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Abstract In this paper, we study the bases and base sets of primitive symmetric loop-free

(generalized) signed digraphs on n vertices. We obtain sharp upper bounds of the bases, and

show that the base sets of the classes of such digraphs are {2, 3, . . . , 2n− 1}. We also give a new

proof of an important result obtained by Cheng and Liu.
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1. Introduction

A sign pattern matrix is a matrix each of whose entries is a sign 1, −1 or 0. For a square

sign pattern matrix M , notice that in the computations of the entries of the power Mk, the

“ambiguous sign” may arise when we add a positive sign 1 to a negative sign −1. So a new

symbol “#” was introduced in [1] to denote the ambiguous sign, the set Γ = {0, 1,−1, #} is

defined as the generalized sign set and the addition and multiplication involving the symbol #

are defined as follows:

(−1) + 1 = 1 + (−1) = #; a + # = # + a = # for all a ∈ Γ (1.1)

0 · # = # · 0 = 0; b · # = # · b = # for all b ∈ Γ \ {0}. (1.2)

In [1, 2], the matrices with entries in the set Γ are called generalized sign pattern matrices.

The addition and multiplication of generalized sign pattern matrices are defined in the usual

way, so that the sum and product of the generalized sign pattern matrices are still generalized

sign pattern matrices. In this paper, we assume that all the matrix operations considered are

operations of the matrices over Γ.

Definition 1.1 ([1]) A square generalized sign pattern matrix M is called powerful if each power

of M contains no # entry.

Definition 1.2 ([3]) Let M be a square generalized sign pattern matrix of order n and
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M, M2, M3, . . . be the sequence of powers of M . Suppose M b is the first power that is re-

peated in the sequence. Namely, suppose b is the least positive integer such that there is a

positive integer p such that

M b = M b+p. (1.3)

Then b is called the generalized base (or simply base) of M , and is denoted by b(M). The least

positive integer p such that (1.3) holds for b = b(M) is called the generalized period (or simply

period) of M , and is denoted by p(M).

We now introduce some concepts of graph theory.

Let D = (V, A) denote a digraph on n vertices. Loops are permitted, but no multiple

arcs. A u → v walk in D is a sequence of vertices u, u1, . . . , uk = v and a sequence of arcs

e1 = (u, u1), e2 = (u1, u2), . . . , ek = (uk−1, v), where the vertices and the arcs are not necessarily

distinct. A closed walk is a u → v walk where u = v. A path is a walk with distinct vertices. A

cycle is a closed u → v walk with distinct vertices except for u = v. The length of a walk W is

the number of arcs in W , denoted by l(W ). A k-cycle is a cycle of length k, denoted by Ck.

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or −1. A generalized

signed digraph S is a digraph where each arc of S is assigned a sign 1, −1 or #.

The sign of the walk W in a (generalized) signed digraph, denoted by sgnW , is defined to be
∏k

i=1 sgn(ei), where e1, e2, . . . , ek is the sequence of arcs of W .

Let M = (mij) be a square (generalized) sign pattern matrix of order n. The associated

digraph D(M) = (V, A) of M (possibly with loops) is defined to be the digraph with vertex set

V = {1, 2, . . . , n} and arc set A = {(i, j)|mij 6= 0}. The associated (generalized) signed digraph

S(M) of M is obtained from D(M) by assigning the sign of mij to each arc (i, j) in D(M), and

we say D(M) is the underlying digraph of S(M).

Let S be a (generalized) signed digraph on n vertices. Then there is a (generalized) sign

pattern matrix M of order n whose associated (generalized) signed digraph S(M) is S. We say

that S is powerful if M is powerful. Also the base b(S) and period p(S) are defined to be those

of M . Namely we define b(S) = b(M) and p(S) = p(M).

A digraph D is said to be strongly connected if there exists a path from u to v for all u, v ∈ V ,

and D is called primitive if there is a positive integer k such that for each vertex x and each

vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y. The least

such k is called the primitive exponent (or simply exponent) of D, denoted by exp(D). It is also

well-known that a digraph D is primitive if and only if D is strongly connected and the greatest

common divisor (simply g.c.d.) of the lengths of all the cycles of D is 1. A (generalized) signed

digraph S is called primitive if the underlying digraph D is primitive, and in this case we define

exp(S) = exp(D).

A digraph D is symmetric if for every arc (u, v) in D, the arc (v, u) is also in D. A (generalized)

signed digraph S is called symmetric if the underlying digraph D is symmetric. If a digraph (or

a generalized signed digraph) D (or S) is symmetric, then D (or S) can be regarded as an

undirected graph (possibly with loops).
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A digraph D is loop-free if D has no loops. In this case, if a digraph (or a generalized signed

digraph) D (or S) is symmetric and loop-free, then D (or S) can be regarded as a simple graph.

Set S⋆
n
′ = {S|S is a primitive non-powerful symmetric loop-free signed digraph on n vertices},

S⋆
n = {S|S is a primitive symmetric loop-free signed digraph on n vertices} and S̄⋆

n = {S|S is a

primitive symmetric loop-free generalized signed digraph on n vertices}. Clearly, S⋆
n
′ ⊂ S⋆

n ⊂ S̄⋆
n.

The primitive exponent and exponent set of primitive symmetric digraphs were discussed in

[4, 5], and the primitive exponent and exponent set of primitive symmetric loop-free digraphs

were discussed in [6, 7]. The following results are useful.

