreover, using the second equation of (3), we have (xi + ∆xa
i )(si +

∆sa
i ) = 0, that is, si + ∆sa

i = si = 0, which would contradict (x, s) ∈ F0.

Therefore, a full Newton step in the predictor step leads to an optimal solution since (x +

∆xa)T(s + ∆sa) = 0 by (3). This completes the proof. �

Therefore, if αa violates (13), we let αa = α1 and proceed with the corrector step. If the

maximum step size in the corrector step is still below a certain threshold depending only on

the dimension, then we let αa = 1
1+κ

(1 − ( β
1−β

)
1
3 ), where γ ≤ β < 1

4κ+3 . By (7) one can see

that this choice implies µ ≥ β
1−β

µg. By µ = β
1−β

µg with αa = 1
1+κ

(1 − ( β
1−β

)
1
3 ) one further can

guarantee a lower bound for the maximum step size in the corrector step which is independent

of t. Subsequently the polynomial iteration complexity of the algorithm can be proved. In the

next corollary and the subsequent theorem, we discuss this particular case.

Corollary 3.10 Let µ = β
1−β

µg, where γ ≤ β < 1
4κ+3 and γ ∈ (0, 1

4κ+3 ). Then

‖∆x∆s‖ ≤ p1nµg, ∆xT∆s ≤ p2nµg.

Proof Using 0 < γ ≤ β < 1
4κ+3 ≤ 1

3 , one has β
1−β

∈ (0, 1
2 ). Moreover, by αa ∈ (0, 1], there is

nµ2

γµg

− 2nµ +
α2

anµ(4κ + 1)

2γ
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
nµg

≤ (
1

γ
(

β

1 − β
)2 +

(4κ + 1)α2
a

2γ
· β

1 − β
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 − αa) + 16

16
)nµg

≤ (
1

4γ
+

4κ + 1

4γ
+

1 + 8 + 4(4κ + 1) + 16

16
)nµg =

4 + 4(4κ + 1) + γ(29 + 16κ)

16γ
nµg

≤ 11κ + 9

8γ
nµg ≤ 19κ + 17

8γ
nµg.

By Lemma 3.4, we complete the proof. �

Theorem 3.11 Suppose that the current iterate (x, s) ∈ N−
∞(γ) and (∆x, ∆s) is the solution

of (4) with µ = β
1−β

µg and αa = 1
1+κ

(1 − ( β
1−β

)
1
3 ). Then

αc ≥ γ

4p1n
.
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Proof Following the proof of Theorem 3.6, in the worst case, as given by (12), it suffices to have

α
∆xi∆si

µg

− α
γ∆xT∆s

nµg

− α2
aγt + (1 − γ)

β

1 − β
+

α2
aγ(∆xa)T∆sa

nµg

≥ 0.

By Lemma 3.1 and Corollary 3.10, and using the fact that β
1−β

≥ γ
1−γ

, the above inequality

holds as long as

−(np1 + γp2)α − α2
aγt + γ − α2

aγκ = −(np1 + γp2)α + γ(1 − α2
a(t + κ)) ≥ 0.

Note that αa = 1
1+κ

(1 − ( β
1−β

)
1
3 ) ≤ 1

1+κ
, then the previous inequality holds for α satisfying

−(np1 + γp2)α + γ(1 − t + κ

(1 + κ)2
) ≥ 0

or

α ≤
γ(1 − t+κ

(1+κ)2 )

np1 + γp2
.

Since 0 ≤ t ≤ 1
4 and γp2 ≤ np1, there is

αc ≥
γ(1 − t+κ

(1+κ)2 )

np1 + γp2
≥

1
2γ

2p1n
=

γ

4p1n
,

which completes the proof. �

For the worst case, i.e., when i ∈ I+, (∆xa)T∆sa = −κxTs, ∆xT∆s > 0, by Lemma 3.1

and Corollary 3.5 or 3.10, there is

µg(α) ≤ (1 − α + α
µ

µg

+ αα2
aκ + p2α

2)µg.