Theorem 1.A ([7]) Let D be a primitive symmetric loop-free digraph on n vertices. Then

exp(D) ≤ 2n− 4 and the primitive exponent set of such digraphs is {2, 3, . . . , 2n− 4}\D, where

D is the set of odd numbers in {n − 2, n − 1, . . . , 2n − 5}.

In [8], Cheng and Liu studied the bases and base sets of primitive symmetric signed digraphs

and generalized signed digraphs.

Theorem 1.B ([8]) Let S be a primitive symmetric (generalized) signed digraph on n vertices.

Then b(S) ≤ 2n and the base set of Sn(S̄n) is {1, 2, . . . , 2n}, where Sn(S̄n) is the set of the

primitive symmetric (generalized) signed digraphs on n vertices.

A natural question is what are the upper bounds of the bases and the base sets of primitive

symmetric loop-free (generalized) signed digraphs on n vertices. As a main result, the sharp

upper bounds of the bases are obtained in Section 3, then in Section 4, we show that the base

sets of S⋆
n
′, S⋆

n and S̄⋆
n are {2, 3, . . . , 2n−1}, and in Section 5, we give a new proof of an important

result in [8].

2. Some preliminaries

In this section, we introduce some definitions, theorems and lemmas which we need to use in

the presentations and proofs of our main results in this paper. Other definitions and results not

in this article can be found in [9–11].

Definition 2.1 ([3]) Two walks W1 and W2 in a signed digraph are called a pair of SSSD

walks, if they have the same initial vertex, same terminal vertex and same length, but they have

different signs.

It is easy to see from the above relation between matrices and signed digraphs that a (gen-

eralized) sign pattern matrix M is powerful if and only if the associated (generalized) signed

digraph S(M) contains no pairs of SSSD walks. Thus for a (generalized) signed digraph S, S

is powerful if and only if S contains no pairs of SSSD walks.

In [3], You, Shao and Shan obtained an important characterization for primitive non-powerful

signed digraphs from the characterization of powerful irreducible sign pattern matrices [1].

Theorem 2.A ([3]) If S is a primitive signed digraph, then S is non-powerful if and only if S

contains a pair of cycles C′ and C′′ (say, with lengths p1 and p2, respectively) satisfying one of
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the following conditions:

(A1) p1 is odd, p2 is even and sgnC′′ = −1;

(A2) Both p1 and p2 are odd and sgnC′ = −sgnC′′.

A pair of cycles C′ and C′′ satisfying (A1) or (A2) is a “distinguished cycle pair”. It is easy

to check that if C′ and C′′ is a distinguished cycle pair with lengths p1 and p2, respectively, then

the closed walks W1 = p2C
′ (walk around C′ by p2 times) and W2 = p1C

′′ have the same length

p1p2 and different signs:

(sgnC′)p2 = −(sgnC′′)p1 . (2.1)

The following result can be used to determine the base.

Theorem 2.B ([3]) Let S be a primitive non-powerful signed digraph. Then

(1) There is an integer k such that there exists a pair of SSSD walks of length k from each

vertex x to each vertex y in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x to each vertex y, then

there also exists a pair of SSSD walks of length k + 1 from each vertex x to each vertex y in S.

(3) The minimal such k (as in (1)) is just b(S)-the base of S.

In the rest of the paper, for an undirected walk W of graph G and two vertices x, y on W ,

let QW (x → y) be the shortest path from x to y on W . Let Q(x → y) be the shortest path from

x to y on G. For a cycle C, if x and y are two (not necessarily distinct) vertices on C and P is

a path from x to y along C, then C\P denotes the path or cycle from x to y along C obtained

by deleting the edges of P .

The following Lemmas 2.1–2.3 will be used in the proof of Lemma 3.5 and Theorem 3.1.

Lemma 2.1 Let S = (V, A) be a symmetric signed digraph on 2k vertices, where vertex set

V = {1, 2, . . . , 2k}, arc set A = {(i, i + 1), (i + 1, i)|i = 1, 2, . . . , 2k − 1} ∪ {(1, 2k), (2k, 1)}. If all

the signs of 2-cycles are 1 in S, and sgnC2k = −1. Then for any i ∈ V (S) (1 ≤ i ≤ 2k), there

exists a vertex x ∈ V (S), such that there is a pair of SSSD walks with length k from i to x.

Proof For all i ∈ V (1 ≤ i ≤ 2k), take x = k + i (mod 2k). We will show the walks (i, i + 1) +

(i + 1, i + 2) + · · · + (k + i − 1, k + i) and (i, i − 1) + (i − 1, i − 2) + · · · + (k + i + 1, k + i) is a

pair of SSSD walks with length k from i to x.

Without loss of generality, we may assume i = 1. Take x = k + 1 ∈ V . Let W1 = (1, 2) +

(2, 3) + · · · + (k, k + 1) and W2 = (1, 2k) + (2k, 2k − 1) + · · · + (k + 2, k + 1). Then sgnW1 =

sgn(1, 2)× sgn(2, 3)×· · ·× sgn(k, k+1), and sgnW2 = sgn(1, 2k)× sgn(2k, 2k−1)×· · ·× sgn(k +

2, k + 1) = sgn(2k, 1)× sgn(2k − 1, 2k)× · · · × sgn(k + 1, k + 2) because all the signs of 2-cycles

are 1.

So sgnW1 · sgnW2 = sgn(1, 2)× sgn(2, 3)× · · · × sgn(2k − 1, 2k)× sgn(2k, 1) = sgnC2k = −1,

then sgnW1 = −sgnW2 and l(W1) = l(W2) = k. Therefore W1, W2 is a pair of SSSD walks from

1 to x with length k. 2

Lemma 2.2 Let D be a symmetric digraph on n vertices. If there exist a cycle C and an odd
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cycle C′ with lengths of k(≥ 1) and k′(≥ 1) in D such that C ∩ C′ = ∅, let P be the shortest

path from C to C′, and for any x ∈ D, let P1 (P2) be the shortest path from x to C (C′). Then

we have

l(P1) + l(P ) + l(P2) ≤ 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
}. (2.2)

Proof Suppose P intersects C (C′) at v (v′).

Case 1 P1 ∩ C′ = ∅ and P2 ∩ C = ∅.

Subcase 1.1 (P1 ∪ P2) ∩ P = ∅.

It is easy to see that l(P1)+l(P )+l(P2) ≤ 2(n−k−k′+1) ≤ 2(n−k−k′+1)+max{[k
2 ], k′

−1
2 }.

Subcase 1.2 (P1 ∪ P2) ∩ P 6= ∅.

We have P1 ∩ P 6= ∅ or P2 ∩ P 6= ∅. Without loss of generality, we may assume P1 ∩ P 6= ∅.

Suppose z is the first vertex on P1 ∩ P . Then l(P1) + l(P ) + l(P2) ≤ l(QP1
(x → z)) + l(QP (z →

v)) + l(P ) + l(QP1
(x → z)) + l(QP (z → v′)) = 2(l(P ) + l(QP1

(x → z))) ≤ 2(n − k − k′ + 1).

Case 2 P1 ∩ C′ 6= ∅.

Suppose z is the first vertex on P1 ∩ C′. We have l(P1) + l(P ) + l(P2) ≤ (l(QP1
(x →

z)) + l(QC′(z → v′)) + l(P )) + l(P ) + l(QP1
(x → z)) = 2(l(P ) + l(QP1

(x → z))) + l(QC′(z →

v′)) ≤ 2(n − k − k′ + 1) + k′
−1
2 .

Case 3 P2 ∩ C 6= ∅.

Suppose z is the first vertex on P2 ∩ C. We have l(P1) + l(P ) + l(P2) ≤ l(QP2
(x → z)) +

l(P ) + (l(QP2
(x → z)) + l(QC(z → v)) + l(P )) = 2(l(P ) + l(QP2

(x → z))) + l(QC(z → v)) ≤

2(n − k − k′ + 1) + [k
2 ].

Combining the above three cases yields (2.2). 2

Lemma 2.3 Let D be a symmetric digraph on n vertices. If there exist a cycle C and an odd

cycle C′ with lengths of k(≥ 1) and k′(≥ 1) in D such that C ∩ C
′

= ∅, let P be the shortest

path from C to C′, d(x, y) be the distance from x to y. Then for any two vertices x, y ∈ D, there

exist x′ ∈ C, y′ ∈ C′ or x′ ∈ C′, y′ ∈ C such that

d(x, x′) + l(P ) + d(y, y′) ≤ 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
}. (2.3)

Proof Note that l(P ) ≤ n− k− k′ + 1, then we only need to consider the following three cases.

Case 1 x ∈ C or y ∈ C. Without loss of generality, we may assume x ∈ C.

Take x′ = x, and for any y ∈ D, there exists y′ ∈ C′ such that d(y, y′) ≤ [k
2 ] + n− k − k′ + 1.

So d(x, x′) + l(P ) + d(y, y′) ≤ 2(n − k − k′ + 1) + [k
2 ] ≤ 2(n − k − k′ + 1) + max{[k

2 ], k′
−1
2 }.

Case 2 x ∈ C′ or y ∈ C′. Without loss of generality, we may assume x ∈ C′.

Take x′ = x. For any y ∈ D, there exists y′ ∈ C such that d(y, y′) ≤ k′
−1
2 + n − k − k′ + 1.

So d(x, x′) + l(P ) + d(y, y′) ≤ 2(n − k − k′ + 1) + k′
−1
2 ≤ 2(n − k − k′ + 1) + max{[k

2 ], k′
−1
2 }.

Case 3 x 6∈ C ∪ C′ and y 6∈ C ∪ C′.
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Let P1 and P ′

1 be the shortest paths from x to C and C′ respectively, and P2 and P ′

2 be the

shortest paths from y to C and C′ respectively. Assume the result does not hold. Then we have

l(P1) + l(P ) + l(P ′

2) > 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
},

and

l(P ′

1) + l(P ) + l(P2) > 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
}.

Therefore, l(P1) + l(P ′

1) + 2l(P ) + l(P2) + l(P ′

2) > 4(n − k − k′ + 1) + 2 max{[k
2 ], k′

−1
2 }.

On the other hand, by Lemma 2.2 we have

l(P1) + l(P ) + l(P ′

1) ≤ 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
},

and

l(P2) + l(P ) + l(P ′

2) ≤ 2(n − k − k′ + 1) + max{[
k

2
],

k′ − 1

2
}.

So l(P1) + l(P ′

1) + 2l(P ) + l(P2) + l(P ′

2) ≤ 4(n − k − k′ + 1) + 2 max{[k
2 ], k′

−1
2 }, leading to a

contradiction.

Combining the above three cases gives (2.3). 2

3. The sharp upper bound of b(S)

It was shown in [1] that if a primitive signed digraph S is powerful, then b(S) = exp(D),

where D is the underlying digraph of S. This means that the study of the base b(S) for prim-

itive powerful signed digraphs is essentially the study of the base (i.e., primitive exponent) for

primitive digraphs. So for a primitive powerful symmetric loop-free signed digraph, Theorem

1.A gives the results. But if S is not powerful, then the situation is totally different. Now we

consider primitive non-powerful symmetric loop-free signed digraphs.