When µ = β
1−β

µg and αa = 1
1+κ

(1 − ( β
1−β

)
1
3 ), if α ≤ 1

6p2
(1 − ( β

1−β
)

1
3 ), then we can prove

that µg(α) < µg, that is to say, the dual gap is decreased after the iteration; When αa > α1

and µ = (ga

g
)2 ga

n
, if α ≤ 13×0.37

160p2(1+κ) , there is µg(α) < µg, too; Similarly, when αa ≤ α1 and

µ = (ga

g
)2 ga

n
, if α ≤ 13γ

1
2

160p2(4κ+1)
1
2 n

1
2

, we can keep µg(α) < µg. Hence, in order to guarantee the

dual gap decreased after each iteration, we assume

α ≤ min{ 1

6p2
(1 − (

β

1 − β
)

1
3 ),

13 × 0.37

160p2(1 + κ)
,

13γ
1
2

160p2(4κ + 1)
1
2 n

1
2

}. (14)

Obviously, when n ≥ 2, there is

γ

4p1n
< min{ 1

6p2
(1 − (

β

1 − β
)

1
3 ),

13 × 0.37

160p2(1 + κ)
,

13γ
1
2

160p2(4κ + 1)
1
2 n

1
2

},

which implies that the conclusion of Theorem 3.1 still holds. On the other hand, there is

max{ 1

6p2
(1 − (

β

1 − β
)

1
3 ),

13 × 0.37

160p2(1 + κ)
,

13γ
1
2

160p2(4κ + 1)
1
2 n

1
2

} < 1.

Therefore, (14) is well defined.

The following theorem gives the maximum number of iterations for Algorithm 1 to find an

ε-approximate solution.
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Theorem 3.12 After at most

O((1 + 4κ)(17 + 19κ)
√

1 + 2κn
3
2 log

(x0)Ts0

ε
)

number of iterations Algorithm 1 stops with a solution for which xTs ≤ ε.

Proof By (11) and Lemma 3.1, and following from Corollary 3.5 or 3.10, we have

µg(α) ≤ (1 − α + α
µ

µg

+ αα2
aκ +

α2∆xT∆s

nµg

)µg ≤ (1 − α + α
µ

µg

+ αα2
aκ + p2α

2)µg.

1) If αa > α1, and αc ≥ γ
4p1n

, the algorithm uses the cut strategy, i.e., it cuts αa to

α1 = 1
1+κ

(1 − (γ(t+κ)
1−γ

)
1
3 ). Using γ < 1

4κ+3 and t ∈ [0, 1
4 ], there is

α1 =
1

1 + κ
(1 − (

γ(t + κ)

1 − γ
)

1
3 ) ≥ 0.37

1 + κ
.

So as to prove the polynomial complexity of the algorithm, we discuss µg(α) for two cases, i.e.,

κ > 2
3 and κ ≤ 2

3 . When κ > 2
3 , there holds 0.37

1+κ
≤ α1 ≤ 1

1+κ
≤ 3

5 . By (7) and (14), and noting

that α1κ ≤ κ
1+κ

≤ 1, we have

µg(α) ≤ (1 − α + (1 − 3

4
α1)

3α + αα2
1κ + p2α

2)µg

≤ (1 − α + (1 − 3

4
α1)

2α + α1α + p2α
2)µg

≤ (1 − 1

2
α1α +

9

16
· 3

5
α1α + p2α

2)µg

≤ (1 − 13 × 0.37

80(1 + κ)
α + p2α

2)µg

≤ (1 − (
13 × 0.37

80(1 + κ)
− 13 × 0.37

160(1 + κ)
) · γ

4p1n
)µg

≤ (1 − γ

160p1(1 + κ)n
)µg.

When κ ≤ 2
3 , we have

µg(α) ≤ (1 − α + (1 − 3

4
α1)

2α +
2

3
α2

1α + p2α
2)µg

≤ (1 − 3

2
α1α + (

9

16
+

2

3
)α1α + p2α

2)µg

≤ (1 − 13 × 0.37

48(1 + κ)
α + p2α

2)µg

≤ (1 − (
13 × 0.37

48
− 13 × 0.37

160
) · γ

(1 + κ)4p1n
)µg

≤ (1 − 7γ

480p1(1 + κ)n
)µg.