Lemma 3.1 Let S be a primitive non-powerful symmetric loop-free signed digraph on n ver-

tices. If all the signs of 2-cycles are −1 in S. Then b(S) ≤ 2n − 1.

Proof Because S is a primitive loop-free signed digraph, there exists an odd cycle Cl =

v1v2 · · · vlv1 of length l(≥ 3) in S. Let x and y be any two (not necessarily distinct) vertices in

S.

Consider the directed cycles Cl = v1v2 · · · vlv1 and C′

l = v1vl · · · v2v1. Since all the signs of

2-cycles are −1 in S, arcs (u, v) and (v, u) have different signs for any two vertices u, v ∈ S. Thus

sgnCl × sgnC′

l = (−1)l = −1 because l is odd and thus sgnCl = −sgnC′

l .

Let P1 be the shortest path from x to Cl and P1 intersect Cl at x′, P2 be the shortest path

from y to Cl and P2 intersect Cl at y′ where 0 ≤ l(Pi) ≤ n − l, i = 1, 2. Set

W =

{

P1 + QCl
(x′ → y′) + P2, if l(P1) + l(QCl

(x′ → y′)) + l(P2) is even;

P1 + Cl \ QCl
(x′ → y′) + P2, otherwise.

Then l(W ) is even and l(W ) ≤ (n − l) + l + (n − l) = 2n− l, thus W + Cl, W + C′

l is a pair

of SSSD walks from x to y with odd length ≤ 2n. Therefore there exists a pair of SSSD walks
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of length 2n − 1 from x to y.

Then b(S) ≤ 2n − 1 by Theorem 2.B. 2

Lemma 3.2 Let S be a primitive non-powerful symmetric loop-free signed digraph on n vertices

and there exists a vertex v in S such that v is contained in a positive 2-cycle C′ and a negative

2-cycle C′′. Then b(S) ≤ 2n − 1.

Proof Because S is a primitive loop-free signed digraph, there exists an odd cycle Cl =

v1v2 · · · vlv1 of length l (≥ 3) in S. Let x and y be any two (not necessarily distinct) vertices in

S.

Let P be the shortest path from v to Cl and P intersect Cl at v′. Suppose there are k vertices

on P where k ≥ 1. Then P ∪ Cl contains k + l − 1 vertices.

Let P1 be the shortest path from x to P ∪Cl and P1 intersect P ∪Cl at x′, P2 be the shortest

path from y to P ∪ Cl and P2 intersect P ∪ Cl at y′ where 0 ≤ l(Pi) ≤ n − k − l + 1, i = 1, 2.

We consider the following three cases.

Case 1 x′ ∈ P , y′ ∈ P .

Set a = l(QP (x′ → v)), b = l(QP (v → y′)) and

W =

{

P1 + QP (x′ → v) + P + QP (v′ → y′) + P2, if a ≤ b;

P1 + QP (x′ → v′) + P + QP (v → y′) + P2, otherwise.

Then l(W ) ≤ (n− k− l + 1)+ (k− 1)+ (k− 1)+ (n− k− l + 1) = 2n− 2l. If l(W ) is odd, we set

W1 = W . Otherwise, we set W1 = W + Cl. Therefore, l(W1) is odd, and l(W1) ≤ 2n − l, thus

W1 +C′ and W1 +C′′ is a pair of SSSD walks from x to y with odd length ≤ 2n− l+2 ≤ 2n−1.

Therefore, there exists a pair of SSSD walks of length 2n − 1 from x to y.

Case 2 Either x′ or y′ belongs to P . Without loss of generality, we may assume x′ ∈ P and

y′ 6∈ P .

Set w = l(P1) + l(QP (x′ → v)) + l(P ) + l(QCl
(v′ → y′)) + l(P2), and

W =

{

P1 + QP (x′ → v) + P + QCl
(v′ → y′) + P2, if w is odd;

P1 + QP (x′ → v) + P + Cl \ QCl
(v′ → y′) + P2, otherwise.

Then l(W ) is odd, and l(W ) ≤ (n−l−k+1)+(k−1)+(k−1)+(l−1)+(n−l−k+1) = 2n−l−1,

thus the pair W + C′ and W + C′′ is a pair of SSSD walks from x to y with odd length

≤ 2n− l + 1 < 2n− 1. Therefore, there exists a pair of SSSD walks of length 2n− 1 from x to

y.

Case 3 x′ 6∈ P , y′ 6∈ P .

Subcase 3.1 If v′ ∈ QCl
(x′ → y′), set w = l(P1) + l(QCl

(x′ → y′)) + l(P2) and

W =

{

P1 + QCl
(x′ → y′) + 2P + P2, if w is odd;

P1 + QCl
(x′ → y′) + 2P + Cl + P2, otherwise.

Then l(W ) is odd, and l(W ) ≤ (n− l−k+1)+ (l−1)
2 +2(k−1)+ l +(n− l−k+1) = 2n− l

2 −
1
2 ,
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thus the pair W + C′ and W + C′′ is a pair of SSSD walks from x to y with odd length

≤ 2n − l
2 + 3

2 ≤ 2n (l ≥ 3). Since l(W ) is odd and 2n is even, b(S) ≤ 2n − 1. Therefore, there

exists a pair of SSSD walks of length 2n − 1 from x to y.

Subcase 3.2 If v′ 6∈ QCl
(x′ → y′), set w = l(P1) + l(QCl

(x′ → y′)) + l(P2). If w is even,

then set W = P1 + QCl
(x′ → y′) + Cl + 2P + P2. If w is odd, then set a = l(QCl

(x′ → v′)),

b = l(QCl
(y′ → v′)) and

W =

{

P1 + 2QCl
(x′ → v′) + QCl

(x′ → y′) + 2P + P2, if a ≤ b;

P1 + QCl
(x′ → y′) + 2QCl

(y′ → v′) + 2P + P2, otherwise.

Then l(W ) is odd, and l(W ) ≤ (n− l−k+1)+ (l−1)
2 + l +2(k−1)+(n− l−k+1) = 2n− l

2 −
1
2 .

Thus the pair W + C′ and W + C′′ is a pair of SSSD walks from x to y with odd length

≤ 2n − l
2 + 3

2 ≤ 2n (l ≥ 3). Since l(W ) is odd and 2n is even, b(S) ≤ 2n − 1. Therefore there

exists a pair of SSSD walks of length 2n − 1 from x to y.

Then b(S) ≤ 2n − 1 by Theorem 2.B. 2

In the above lemma, we actually have a pair of SSSD walks of length 2. Using the same

way, we can prove the following result.

Lemma 3.3 Let S be a primitive symmetric loop-free generalized signed digraph on n vertices

and there exists a closed walk W of length 2 in S with the property that sgnW = #. Then

b(S) ≤ 2n− 1.

Lemma 3.4 Let S be a primitive non-powerful symmetric loop-free signed digraph on n vertices

and there exists a negative 2-cycle. Then b(S) ≤ 2n − 1.

Proof If the sign of every 2-cycle is −1, then the result follows from Lemma 3.1.

If there exists a positive 2-cycle, then there exist at least a positive 2-cycle and a negative

2-cycle. By the fact that the underlying digraph D is strongly connected, there exists a vertex

v such that v is contained in a positive 2-cycle and a negative 2-cycle. By Lemma 3.2, we have

b(S) ≤ 2n− 1. 2

Lemma 3.5 Let S be a primitive non-powerful symmetric loop-free signed digraph on n vertices

and there exists a negative even cycle in S. Then b(S) ≤ 2n − 1.

Proof Let C be the shortest even cycle in S with the property that sgnC = −1 and let l(C) = k.

If k = 2, then the result follows from Lemma 3.4.

If k ≥ 4, then the sign of any 2-cycle is 1. Since S is primitive, there exists an odd cycle C′

in S, say length k′ (≥ 3). Let x and y be any two (not necessarily distinct) vertices in S.

Case 1 C ∩ C′ = ∅.

Let P be the shortest path from C to C′. Assume P intersects C at v, P intersects C′ at v′.

By Lemma 2.3, there exist x′ ∈ C, y′ ∈ C′ or x′ ∈ C′, y′ ∈ C such that (2.3) holds. Without loss

of generality, suppose there exist x′ ∈ C, y′ ∈ C′ such that (2.3) holds. For convenience, let P1
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be the shortest path from x to x′ and P2 be the shortest path from y to y′.

Set w = l(P1) + l(QC(x′ → v)) + l(P ) + l(QC′(v′ → y′)) + l(P2), and

W =

{

P1 + QC(x′ → v) + P + QC′(v′ → y′) + P2, if w is odd;

P1 + QC(x′ → v) + P + C′ \ QC′(v′ → y′) + P2, otherwise.

Note that C and k
2C2 (walk around a 2-cycle k

2 times) have different signs, so W1 = W + C

and W2 = W + k
2C2 is a pair of SSSD walks from x to y with odd length ≤ 2(n− k − k′ + 1) +

max{[k
2 ] + k′

−1
2 } + k

2 + k′ + k = 2n− k′ − 1
2k + 2 + max{[k

2 ], k′
−1
2 } by (2.3).

If [k
2 ] ≥ k

′

−1
2 , then l(W1) ≤ 2n− k′ − 1

2k + 2 + [k
2 ] ≤ 2n − k′ + 2 ≤ 2n − 1.

If [k
2 ] < k′

−1
2 , then l(W1) ≤ 2n− k′ − 1

2k + 2 + k′
−1
2 = 2n − k+k′

2 + 3
2 < 2n − 1.

Therefore there exists a pair of SSSD walks of length 2n − 1 from x to y.

Case 2 C ∩ C′ 6= ∅.

Let P1 be the shortest path from x to C and P1 intersect C at x′ where 0 ≤ l(P1) ≤ n − k,

P2 be the shortest path from y to C′ and P2 intersect C′ at y′ where 0 ≤ l(P2) ≤ n − k′.

By Lemma 2.1, there exists x′′ ∈ C such that there exists a pair of SSSD walks from x′ to

x′′ with length k
2 , denoted by W1 and W2.

Because C ∩ C′ 6= ∅, there exists z ∈ C ∩ C′. So we set w = l(P1) + k
2 + l(QC(x′′ →

z)) + l(QC′(z → y′)) + l(P2), and for i = 1, 2, set

W ′

i =

{

P1 + Wi + QC(x′′ → z) + QC′(z → y′) + P2, if w is odd;

P1 + Wi + QC(x′′ → z) + C′ \ QC′(z → y′) + P2, otherwise.

Then W ′

1, W
′

2 is a pair of SSSD walks from x to y with odd length ≤ n−k+ k
2 + k

2 +k′+n−k′ = 2n.

Therefore, there exists a pair of SSSD walks of length 2n − 1 from x to y.