2) If αa > α1, and αc < γ
4p1n

, then our algorithm cuts αa for the second time, i.e.,

αa = 1
1+κ

(1− ( β
1−β

)
1
3 ) and µ = β

1−β
µg, which guarantees a lower bound for αc by Theorem 3.11,

that is, αc ≥ γ
4p1n

. Thus, there is

α2
aκ ≤ (1 − (

β

1 − β
)

1
3 )2 ≤ 1 − (

β

1 − β
)

1
3 .
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Moreover, by (14) and β < 1
4κ+3 ≤ 1

3 , we have

µg(α) ≤ (1 − α +
β

1 − β
α + αα2

aκ + p2α
2)µg

≤ (1 − α +
β

1 − β
α + (1 − (

β

1 − β
)

1
3 )α + p2α

2)µg

≤ (1 − (
β

1 − β
)

1
3 (1 − (

β

1 − β
)

2
3 )α + p2α

2)µg

≤ (1 − 1

3
(

β

1 − β
)

1
3 α + p2α

2)µg

≤ (1 − (
1

3
− 1

6
)(

β

1 − β
)

1
3 · γ

4p1n
)µg

= (1 −
γ( β

1−β
)

1
3

24p1n
)µg.

3) If αa ≤ α1, and αc ≥ γ
4p1n

, the algorithm uses the Mehrotra’s strategy, i.e., µ = (ga

g
)2 ga

n
.

When κ > 2
3 , there is αa ≤ α1 ≤ 3

5 . By Theorem 3.2, using (7) and (14) and αaκ ≤ α1κ ≤ 1, we

have

µg(α) ≤ (1 − α + (1 − 3

4
αa)2α + αaα + p2α

2)µg

≤ (1 − (
1

2
− 9

16
· 3

5
)αaα + p2α

2)µg

≤ (1 − 13

80
· γ

1
2

(4κ + 1)
1
2 n

1
2

α + p2α
2)µg

≤ (1 − 13γ
1
2

160(4κ + 1)
1
2 n

1
2

· γ

4p1n
)µg

≤ (1 − 13γ
3
2

640p1(4κ + 1)
1
2 n

3
2

)µg.

When κ ≤ 2
3 , we have

µg(α) ≤ (1 − α + (1 − 3

4
αa)2α +

2

3
αaα + p2α

2)µg

≤ (1 − 13

48
αaα + p2α

2)µg

≤ (1 − (
13

48
− 13

160
) · γ

1
2 α

(4κ + 1)
1
2 n

1
2

)µg

≤ (1 − 91γ
1
2

480(4κ + 1)
1
2 n

1
2

· γ

4p1n
)µg

= (1 − 91γ
3
2

1920p1(4κ + 1)
1
2 1000n

3
2

)µg.

We complete the proof by Theorem 5.4 in [4].

4. Numerical result

In this section, we verify our algorithm using Matlab 7.6. For P∗(κ) linear complementarity
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problems, there has not been a polynomial algorithm for which we can calculate the value of the

parameter κ for a given P∗(κ) matrix. So in this paper we consider the P∗(κ) LCPs with κ = 0,

where

M =







2 −2 0

−2 4 0

0 0 2






, q =

(

1

11
,−4,− 3

11

)T

.

Let γ = 0.02, β = 0.03 and ε = 10−6. Starting from the feasible point

x0 = (2.5, 2.5, 1)T, s0 = (
1

11
, 1,

19

11
)T,

the algorithm stops after 17 iterations with a solution meeting accuracy. The solution is

x = (1.909090912570709, 1.954545457571089, 0.136365040653625)T,

s = 10−5 × (0.000090833143495, 0.000514293719393, 0.280857997644044)T.

The dual gap is xTs = 3.947783144852814e− 007, which shows that our algorithm is feasible.

5. Conclusion

In this paper, we have extended the Mehrotra-type predictor-corrector algorithm for linear

optimization to P∗(κ) LCPs. Since the search directions ∆x and ∆s are not orthogonal for P∗(κ)

LCPs, the new technical lemmas are needed and the analysis is different from the corresponding

algorithm for linear optimization in [4]. There is an O((1 + 4κ)(17 + 19κ)
√

1 + 2κn
3
2 log (x0)Ts0

ε
)

worst case iteration complexity bound for our algorithm. Unfortunately, up to now, the parame-

ter κ of the matrix M is not known appropriately and there is no polynomial algorithm to decide

whether a matrix is P∗(κ) matrix or not [8], so our algorithm is not suitable to solve practical

problems directly.