Then b(S) ≤ 2n − 1 by Theorem 2.B. 2

Theorem 3.1 Let S be a primitive non-powerful symmetric loop-free signed digraph on n

vertices. Then b(S) ≤ 2n − 1.

Proof Because S is primitive and non-powerful, it follows that Theorem 2.A holds.

If (A1) of Theorem 2.A holds, then there exists an even cycle C with the property sgnC = −1.

By Lemma 3.5, we have b(S) ≤ 2n− 1.

If (A1) of Theorem 2.A does not hold, then the sign of every even cycle is 1, and (A2) of

Theorem 2.A holds. Therefore there exist odd cycles C and C′ such that sgnC = −sgnC′. We

can assume that l(C) ≥ l(C′). Let l = l(C) (≥ 3) and l′ = l(C′) (≥ 3). Suppose W1 = C and

W2 = C′ + l−l′

2 C2, then W1 and W2 have the same length l and different signs. Two cases need

to be considered.

Case 1 C ∩ C′ = ∅.

The proof is similar to the case 1 of Lemma 3.5.

Case 2 C ∩ C′ 6= ∅.
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Let x and y be any two (not necessarily distinct) vertices in S. Let P1 be the shortest path

from x to C and P1 intersect C at x′, P2 be the shortest path from y to C and P2 intersect C

at y′ where 0 ≤ l(Pi) ≤ n − l (i = 1, 2).

Set W0 = QC(x′ → y′), then W0 or C \ W0 must contain at least one common vertex of C

and C′. Assume W0 contains at least one common vertex of C and C′, denoted by z.

Set w = l(P1) + l(W0) + l(P2), a = l(QW0
(x′ → z), b = l(QW0

(y′ → z) and

W =











P1 + W0 + P2, if w is even;

P1 + C \ W0 + 2QW0
(x′ → z) + P2, if w is odd and a ≤ b;

P1 + C \ W0 + 2QW0
(y′ → z) + P2, if w is odd and a > b.

Set W1 = W + C, W2 = W + C′ + l−l′

2 C2, then W1, W2 is a pair of SSSD walks from x to y

with odd length ≤ 2(n− l) + l + l ≤ 2n. Therefore, there exists a pair of SSSD walks of length

2n − 1 from x to y.

Then b(S) ≤ 2n − 1 by Theorem 2.B. 2

Theorem 3.2 Let S be a primitive symmetric loop-free signed digraph on n vertices. Then

b(S) ≤ 2n− 1.

Proof We consider the following two cases.

Case 1 If S is powerful.

From Theorem 1.A, we have b(S) ≤ 2n− 4.

Case 2 If S is not powerful.

From Theorem 3.1, we have b(S) ≤ 2n − 1. 2

Theorem 3.3 Let S be a primitive symmetric loop-free generalized signed digraph on n vertices.

Then b(S) ≤ 2n − 1.

Proof If S is primitive symmetric signed digraph, then b(S) ≤ 2n − 1 by Theorem 3.2.

Otherwise, there exists an arc (u, v) where u, v ∈ V (S) such that the arc is assigned a sign

#. Set W = (u, v) + (v, u), thus W is a closed walk of length 2 and sgnW = #. Therefore

b(S) ≤ 2n− 1 by Lemma 3.3. 2

4. Base sets of S⋆
n
′, S⋆

n and S̄⋆
n

Let S⋆
n
′ = {S|S is a primitive non-powerful symmetric loop-free signed digraph on n vertices},

S⋆
n = {S|S is a primitive symmetric loop-free signed digraph on n vertices}, and S̄⋆

n = {S|S is a

primitive symmetric loop-free generalized signed digraph on n vertices}. Clearly, S⋆
n
′ ⊂ S⋆

n ⊂ S̄⋆
n.

In this section, we show the base sets of S⋆
n
′, S⋆

n and S̄⋆
n are {2, 3, . . . , 2n− 1}.

In [8], Cheng and Liu defined connected graph (v1, v2; k, l, m)-lollipop and obtained the fol-

lowing result.

Lemma 4.1 ([8]) Suppose S is a signed digraph on n vertices and the underlying digraph D is
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a (v1, vn; k, l, m)-lollipop, where n = k + l + m − 1, l > 1 and l is odd. If there exist no positive

2-cycles in S, then

(1) b(S) = 2l + 2k − 3 if k ≥ 2;

(2) b(S) = 2l + 1 if k = 1 and m > 0;

(3) b(S) = 2l − 1 if k = 1 and m = 0.

It is obvious that S is primitive non-powerful symmetric loop-free signed digraph on n (≥ 4)

vertices if S satisfies the conditions of Lemma 4.1, then by the result of Lemma 4.1, we have

Corollary 4.1 Let n ≥ 4, En,0 = {b(S) | S ∈ S⋆
n
′}, then {7, 9, . . . , 2n − 1} ⊆ En,0.

Lemma 4.2 Let 1 ≤ k ≤ n− 3 and S = (V, A) be a signed digraph, where V = {1, 2, 3, . . . , n},

A = {(i, i + 1), (i + 1, i)|1 ≤ i ≤ k + 1} ∪ {(k + 2, j), (j, k + 2)|k + 3 ≤ j ≤ n} ∪ {(1, 3), (3, 1)},

sgn(1, 3) = −1, and the signs of the other arcs of S are 1. Then S is a primitive non-powerful

symmetric loop-free signed digraph with b(S) = 2k + 2.

Proof It is obvious that S is a primitive non-powerful symmetric loop-free signed digraph by

Theorem 2.A. Now we show b(S) = 2k + 2.