6. Appendix

Proof of Lemma 3.7 For a P∗(κ) LCP possessing a strictly complementary solution, a unique

partition B and N , where B
⋃

N = {1, 2, . . . , n} and B
⋂

N = ∅, exists such that x∗
N = 0 and

s∗B = 0 in every complementarity solution and at least one complementarity solution has x∗
B > 0

and x∗
N > 0. Since the sequence generated by Algorithm 1 is contained in a wide neighborhood,

we have

γµg ≤ xisi ≤ nµg. (15)

The Lemma 2 of Güler and Ye [10] has shown that for all (x, s) ∈ N−
∞(γ), relation (15) implies

that

ξ ≤ xj ≤ 1/ξ for j ∈ B, ξ ≤ sj ≤ 1/ξ for j ∈ N, (16)

where 0 < ξ < 1 is a positive constant.

Let z = xs and Z = diag(z). Note from (15) that we must have

γµg ≤ zj ≤ nµg for j = 1, 2, . . . , n.
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Define D = (XS−1)
1
2 . We now introduce several lemmas to estimate ‖∆xa‖ and ‖∆sa‖. We

start by characterizing the solution to (3).

Lemma 6.1 If ‖∆xa‖ and ‖∆sa‖ are obtained from the system (3) and µg = xTs
n

, then

‖D−1∆xa‖ ≤
√

(1 + 2κ)nµg, ‖D∆sa‖ ≤
√

(1 + 2κ)nµg.

Proof Multiply the second equation by (XS)−
1
2 and square both sides of it, then by 3) of

Lemma 3.1, we have

‖D−1∆xa‖2 + ‖D∆sa‖2 = ‖(XS)
1
2 e‖2 − 2(∆xa)T∆sa ≤ xTs + 2κxTs = (1 + 2κ)nµg.

Thus, we have the conclusion ‖D−1∆xa‖ ≤
√

(1 + 2κ)nµg, ‖D∆sa‖ ≤
√

(1 + 2κ)nµg.

Lemma 6.2 If ‖∆xa‖ and ‖∆sa‖ are obtained from (3), and µg = xTs
n

, then

‖(∆xa)N‖ = O(µg), ‖(∆sa)B‖ = O(µg).

Proof From Lemma 6.1 and (16), we have

‖(∆xa)N‖ = ‖DND−1
N (∆xa)N‖ ≤ ‖DN‖‖D−1

N (∆xa)N‖ ≤ ‖DN‖O(
√

µg)

= ‖Z
1
2

NS−1
N ‖O(

√
µg) ≤ ‖Z

1
2

N‖O(1/ξ)O(
√

µg)

= O(
√

µg)O(
√

µg) = O(µg).

This proves ‖(∆xa)N‖ = O(µg). The proof that ‖(∆sa)B‖ = O(µg) is similar.

Following from the second equation of (3), we have

∆xa = −S−1(xs) − D2∆sa, ∆sa = −X−1(xs) − D−2∆sa. (17)

Theorem 6.3 If ‖∆xa‖ and ‖∆sa‖ are obtained from (3), and µg = xTs
n

, then

‖∆xa‖ = O(µg), ‖∆sa‖ = O(µg).

Proof Due to Lemma 6.2, we only need to prove

‖(∆xa)B‖ = O(µg), ‖(∆sa)N‖ = O(µg).

Using Lemma 6.1 and (17), we have

‖(∆xa)B‖ = ‖S−1
B (xs)B + DB(DB∆sa

B)‖
≤ ‖S−1

B ‖‖(XS)B‖ + ‖DB‖‖DB∆sa
B‖

= O(1/ξ)O(µg) + O(
√

µg)O(
√

µg) = O(µg).

Similarly, one has ‖(∆sa)N‖ = O(µg). The proof is completed. �
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