It is easy to see that there exist no pairs of SSSD walks with length 2k + 1 from n to n, so

b(S) ≥ 2k + 2.

On the other hand, the vertex 3 is contained in a positive 2-cycle C2 and a negative 2-cycle

C′

2, so there is a pair of SSSD walks from 3 to 3 with length 2. At the same time, the vertex 3

is also contained in a positive 3-cycle C3 and a negative 3-cycle C′

3, so there is a pair of SSSD

walks from 3 to 3 with length 3.

For any two vertices x, y ∈ V , let P1 be the shortest path from x to 3, P2 be the shortest

path from 3 to y where 0 ≤ l(Pi) ≤ k, i = 1, 2. Set w = l(P1) + l(P2), then w ≤ 2k.

If w is even, we set W1 = P1 +C2 +P2, W2 = P1 +C′

2 +P2. Then W1, W2 is a pair of SSSD

walks from x to y with even length ≤ 2k + 2.

If w is odd, then w ≤ 2k − 1, and we set W1 = P1 + C3 + P2, W2 = P1 + C′

3 + P2. Then

W1, W2 is a pair of SSSD walks from x to y with even length ≤ 2k + 2.

Therefore there exists a pair of SSSD walks of length 2k + 2 from x to y and b(S) ≤ 2k + 2

by Theorem 2.B.

Combining the above two inequalities, we have b(S) = 2k + 2. 2

By Lemma 4.2 and the fact 1 ≤ k ≤ n − 3, we have

Corollary 4.2 Let n ≥ 4, then {4, 6, 8, . . . , 2n − 4} ⊆ En,0.

Lemma 4.3 Let n ≥ 4 and S = (V, A) be a signed digraph, where V = {1, 2, . . . , n}, A =

{(i, i + 1) ∪ (i + 1, i)|1 ≤ i ≤ n − 3} ∪ {(1, n − 1), (n − 1, 1), (1, n), (n, 1), (n − 1, n), (n, n − 1)},

sgn(1, n − 1) = sgn(n, 1) = −1 and the signs of other arcs of S are 1. Then S is a primitive

non-powerful symmetric loop-free signed digraph and b(S) = 2n − 2.

Proof It is obvious that S is a primitive non-powerful symmetric loop-free signed digraph by
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Theorem 2.A. Now we show b(S) = 2n − 2.

It is easy to see that there exist no pairs of SSSD walks with length 2n − 3 from n − 2 to

n − 2, so b(S) ≥ 2n − 2.

On the other hand, the vertex 1 is contained in a positive 2-cycle C2 and a negative 2-cycle

C′

2, so there is a pair of SSSD walks from 1 to 1 with length 2.

For any two vertices x, y ∈ V , let P1 be the shortest path from x to 1, P2 be the shortest path

from 1 to y where 0 ≤ l(Pi) ≤ n − 3 (i = 1, 2), and C3 be 3-cycle in S. Set w = l(P1) + l(P2),

and

W =

{

P1 + P2, if w is even;

P1 + C3 + P2, otherwise.

Then l(W ) ≤ 2(n− 3)+3 = 2n− 3 and l(W ) is even, and thus W1 = W +C2 and W2 = W +C′

2

are a pair of SSSD walks from x to y with even length ≤ 2n − 1. Therefore there exists a pair

of SSSD walks of length 2n − 2 from x to y and b(S) ≤ 2n − 2 by Theorem 2.B.

Combining the above arguments, we have b(S) = 2n− 2. 2

The proofs of the following lemmas are easy, so we omit them.

Lemma 4.4 Let S = (V, A) be a signed digraph of order n = 2m + 1(≥ 5), where V =

{1, 2, . . . , 2m, 2m + 1}, A = {(1, i), (i, 1) | 2 ≤ i ≤ 2m + 1} ∪ {(2, i), (i, 2) | 3 ≤ i ≤ 2m + 1} ∪

{(2i, 2i + 1), (2i + 1, 2i) | 2 ≤ i ≤ m} ∪ {(3, 4), (4, 3)}, for all 1 ≤ i ≤ m, sgn(1, 2i) = −1, and for

all 1 ≤ i ≤ m + 1, sgn(2, 2i − 1) = −1, and the signs of the other arcs of S are 1. Then S is a

primitive non-powerful symmetric loop-free signed digraph with b(S) = 2.

When n is even, Wang, You and Ma [12] gave the following signed digraph S = (V, A) where

V = {1, 2, . . . , 2m − 1, 2m}, A = {(1, i), (i, 1)|2 ≤ i ≤ 2m} ∪ {(2, i), (i, 2)|3 ≤ i ≤ 2m} ∪ {(2i −

1, 2i), (2i, 2i − 1)|2 ≤ i ≤ m}, for all 1 ≤ i ≤ m, sgn(1, 2i) = −1, sgn(2, 2i − 1) = −1, and the

signs of the other arcs of S are 1. They showed S is a primitive non-powerful symmetric loop-free

signed digraph on n = 2m (≥ 4) vertices with b(S) = 2.

Lemma 4.5 Let n ≥ 3 and S = (V, A) be a signed digraph, where V = {1, 2, 3 . . . , n},

A = {(1, 2), (2, 1)} ∪ {(1, i), (i, 1), (2, i), (i, 2)|3 ≤ i ≤ n}, sgn(1, 2) = −1 and the signs of the

other arcs of S are 1. Then S is a primitive non-powerful symmetric loop-free signed digraph

with b(S) = 3.

Lemma 4.6 Let n ≥ 5 and S = (V, A) be a signed digraph, where V = {1, 2, 3, . . . , n},

A = {(i, i+1), (i+1, i)|1 ≤ i ≤ 3}∪{(1, j), (j, 1), (4, j), (j, 4)|5 ≤ j ≤ n}, and for all j ∈ {5, . . . , n},

sgn(j, 1) = −1, sgn(1, 2) = sgn(3, 4) = −1, the signs of the other arcs of S are 1. Then S is a

primitive non-powerful symmetric loop-free signed digraph with b(S) = 5.

Because S is loop-free, 1 6∈ En,0. By Lemmas 4.3–4.6, we have 2, 3, 5, 2n− 2 ∈ En,0. So by

Theorems 3.1–3.3, Corollaries 4.1 and 4.2, and S⋆
n
′ ⊂ S⋆

n ⊂ S̄⋆
n, we have

Theorem 4.1 (1) Let n ≥ 5, then En,0 = {2, 3, 4, . . . , 2n− 1}.

(2) The base set of S⋆
n (S̄⋆

n) is {2, 3, 4, . . . , 2n − 1} for n ≥ 5.
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Let Sn
′ = {S|S is a primitive non-powerful symmetric signed digraph on n vertices }. Then

S⋆
n
′ ⊆ Sn

′. It is easy to see that there exist primitive non-powerful symmetric signed digraphs

on n vertices such that the bases are 1 or 2n. Then by Theorem 4.1, we have

Corollary 4.3 The base set of Sn
′ is {1, 2, . . . , 2n− 1, 2n}.

5. A new proof of an important result in [8]

In this section, we give a new proof of Lemma 4.5 [8, pp. 726–729]. The following Lemma 5.1

in terms of graph theoretical version is useful.

Lemma 5.1 ([8]) Suppose S is a primitive non-powerful symmetric signed digraph on n vertices

and there exists a negative 2-cycle. Then b(S) ≤ 2n.

Theorem 5.1 ([8]) Suppose S is a primitive non-powerful symmetric signed digraph on n

vertices and there exists a negative even cycle. Then b(S) ≤ 2n.

Proof Let C be the shortest even cycle in S with the property that sgnC = −1 and let l(C) = k

(k is even).

If k = 2, then the result follows from Lemma 5.1.

If k ≥ 4, then the sign of any 2-cycle is 1. Since S is primitive, there exists an odd cycle C′

in S with length k′ (≥ 1). Let x and y be any two (not necessarily distinct) vertices in S.

Case 1 C ∩ C′ = ∅.

Let P be the shortest path from C to C′. Assume P intersects C at v and P intersects

C′ at v′. By Lemma 2.3, there exist x′ ∈ C, y′ ∈ C′ or x′ ∈ C′, y′ ∈ C such that (2.3) holds.

Without loss of generality, we assume that there exist x′ ∈ C, y′ ∈ C′ such that (2.3) holds. For

convenience, let P1 be the shortest path from x to x′ and P2 be the shortest path from y to y′

with property 0 ≤ l(Pi) ≤ n − k − k′ + 1 (i = 1, 2).

Set w = l(P1) + l(QC(x′ → v)) + l(P ) + l(QC′(v′ → y′)) + l(P2), and

W =

{

P1 + QC(x′ → v) + P + QC′(v′ → y′) + P2, if w is even;

P1 + QC(x′ → v) + P + C′ \ QC′(v′ → y′) + P2, otherwise.

Then W1 = W + C and W2 = W + k
2C2 is a pair of SSSD walks from x to y with even length

≤ 2(n− k− k′ + 1)+ max{[k
2 ] + k′

−1
2 }+ k

2 + k′ + k = 2n− k′ − 1
2k + 2+ max{[k

2 ], k′
−1
2 } by (2.3).

If [k
2 ] > k′

−1
2 , then l(W1) ≤ 2n−k′− 1

2k+2+[k
2 ] = 2n−k′+2 ≤ 2n+1, and thus l(W1) ≤ 2n

since l(W1) is even.

If [k
2 ] ≤ k′

−1
2 , then l(W1) ≤ 2n− k′ − 1

2k + 2 + k′
−1
2 = 2n − k+k′

2 + 3
2 ≤ 2n.

Therefore there exists a pair of SSSD walks of length 2n from x to y.

Case 2 C ∩ C′ 6= ∅.

Let P1 be the shortest path from x to C and P1 intersect C at x′ with property 0 ≤ l(P1) ≤ n−

k, P2 be the shortest path from y to C′ and P2 intersect C′ at y′ with property 0 ≤ l(P2) ≤ n−k′.
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By Lemma 2.1, there exists x′′ ∈ C such that there exists a pair of SSSD walks from x′ to

x′′ with length k
2 , denoted by W1 and W2.

Because C ∩ C′ 6= ∅, there exists z ∈ C ∩ C′. So we set w = l(P1) + k
2 + l(QC(x′′ →

z)) + l(QC′(z → y′)) + l(P2), and for i = 1, 2, set

W ′

i =

{

P1 + Wi + QC(x′′ → z) + QC′(z → y′) + P2, if w is even;

P1 + Wi + QC(x′′ → z) + C′ \ QC′(z → y′) + P2, otherwise.

Then W ′

1, W
′

2 is a pair of SSSD walks from x to y with even length ≤ n−k+ k
2+ k

2 +k′+n−k′ = 2n.

Therefore there exists a pair of SSSD walks of length 2n from x to y.

Thus b(S) ≤ 2n by Theorem 2.B. 2
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